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Abstract

Ko [Ko90] and Bruschi [Bru92] independently showed that, in some relativized
world, PSPACE (in fact, ⊕P) contains a set that is immune to the polynomial
hierarchy (PH). In this paper, we study and settle the question of (relativized)
separations with immunity for PH and the counting classes PP, C=P, and ⊕P in
all possible pairwise combinations. Our main result is that there is an oracle A

relative to which C=P contains a set that is immune to BPP⊕P. In particular, this
C=PA set is immune to PHA and to ⊕PA. Strengthening results of Torán [Tor91]
and Green [Gre91], we also show that, in suitable relativizations, NP contains
a C=P-immune set, and ⊕P contains a PPPH-immune set. This implies the
existence of a C=PB-simple set for some oracle B, which extends results of
Balcázar et al. [Bal85,BR88], and provides the first example of a simple set in a
class not known to be contained in PH. Our proof technique requires a circuit
lower bound for “exact counting” that is derived from Razborov’s [Raz87] circuit
lower bound for majority.

Keywords: Computational complexity; immunity; counting classes; relativized
computation; circuit lower bounds.
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1 Introduction

A fundamental task in complexity theory is to prove separations or collapses of

complexity classes. Unfortunately, results of this kind fall short for the most important

classes between polynomial time and polynomial space. In an attempt to find the reasons for

this frustrating failure over many years, and to gain more insight into why these questions are

beyond current techniques, researchers have studied the problem of separating complexity

classes in relativized settings. Baker, Gill, and Solovay, in their seminal paper [BGS75],

gave for example relativizations A and B such that PA 6= NPA and PB = NPB, setting the

stage for a host of subsequent relativization results.

Separations are also evaluated with regard to their quality. A simple separation such

as PA 6= NPA merely claims the existence of a set S in NPA that is not recognized by any

PA machine. This can be accomplished by a simple diagonalization ensuring that every PA

machine fails to recognize S by just one string, which is put into the symmetric difference

of S and the machine’s language. It may well be the case, however, that some PA machine

nonetheless accepts an infinite subset of S, thus “approximating from the inside” the set

witnessing the separation. Thus, one might argue that the difference between PA and NPA,

as witnessed by S, is negligible. In contrast, a strong separation of PA and NPA is witnessed

by a PA-immune set in NPA. For any class C of sets, a set is C-immune if it is an infinite

set having no infinite subset in C.

A relativization in which NP and P are strongly separated was first given by Bennett

and Gill [BG81]. In fact, they prove a stronger result. Technically speaking, they show that

relative to a random oracle R, NPR contains a PR bi-immune set with probability 1. This

was recently strengthened by Hemaspaandra and Zimand [HZ96] to the strongest result

possible: Relative to a random oracle R, NPR contains a PR balanced immune set with

probability 1. See these references for the notions not defined here.

Many more immunity results are known—see, e.g., [HM83,SB84,Bal85,BR88,TvEB89,

BJY90,Ko90,Lis,Bru92,EHTY92,BCS92,HRW97]. Most important for the present paper are

the results and (circuit-based) techniques of Ko [Ko90] and Bruschi [Bru92]. In particular,

both papers provide relativizations in which the levels of the polynomial hierarchy (PH)

separate with immunity, Bruschi’s results being somewhat stronger and more refined, as they

refer not only to the Σ, but also to the ∆ levels of PH. Also, both authors independently

obtain the result that there exists a PH-immune set in PSPACE, relative to an oracle. Since

Ko’s proof is only briefly sketched, Bruschi includes a detailed proof of this result. This

proof, however, is flawed.1

1In particular, looking into the proof of [Bru92, Thm. 8.3], the existence of the desired oracle extension,
W , in Case (e) of the construction is not guaranteed by the circuit lower bound used. In Case (e) of Stage l,
W is required to have an odd number of length h(l) strings such that all circuits associated with a list of still
unsatisfied requirements reject their inputs simultaneously—an input corresponds to the W chosen; so once
W is fixed, every circuit has the same input, χW (0h(l)) · · ·χW (1h(l)). The used circuit lower bound for the
parity function merely ensures that for each circuit C on that list, C computes parity correctly for at most
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Using Ko’s approach, it is not difficult to give a valid and complete proof of this result

(and indeed the present paper provides such a full proof—note Corollary 3.6). However, the

purpose of this paper goes beyond that: We study separations with immunity for counting

classes inside PSPACE with respect to the polynomial hierarchy and among each other.

Counting classes that have proven particularly interesting and powerful with regard to the

polynomial hierarchy are PP (probabilistic polynomial time), the exact counting class C=P,

and ⊕P (parity polynomial time). Note that the PSPACEA set that is shown by Ko [Ko90]

(cf. [Bru92]) to be PHA-immune in fact is contained in ⊕PA. Ko’s technique [Ko90] is

central to all results of the present paper.

The relationship between these counting classes and PH still is a major open problem

in complexity theory, although surprising advances have been made showing the hardness

of counting. In particular, Toda [Tod91] and Toda and Ogihara [TO92] have shown that

each class C chosen among PP, C=P, and ⊕P is hard for the polynomial hierarchy (and, in

fact, is hard for CPH) with respect to polynomial-time bounded-error random reductions.

Toda [Tod91] showed that PP is hard for PH even with respect to deterministic polynomial-

time Turing reductions. However, it is widely suspected that PH is not contained in, and

does not contain, any of these counting classes. There are oracles known relative to which

each such containment fails, and similarly there are oracles relative to which each possible

containment for any pair of these counting classes fails (except the known containment

C=P ⊆ PP [Sim75,Wag86], which holds relative to every oracle), see [BGS75,Tor88,Tor91,

Bei91,Gre91,Bei94].

Regarding relativized strong separations, however, the only results known are the above-

mentioned result that for some A, ⊕PA contains a PHA-immune set [Ko90] (cf. [Bru92]), and

that for some B, NPB (and thus PHB and PPB) has a ⊕PB-immune set [BCS92]. In this

paper, we strengthen to (relativized) strong separations all the other simple separations that

are possible among pairs of classes chosen from {PH,PP,⊕P,C=P}. Just as Balcázar and

Russo [Bal85,BR88] exhaustively settled (in suitable relativizations) all possible immunity

and simplicity questions among the probabilistic classes BPP, R, ZPP, and PP and among

these classes and P and NP, we do so for the counting classes C=P, PP, and ⊕P among each

other and with respect to the polynomial hierarchy.

Ko’s proof of the result that ⊕PA contains a PHA-immune set exploits the circuit lower

bounds for the parity function provided by Yao [Yao85] and H̊astad [H̊as89]. Noticing

that H̊astad [H̊as89] proved an equally strong lower bound for the majority function, one

could as well show that PPA contains a PHA-immune set for some oracle A. We prove a

stronger result: By deriving from Razborov’s [Raz87] circuit lower bound for the majority

function a sufficiently strong lower bound for the boolean function that corresponds to

20% of the “odd” inputs of length h(l). Thus, the extension W must be chosen according to the remaining
80% of such inputs to make that circuit reject. However, if there are sufficiently many circuits on the list
whose correct input regions happen to cover all “odd” inputs of length h(l) (for instance, when there are
5 circuits each being correct on a different 20% of such inputs), then there is no room left to choose a set
W ⊆ {0, 1}h(l) of odd cardinality that makes all circuits reject simultaneously.
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“exact counting,” we construct an oracle relative to which even in C=P (which is contained

in PP) there exists a set that is immune even to the class BPP⊕P (which contains PH

by Toda’s result [Tod91]). This implies a number of new immunity results, including

(relativized) ⊕P-immunity and PH-immunity of C=P.

Conversely, we show that, in some relativized world, NP (and thus PH and PP) contains

a C=P-immune set, which strengthens Torán’s simple separation of NP and C=P [Tor88,

Tor91]. As a corollary of this result, we obtain that, in the same relativization, C=P has a

simple set, i.e., a coinfinite C=P set whose complement is C=P-immune. Just like immunity,

the notion of simplicity originates from recursive function theory and has later proved useful

also in complexity theory. The existence of a simple set in a class C provides strong evidence

that C separates from the corresponding class coC. Our result that, for some oracle B, C=PB

has a simple set extends Balcázar’s result that, for some A, NPA has a simple set [Bal85].

We also strengthen to a strong separation Green’s simple separation that, relative to some

oracle, ⊕P 6⊆ PPPH [Gre91]. Similarly, the (relativized) simple separation of the levels of

the PPPH hierarchy [BU] also can be turned into a strong separation. As a special case,

this includes the existence of a PP-immune set in PNP (and thus in PH) relative to some

oracle, which improves upon a simple separation of Beigel [Bei94].

2 Preliminaries

Fix the two-letter alphabet Σ
df
= {0, 1}. The set of all strings over Σ is denoted Σ∗, and

the set of strings of length n is denoted Σn. For any string x ∈ Σ∗, let |x| denote its length.

For any set L ⊆ Σ∗, the complement of L is L
df
= Σ∗ \ L, and the characteristic function of

L is denoted by χL, i.e., χL(x) = 1 if x ∈ L, and χL(x) = 0 if x 6∈ L. For the definition

of relativized complexity classes and of oracle Turing machines, we refer to any standard

text book on computational complexity (see, e.g., [Pap94,BDG88,HU79]). For any oracle

Turing machine M and any oracle A, we denote the language of MA by L(MA), and we

simply write L(M) if A = ∅. For classes C and D of sets, define CD to be
⋃

D∈D CD, where

CD denotes the class of languages accepted by C oracle machines with oracle D. For any

class C, let coC denote {L | L ∈ C}. We use NPOTM as a shorthand for “nondeterministic

polynomial-time oracle Turing machine.” Let accMA(x) (respectively, rejMA(x)) denote the

number of accepting (respectively, rejecting) computation paths of NPOTM M with oracle

A on input x, and let totMA(x) be the total number of computation paths of MA on input x.

Definition 2.1 Let A be any oracle set.

1. [MS72,Sto77] The (relativized) polynomial hierarchy can be defined as follows, see

also [Wra77]:

• For each k ≥ 0, a set L is in Σp,A
k if and only if there exists a polynomial p and
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a predicate σ computable in PA such that for all strings x,

x ∈ L ⇐⇒ (Q1w1) (Q2w2) · · · (Qkwk) [σ(x,w1, w2, . . . , wk) = 1],

where the wj range over the length p(|x|) strings, and for each i, 1 ≤ i ≤ k,

Qi = ∃ if i is odd, and Qi = ∀ if i is even. Let Πp,A
k denote coΣp,A

k .

• Define PHA df
=

⋃
i≥0 Σ

p,A
i .

2. [PZ83,GP86] ⊕PA df
= {L | (∃NPOTM M) (∀x ∈ Σ∗) [x ∈ L ⇐⇒

accMA(x) is odd]}.

3. [Gil77] PPA df
= {L | (∃NPOTM M) (∀x ∈ Σ∗) [x ∈ L ⇐⇒ accMA(x) ≥ rejMA(x)]}.

4. [Sim75,Wag86] C=PA df
= {L | (∃NPOTM M) (∀x ∈ Σ∗) [x ∈ L ⇐⇒ accMA(x) =

rejMA(x)]}.

5. [Gil77] BPPA is the class of languages L for which there exists an NPOTM M such

that for each input x, x ∈ L implies that rejMA(x) ≤ 1
4totMA(x), and x 6∈ L implies

that accMA(x) ≤ 1
4 totMA(x).

6. We write Σp
k for Σp,∅

k and PH for PH∅, and similarly for the other classes.

Clearly, PH ∪ ⊕P ∪ PP ∪ C=P ⊆ PSPACE and BPP ⊆ PP, and it is also known that

BPP ⊆ Σp
2 ∩Πp

2 [Lau83,Sip83b] and coNP ⊆ C=P ⊆ PP [Sim75,Wag86].

An n-ary boolean function is a mapping fn from {0, 1}n to {0, 1}. Some of the most

important boolean functions are the parity function and the majority function. Let us

define those functions that will be considered in this paper:

• Parn(x) = 1 if and only if the number of bits of x that are 1 is odd.

• Majn(x) = 1 if and only if at least ⌈n2 ⌉ bits of x are 1.

• Equk
n(x) = 1 if and only if exactly k bits of x are 1, where 0 ≤ k ≤ n.

• Equhalf
n (x) = 1 if and only if exactly ⌈n2 ⌉ bits of x are 1.

Families of boolean functions are realized by circuit families. By convention, when we

speak of “a” circuit C computing “a” function f , we implicitly mean a family C = (Cn)n≥0

of circuits computing a family f = (fn)n≥0 of functions (i.e., for each n, Cn is a circuit with

n input gates and one output gate that outputs the value fn(x) for each x ∈ {0, 1}n). The

size of a circuit is the number of its gates. The circuit complexity (or size) of a boolean

function f is the size of a smallest circuit computing f . Unless stated otherwise, we will

consider only constant depth, unbounded fanin circuits with AND, OR, and ⊕ (parity)

gates. An AND (respectively, OR) gate outputs 1 (respectively, 0) if and only if all its

inputs are 1 (respectively, 0), and a ⊕ gate outputs 1 if and only if an odd number of its

inputs are 1. Since {AND,OR,⊕} (and indeed, {AND,⊕}) forms a complete basis, we do

5



not need negation gates. Note that switching from one complete basis to another increases

the size of a circuit at most by a constant. The depth of a circuit is the length of a longest

path from its input gates to its output gate. Since adjacent levels of gates of the same type

can be collapsed to one level of gates of this type, we view a circuit to consist of alternating

levels of respectively AND, OR, and ⊕ gates, where the sequence of these operations is

arbitrary—the depth of the circuit thus also measures the number of alternations.

3 Immunity and Simplicity Results for Exact Counting

In this section, we prove the main result of this paper:

Theorem 3.1 There exists some oracle A such that C=PA contains a BPP⊕PA
-immune set.

Before turning to the actual proof, some technical details need be discussed. First,

we need a sufficiently strong lower bound on the size of the “exact counting” function,

Equhalf
n , when computed by circuits as described in the previous section. Razborov proved

the following exponential lower bound on the size of the majority function when computed

by such circuits (see [Smo87] for a generalization of this result and a simplification of its

proof).

Theorem 3.2 [Raz87] For every k, any depth k circuit with AND, OR, and ⊕ gates

that computes Majn has size at least 2Ω(n1/(2k+2)).

Using this lower bound for majority, we could (by essentially the same proof as that of

Theorem 3.1) directly establish BPP⊕PA
-immunity of PPA. However, to obtain the stronger

result of Theorem 3.1, we now derive from the above lower bound for majority a slightly

weaker lower bound for the Equhalf
n function, still being sufficiently strong to establish

Theorem 3.1.

Lemma 3.3 For every k, there exists a constant αk > 0 and an nk ∈ N such that for all

n ≥ nk, every depth k circuit with AND, OR, and ⊕ gates that computes Equhalf
n has size

at least n−1 · 2αkn
1/(2k+4)

.

Proof. Fix a sufficiently large n. Clearly, the majority function can be expressed as

Majn(x) =
∨n

i=⌈n
2
⌉Equ

i
n(x). Each function Equi

n, 0 ≤ i ≤ n, is a subfunction of Equhalf
2n ,

since for each x ∈ {0, 1}n, Equi
n(x) = Equhalf

2n (x0i1n−i). Thus, the circuit complexity of

Equi
n is at most that of Equhalf

2n for each i. Now let sizek(Equ
half
n ) denote the size of a

smallest depth k circuit with AND, OR, and ⊕ gates that computes Equhalf
n . By the above

observation, we can realize Maj⌈n
2
⌉ with less than n · sizek(Equ

half
n ) gates in depth k + 1.

Hence, by Theorem 3.2,

sizek(Equ
half
n ) ≥ n−1 · sizek+1(Maj⌈n

2
⌉) = n−1 · 2αkn

1/(2k+4)
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for some suitable constant αk > 0 that depends on k.

For technical reasons, since we want to apply the above circuit lower bound to obtain

(relativized) BPP⊕P-immunity, we will now give an equivalent definition of the class BPP⊕P

in terms of a hierarchy denoted PH⊕. As explained later, PH⊕ will only serve as a tool in the

upcoming proof of Theorem 3.1. PH⊕ generalizes the polynomial hierarchy by allowing—

in addition to existential and universal quantifiers—the parity quantifier ⊕, where (⊕w)

means “for an odd number of strings w.”

Definition 3.4 Let A be any oracle set.

1. For each k ≥ 0, a set L is in PH⊕,A
k if and only if there exists a polynomial p and a

predicate σ computable in PA such that for all strings x,

x ∈ L ⇐⇒ (Q1w1) (Q2w2) · · · (Qkwk) [σ(x,w1, w2, . . . , wk) = 1],

where the wj range over the length p(|x|) strings and the quantifiers Qj are chosen

from {∃,∀,⊕}.

2. Define PH⊕,A df
=

⋃
i≥0 PH

⊕,A
i .

3. We write PH⊕
k for PH⊕,∅

k and PH⊕ for PH⊕,∅.

We stress that PH⊕ is not a new complexity class or hierarchy, since it is just another

name for the class BPP⊕P, as can be proven by an easy induction from the results of

Toda [Tod91] and Regan and Royer [RR95] that ⊕PBPP⊕P
, NPBPP⊕P

, and coNPBPP⊕P
each

are contained in BPP⊕P.2 Rather, the purpose of PH⊕ is merely to simplify the proof

of Theorem 3.1. In particular, when using PH⊕ in place of BPP⊕P, we do not have to

deal with the promise nature of BPP and, more importantly, we can straightforwardly

transform circuit lower bounds for constant depth circuits over the basis {AND,OR,⊕}

into computations of PH⊕
d oracle Turing machines.

Furst, Saxe, and Sipser [FSS84] discovered the connection between computations of

oracle Turing machines and circuits that allows one to transform lower bounds on the circuit

complexity of boolean functions such as parity into separations of relativized PSPACE

from the relativized polynomial hierarchy. (We adopt the convention that for relativizing

PSPACE, the space bound of the oracle machine be also a bound on the length of queries

it may ask, for without that convention the problem of separating PSPACEA from PHA

becomes trivial, see [FSS84].) Sufficiently strong (i.e., exponential) lower bounds for parity

were then provided by Yao [Yao85] and H̊astad [H̊as89], and were used to separate PSPACEA

2In particular, due to these results, PH⊕ in fact consists of only four levels not known to be the same:
PH⊕

0 = P, PH⊕

1 = NP ∪ coNP ∪ ⊕P, . . . , and PH⊕

3 = PH⊕ = BPP⊕P. Note also that in [Tod91], Toda
preferred the operator-based notation, which due to the closure of ⊕P under Turing reductions is equivalent,
i.e., BP · ⊕P = BPP⊕P.
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from PHA. They also proved lower bounds for variations of the Sipser functions [Sip83a] to

separate all levels of PHA from each other (see also [Ko89]).

A technical prerequisite for this transformation to work is that the computation of

any Σp,A
i machine can be simulated by a Σp,A

i+1 machine that has the property that on all

computation paths at most one query is asked and this query is asked at the end of the path

(see [FSS84, Cor. 2.2]). An oracle machine having this property is said to be weak. Similarly,

the computation of any PH⊕,A
i machine can be simulated by a weak PH⊕,A

i+1 machine. The

computation of a weak oracle machine MA on some input x can then be associated with

a circuit whose gates correspond to the nodes of the computation tree of MA(x), and

whose inputs are the values χA(z) for all strings z ∈ Σ∗ that can be queried by MA(x).

This correspondence can straightforwardly be extended to the case of weak PH⊕,A oracle

machines and is formally stated in Proposition 3.5 below. The proof of Proposition 3.5 is

standard (see, e.g., [FSS84, Lemma 2.3] and [Ko89, Lemma 2.1] for analogous results) and

thus omitted. Let CIR(i, t) denote the collection of all depth i+1 circuits with AND, OR,

and ⊕ gates, bottom fanin at most t, and fanin at most 2t at all remaining levels.

Proposition 3.5 Let A be any oracle and let M be any weak PH⊕,A
i oracle machine running

in time p for some polynomial p. Then, for each x ∈ Σ∗ of length n, there exists a circuit

CM,x in CIR(i, p(n)) whose inputs are the values of χA(z) for all strings z ∈ Σ∗ with

|z| ≤ p(n) such that CM,x outputs 1 if and only if MA accepts x. In particular, it follows

from the bounded depth and fanin of the circuits in CIR(i, p(n)) that the size of circuit

CM,x is bounded by 2sM (n) for some polynomial sM depending on M .

Now we are ready to prove our main result.

Proof of Theorem 3.1. For any set S, let

LS
df
= {0N | N ≥ 1 and the number of length N strings in S equals 2N−1}.

Clearly, for each S, LS is in C=PS .

We will construct the set A such that LA ∈ C=PA is PH⊕,A-immune, i.e., LA is infinite

and no infinite subset of LA is contained in PH⊕,A. Since BPP⊕P = PH⊕ holds true in the

presence of any fixed oracle, this will prove the theorem. Also, since every PH⊕,A
d machine

can be transformed into a weak PH⊕,A
d+1 machine, it suffices to ensure in the construction of

A that

(a) LA is infinite, and

(b) for each weak PH⊕,A oracle machine M for which L(MA) is an infinite subset of LA,

it holds that MA does not recognize LA.

Fix an enumeration M
(·)
1 ,M

(·)
2 , . . . of all weak PH⊕,(·) oracle machines; we assume the

machines to be clocked so that for each i, the runtime of machine M
(·)
i is bounded by

pi(n) = ni+ i for inputs of length n. In particular, if i = 〈d, j〉, the ith machine M
(·)
i in this

8



enumeration is the jth weak PH
⊕,(·)
d oracle machine, M

(·)
〈d,j 〉, in the underlying enumeration

of weak PH
⊕,(·)
d oracle machines. Satisfying Property (b) above then means to satisfy in the

construction the following requirement Ri for each i ≥ 1 for which MA
i accepts an infinite

subset of LA:

Ri : L(MA
i ) ∩ LA 6= ∅.

We say that Requirement Ri is satisfied if, at some point in the construction of A, L(MA
i )∩

LA 6= ∅ can be enforced.

As a technical detail that is often used in immunity constructions, we require our

enumeration of machines to satisfy that for infinitely many indices i it holds that MX
i

accepts the empty set for every oracle X, which can be assumed without loss of generality.

We will need this property in order to establish (a).

Now we give the construction of A, which proceeds in stages. In Stage i, the membership

in A of all strings up to length ti will be decided, and the previous initial segment of the

oracle is extended to Ai. Strings of length ≤ ti that are not explicitly added to Ai are never

added to the oracle. We define A to be
⋃

i≥0Ai. Initially, A0 is set to the empty set and

t0 = 0. Also, throughout the construction, we keep a list L of unsatisfied requirements.

Stage i > 0 is as follows.

Stage i. Add i to L. Consider all machines M
(·)
ℓ1
, . . . ,M

(·)
ℓm

corresponding to indices ℓr

that at this point are in L. Let k = max{dr | ℓr = 〈dr, jr〉 and 1 ≤ r ≤ m} be the

maximum level of the PH⊕,(·) hierarchy to which these machines belong (not taking

into account the collapse of PH⊕ = BPP⊕P mentioned in Footnote 2). Let αk+2 > 0

be the constant and nk+2 ∈ N be the number that exist for depth k + 2 circuits

according to Lemma 3.3. Choose N = Ni > max{ti−1, log nk+2} to be the smallest

integer such that

αk+2 · 2
N/(2k+8) > N + i+

m∑

r=1

sℓr(N),

where the polynomials sℓr = sMℓr
correspond to the machines with indices in L

according to Proposition 3.5.

Distinguish two cases.

Case 1: There exists an r, 1 ≤ r ≤ m, and an extension E ⊆ ΣN of Ai−1 such that

0N 6∈ LE and yet M
Ai−1∪E
ℓr

accepts 0N . Let r̃ be the smallest such r. Cancel ℓr̃
from L, set Ai to Ai−1 ∪E, and set ti to pi(N). Note that Requirement Rℓr̃ has

been satisfied at this stage.

Case 2: For all r, 1 ≤ r ≤ m, and for all extensions E ⊆ ΣN of Ai−1, 0
N 6∈ LE

implies that M
Ai−1∪E
ℓr

rejects 0N . In this case, no requirement can be satisfied at
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this stage. However, to achieve Property (a), we will force 0N into LA. Choose

some extension Ẽ ⊆ ΣN of Ai−1 such that (i) the number of length N strings

in Ẽ equals 2N−1, and (ii) for each r, 1 ≤ r ≤ m, M
Ai−1∪Ẽ
ℓr

rejects 0N . We

will argue later (in Claim 1 below) that such an extension Ẽ exists. Set Ai to

Ai−1 ∪ Ẽ and set ti to pi(N).

End of Stage i.

Note that by the definition of ti and by our choice of Ni, the oracle extension in Stage i

does not injure the computations considered in earlier stages. Thus,

(∀i ≥ 1) [0Ni ∈ LAi ⇐⇒ 0Ni ∈ LA], and(1)

(∀i, j ≥ 1) [MAi
j accepts 0Ni ⇐⇒ MA

j accepts 0Ni ].(2)

The correctness of the construction will now follow from the following claims.

Claim 1. For each i ≥ 1, there exists an oracle extension Ẽ satisfying (i) and (ii) in Case 2

of Stage i.

Proof of Claim 1. Consider Stage i. For each r ∈ {1, . . . ,m}, let CMℓr ,0
N be the circuit

that, according to Proposition 3.5, corresponds to the computation of Mℓr running on

input 0N . Fix all inputs to these circuits except those of length N consistently with Ai−1.

That is, for each r ∈ {1, . . . ,m}, substitute in CMℓr ,0
N the value χAi−1(z) for all inputs

corresponding to strings z with |z| ≤ ti−1, and substitute the value 0 for all inputs

corresponding to strings z with ti−1 < |z| ≤ ti and |z| 6= N . Call the resulting circuits

Ĉℓ1,0N , . . . , Ĉℓm,0N . By Proposition 3.5, for each r, Ĉℓr ,0N is in CIR(k, pℓr(N)), its 2N

inputs correspond to the length N strings, and for each E ⊆ ΣN , it holds that

Ĉℓr ,0N on input χE(0
N ) · · ·χE(1

N ) outputs 1 ⇐⇒ M
Ai−1∪E
ℓr

accepts 0N .(3)

Create a new circuit C2N = ORm
r=1ĈMℓr ,0

N whose 2N inputs correspond to the length N

strings and whose output gate is an OR gate over the subcircuits Ĉℓ1,0N , . . . , Ĉℓm,0N . Thus,

C2N is a depth k + 2 circuit with AND, OR, and ⊕ gates whose size is bounded by

1 +
m∑

r=1

2sℓr (N) ≤ 2i+
∑m

r=1 sℓr (N)

(note that m ≤ i). By our choice of N , we have 2N > nk+2 and

2i+
∑m

r=1 sℓr (N) < 2−N · 2αk+2(2
N )1/(2k+8)

.

Thus, by Lemma 3.3, circuit C2N cannot compute the function Equhalf
2N correctly for all

inputs. Since by the condition stated in Case 2 and by Equivalence (3) above, C2N behaves

correctly for all inputs corresponding to any set E of length N strings with 0N 6∈ LE, it

10



follows that C2N must be incorrect on an input corresponding to some set Ẽ of length N

strings with 0N ∈ LẼ, i.e., C2N on input χẼ(0
N ) · · ·χẼ(1

N ) outputs 0. Since C2N is the OR

of its subcircuits, each subcircuit outputs 0 on this input. Thus, Equivalence (3) implies

that for each r, 1 ≤ r ≤ m, M
Ai−1∪Ẽ
ℓr

rejects 0N . Claim 1

Claim 2. LA is an infinite set.

Proof of Claim 2. Recall our assumption that the index set of the empty set is infinite.

Since no requirement Ri for which i is an index of the empty set can ever be satisfied

and since, by construction, some requirement is satisfied whenever Case 1 occurs, this

assumption implies that Case 2 must happen infinitely often. By construction, some string

is forced into LA whenever Case 2 occurs. Hence, LA is an infinite set. This proves the

claim and establishes Property (a). Claim 2

Claim 3. For every i ≥ 1, MA
i does not accept an infinite subset of LA.

Proof of Claim 3. For each i, Requirement Ri either is satisfied at some stage of the

construction, or is never satisfied. If Ri is satisfied at Stage j, then Case 1 happens in

Stage j, and so 0Nj ∈ L(M
Aj

i ) ∩ LAj . By Equivalences (1) and (2), 0Nj ∈ L(MA
i ) ∩ LA,

so L(MA
i ) 6⊆ LA. Now suppose that Requirement Ri is never satisfied. We will argue that

L(MA
i )∩LA then is a finite set. By construction, since we added to A only strings of lengths

Nj , where j ≥ 1 and Nj is the integer chosen in Stage j, LA contains only strings of the

form 0Nj for some j ≥ 1. Note that i is added to L in Stage i and will stay there forever.

For each j ≥ i, if 0Nj ∈ LA (and thus 0Nj ∈ LAj by (1)), then Case 2 must have occurred

in Stage j. Consequently, M
Aj

i (and thus MA
i by (2)) rejects 0Nj for every j ≥ i. It follows

that for each i, L(MA
i ) ∩ LA has at most i− 1 elements, proving the claim. Claim 3

Hence, LA is a BPP⊕PA
-immune set in C=PA.

In particular, Theorem 3.1 immediately gives the following corollary. All strong

separations in Corollary 3.6 are new, except the PHA-immunity of PSPACEA (and of PPPA
,

since (∀B) [⊕PB ⊆ PPPB
]), which is also stated (or is implicit) in [Ko90,Bru92], and except

the BPPC-immunity of PPC (and its superclasses) proven in [BR88]. We also mention that

Bovet et al. [BCS92] noted that PPD strongly separates from Σp,D
2 for some oracle D.

Corollary 3.6 Let C1 be any class chosen among C=P, PP, PC=P, PPP, and PSPACE, and

let C2 be any class chosen among BPP⊕P, BPP, PH, and ⊕P. There exists some oracle A

such that CA
1 contains a CA

2 -immune set.

What about the converse direction? Does BPP⊕P, or even some smaller class, contain

a C=P-immune, or even a PP-immune, set relative to some oracle? Note that Torán [Tor88,

Tor91] provided a simple separation of this kind: There exists an oracle A such that NPA 6⊆

C=PA (see [Bei91] for a simplification of the proof of Torán’s result). We strengthen this

result by showing that the separation is witnessed by a C=PB-immune set in NPB for another

11



oracle set B. Indeed, the only property of C=P needed to obtain a relativized separation

from NP with immunity is that C=P is closed under finite unions,3 and this closure property

relativizes.

Lemma 3.7 For every oracle A, C=PA is closed under finite unions. That is, given a

finite collection N1, N2, . . . , Nk of NPOTMs, there exists an NPOTM N such that for each

input x, NA accepts x (in the sense of C=P) if and only if for some j, NA
j accepts x (in the

sense of C=P), i.e., for each x ∈ Σ∗,

accNA(x) = rejNA(x) ⇐⇒ (∃j : 1 ≤ j ≤ k) [accNA
j
(x) = rejNA

j
(x)].

Theorem 3.8 There exists some oracle B such that NPB contains a C=PB-immune set.

Proof. The witness set here will be LB , where for any set S,

LS
df
= {0n | n ≥ 1 and there exists a string of length n in S}

is a set in NPS . Fix an enumeration N
(·)
1 , N

(·)
2 , . . . of all NPOTMs, again having the

property that for infinitely many indices the machine with that index accepts the empty set

regardless of the oracle. (Throughout this proof, “acceptance” means “C=P acceptance” as

in Lemma 3.7.) As in the proof of Theorem 3.1, we try to satisfy for each i ≥ 1 for which

NB
i accepts an infinite subset of LB , the requirement

Ri : L(NB
i ) ∩ LB 6= ∅.

Again, the stage-wise construction of B =
⋃

i≥0Bi is initialized by setting B0 to the

empty set and the restraint function t0 to 0, and we keep a list L of currently unsatisfied

requirements. Stage i > 0 is as follows.

Stage i. Add i to L. Consider all machines N
(·)
ℓ1
, . . . , N

(·)
ℓm

corresponding to indices ℓr

that at this point are in L. Let N
(·)
L be the machine that exists for N

(·)
ℓ1
, . . . , N

(·)
ℓm

by

Lemma 3.7, i.e., for every oracle Z and for each input x,

NZ
L accepts x ⇐⇒ (∃r : 1 ≤ r ≤ m) [NZ

ℓr
accepts x].(4)

Let pL be the polynomial bounding the runtime of N
(·)
L . Choose n = ni > ti−1 to be

the smallest integer such that 2n > 2pL(n). Choose an oracle extension E ⊆ Σn of

Bi−1 such that

E = ∅ ⇐⇒ N
Bi−1∪E
L accepts 0n.(5)

3It is known that C=P is closed even under polynomial-time “positive” Turing reductions, which is implicit
in the methods of [GNW90], as has been noted in [Rot93] for the positive truth-table case; the same result
was noted independently in [BCO93]. We refer to those sources for a proof of Lemma 3.7.
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It has been shown in [Bei91] that an oracle extension E satisfying (5) exists if n is

chosen as above. Set Bi to Bi−1 ∪ E and set ti to pL(n). If the extension E chosen

is the empty set, then by (5) and (4), there exists an r, 1 ≤ r ≤ m, such that N
Bi−1

ℓr
accepts 0n. Let r̃ be the smallest such r, and cancel ℓr̃ from L.

End of Stage i.

Note that if we have chosen E = ∅ in Stage i, then 0n 6∈ LE and Requirement Rℓr̃

has been satisfied. On the other hand, if E 6= ∅, then by (5) and (4), we have ensured

that (i) 0n ∈ LE, and (ii) for each r, 1 ≤ r ≤ m, N
Bi−1∪E
ℓr

rejects 0n. Now, an argument

analogous to Claims 2 and 3 in the proof of Theorem 3.1 shows that LB is a C=PB-immune

set in NPB , completing the proof.

Similarly, there exists some oracle C such that NPC (and thus PHC and PPC) has a

⊕PC-immune set—this result was obtained by Bovet et al. [BCS92], based on their sufficient

condition for proving relativized strong separations and on Torán’s simple separation of NP

and ⊕P [Tor91].

Since the inclusions NP ⊆ PP and coNP ⊆ C=P hold relative to every fixed oracle,

Theorem 3.8 immediately gives the following corollaries.

Corollary 3.9 There exists some oracle B such that PPB contains a C=PB-immune set.

Recall from the introduction that for any complexity class C, a set is said to be simple for

C (or C-simple) if it belongs to C and its complement is C-immune. Homer and Maass [HM83]

proved the existence of a recursively enumerable set A such that NPA contains a simple set,

and Balcázar [Bal85] improved this result by making A recursive via a novel and very elegant

trick: his construction starts with a full oracle instead of an empty oracle and then proceeds

by deleting strings from it. Balcázar’s result in turn was generalized by Torenvliet and van

Emde Boas [Tor86,TvEB89] to the second level and by Bruschi [Bru92] to all levels of the

polynomial hierarchy. Balcázar and Russo [BR88] also proved (relative to some oracle) the

existence of a simple set in the one-sided error probabilistic class R, which is contained

in NP ∩ BPP. Our result below that C=P has a simple set in some relativization (all our

oracles are recursive) extends those previous simplicity results that each are restricted to

classes contained in the polynomial hierarchy. Since of the classes we consider (PH, PP,

⊕P, and C=P), all classes except C=P are known to be closed under complement, C=P is the

only class for which it makes sense to ask about the existence of simple sets.

Corollary 3.10 There exists some oracle B such that C=PB contains a simple set.

Proof. Let B be the oracle constructed in the proof of Theorem 3.8 and let LB be the

witness set of this proof. Consider the complement LB of LB in Σ∗. Since LB ∈ NPB , LB

is in coNPB and thus in C=PB . It has been shown in the proof of Theorem 3.8 that LB ,

the complement of LB , is an infinite set having no infinite subset in C=PB. That is, LB is

C=PB-simple.
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4 Immunity Results for ⊕P and the PPPH Hierarchy

The last section in particular showed that, in suitable relativizations, C=P (and thus PP)

is immune to both PH and ⊕P (Corollary 3.6), and NP (and thus PH and PP) is immune

to C=P (Theorem 3.8 and Corollary 3.9) and to ⊕P [BCS92]. In this section, we will prove

the existence of oracles relative to which PNP (and thus PH) is immune to PP, and relative

to which ⊕P is immune to PPPH. The latter result strengthens the previously known

(relativized) strong separation of ⊕P from PH [Ko90] (cf. [Bru92]), and it also implies the

new (relativized) strong separation of ⊕P from PP. Noticing that C=P ⊆ PP holds in all

relativizations, we thus have settled all possible (relativized) strong separation questions

involving any pair of classes chosen among PH, PP, ⊕P, and C=P, as claimed earlier.

We show these remaining results by improving known (relativized) simple separations

to strong ones. The simple separation (∃A) [⊕PA 6⊆ PPA] [Tor88,Tor91] (see also [Bei91])

was strengthened by Green to (∃B) [⊕PB 6⊆ PPPHB
] [Gre91].

Since the analog of Lemma 3.7 as well holds for PP (in fact, PP is closed under

polynomial-time truth-table reductions [FR91], and this proof relativizes), the following

theorem can be shown by the technique used to prove Theorem 3.8. First, we state the

analog of Lemma 3.7 in terms of weak PPPH oracle machines. The proof of this lemma

simply follows from the relativized version of the proof that PP is closed under finite unions,

which is a special case of its closure under truth-table reductions [FR91].

Lemma 4.1 Let A be any oracle and d ≥ 0 be any integer. Given any finite collection

N1, N2, . . . , Nk of weak PPPH oracle machines, there exists a weak PPPH oracle machine N

such that for each input x, NA accepts x if and only if for some j, 1 ≤ j ≤ k, NA
j accepts x.

Theorem 4.2 There exists some oracle D such that ⊕PD (and thus PPPD
and PSPACED)

contains a PPPHD
-immune set.

Proof. Since the proof is very similar to that of Theorem 3.8, we only mention the

differences. The witness set here will be LD, where for any set S,

LS
df
= {0n | n ≥ 1 and there exists an odd number of length n strings in S}

is a set in ⊕PS . Now, N
(·)
1 , N

(·)
2 , . . . is an enumeration of all weak PPPH(·)

oracle machines,

and “acceptance” refers to such machines. In Stage i of the construction, we again consider

all machines N
(·)
ℓ1
, . . . , N

(·)
ℓm

corresponding to indices ℓr that at this point are in the list L of

currently unsatisfied requirements, and the machine N
(·)
L (with polynomial time bound pL)

that exists for them by Lemma 4.1. Assume N
(·)
L is a PPΣ

p,(·)
d machine, and let cd be the

constant that exists for such machines by [Gre91, Thm. 5]. Then, as shown in [Gre91,

Thm. 7], choosing n = ni > ti−1 to be the smallest integer such that

2pL(n) ≤ min{(2n)1/d
2
, cd2

n(d+1)/d2 − 1}
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implies that there exists an extension E ⊆ Σn of the oracle as constructed so far, Di−1,

such that 0n ∈ LE if and only if N
Di−1∪E
L rejects 0n.

Corollary 4.3 There exists some oracle D such that ⊕PD contains a set immune to PPD

and to PHD.

By essentially the same arguments, also the very recent result of Berg and Ulfberg [BU]

that there is an oracle relative to which the levels of the PPPH =
⋃

d≥0 PP
Σp

d hierarchy

separate (which generalizes Beigel’s result that (∃A) [PNPA
6⊆ PPA] [Bei94]) can be

strengthened to level-wise strong separations of this hierarchy. The proof of Theorem 4.4

is omitted, since it is very similar to the previous proofs, the only difference being that it

is based on the construction given in [BU]. The interested reader is referred to [Rot98] for

a complete proof of this result.

Theorem 4.4 For any d ≥ 1, there exists some oracle F such that PΣp,F
d contains a

PPΣp,F
d−1-immune set. In particular, PNPF

(and thus PHF ) has a PPF -immune set.

5 Conclusions and Open Problems

In this paper, we have shown that all possible relativized separations involving the

polynomial hierarchy and the counting classes C=P, PP, and ⊕P can be made strong. In

particular, we have extended to these counting classes previously known strong separations

of Ko [Ko90] and Bruschi [Bru92], and we have strengthened to strong separations

previously known simple separations of Torán [Tor88,Tor91], Green [Gre91], and Berg

and Ulfberg [BU]. We have also shown that C=P contains a simple set relative to some

oracle, complementing the corresponding results of Balcázar and Russo [Bal85,BR88] for

NP and R, and of Torenvliet and van Emde Boas [Tor86,TvEB89] and Bruschi [Bru92] for

Σp
k, k > 1. However, many questions remain open. The most obvious question is whether

these immunity results can be strengthened to bi-immunity or even to balanced immunity

(see, e.g., [HZ96]).

Regarding the existence of simple sets in C=PB , note that our construction of B can

easily be interleaved with other immunity oracle constructions to show results such as:

There exists an oracle A such that C=PA contains a simple set and another set that is PA-

immune (see [Bal85] for the analogous result for NP). Torenvliet and van Emde Boas [Tor86,

TvEB89] have even constructed an oracle relative to which NP contains a language that

simultaneously is simple and P-immune. Can this also be shown to hold for C=P?

Our main result that there exists some A such that C=PA contains a BPP⊕PA
-immune

set is optimal in the sense that for all oracles B, C=PB clearly is contained in PPB and

thus in PP⊕PB
. However, it is also known that BPP⊕P ⊆ Almost[⊕P] [TO92,RR95],

where for any relativized class C, Almost[C] denotes the class of languages L such that

for almost all oracle sets X, L is in CX [NW94]. It is an open problem (see [RR95])
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whether BPP⊕P = Almost[⊕P], so it is possible that Almost[⊕P] is a strictly larger class

than BPP⊕P. It is unlikely that C=P is contained in Almost[⊕P]. Is there an oracle relative

to which C=P is even immune to Almost[⊕P]? We conjecture that this is the case. Relatedly,

can any of the immunity results of this paper be shown to hold with probability 1 relative

to a random oracle?
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Universitat Politècnica de Catalunya, Barcelona, Spain, 1988.

[Tor91] J. Torán. Complexity classes defined by counting quantifiers. Journal of the
ACM, 38(3):753–774, 1991.

[TvEB89] L. Torenvliet and P. van Emde Boas. Simplicity, immunity, relativizations and
nondeterminism. Information and Computation, 80(1):1–17, 1989.

[Wag86] K. Wagner. The complexity of combinatorial problems with succinct input
representations. Acta Informatica, 23:325–356, 1986.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Computer Science, 3:23–33, 1977.

[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings
of the 26th IEEE Symposium on Foundations of Computer Science, pages 1–10.
IEEE Computer Society Press, 1985.

19


