INFORMATIQUE THEORIQUE ET APPLICATIONS

CHRISTOPH MEINEL

THORSTEN THEOBALD

On the influence of the state encoding on OBDD-
representations of finite state machines

Informatique théorique et applications, tome 33,n°1(1999), p. 21-31
<http://www.numdam.org/item?id=ITA_1999 33 _1_21_0>

© AFCET, 1999, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique 1’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_1_21_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informatics and Applications ITA, Vol. 33, N° 1, 1999, p. 21-31
Informatique Théorique et Applications

ON THE INFLUENCE OF THE STATE ENCODING
ON OBDD-REPRESENTATIONS
OF FINITE STATE MACHINES*

CHRISTOPH MEINEL! AND THORSTEN THEOBALD?2

Abstract. Ordered binary decision diagrams are an important data
structure for the representation of Boolean functions. Typically, the un-
derlying variable ordering is used as an optimization parameter. When
finite state machines are represented by OBDDs the state encoding can
be used as an additional optimization parameter. In this paper, we an-
alyze the influence of the state encoding on the OBDD-representations
of counter-type finite state machines. In particular, we prove lower
bounds, derive exact sizes for important encodings and construct a
worst-case encoding which leads to exponential-size OBDDs.

Résumé. Les diagrammes de décision binaire (Ordered Binary
Decision Diagrams, OBDD) sont une structure de données importante
pour la représentation de fonctions booléennes. Habituellement l’ordre
des variables est le parameétre & optimiser. Quand des automates fi-
nis sont représentés par des OBDD, le codage des états peut lui aussi
étre optimisé. Nous analysons 'influence du codage des états sur la
représentation des machines & compteurs par des OBDD. En parti-
culier, nous prouvons des bornes inférieures, nous calculons la taille
exacte de codages importants et nous construisons un codage qui mene
a des OBDD de taille exponentielle.

1. INTRODUCTION

Ordered binary decision diagrams (OBDDs) introduced by Bryant [4] provide
an efficient graph-based data structure for Boolean functions (for a survey see [5]
or [16]). The main optimization parameter of OBDDs is the underlying variable

* This work was done while the second author was a member of the DFG-Graduiertenkolleg
“Mathematische Optimierung” at the University of Trier.

1 FBIV - Informatik, Universitit Trier, 54286 Trier, Germany; e-mail: meinel@uni-trier.de
2 Zentrum Mathematik, TU Miinchen, 80290 Miinchen, Germany;

e-mail: theobald@mathematik.tu-muenchen.de
© EDP Sciences 1999

22 . . C. MEINEL AND T. THEOBALD

=0/ N\=/0/7N\—=/0 —/0
! itio input/ output

(a) Autonomous counter (b) Loop counter

FIGURE 1. Counter types.

ordering. Many research efforts have tried to characterize the complexity of the
relevant variable ordering problems [3,11,15] and to come up with efficient op-
timization algorithms for obtaining large size reductions without aiming at the
global minimum [2,14]. Unfortunately, there are many important applications, in
particular in the analysis of finite automata/finite state machines (7,8], where this
optimization technique reaches its limits.

Quite recently, in [13] and [12] it was shown that in the context of finite state
machines the state encoding can be used as an additional optimization parameter:
in particular, the optimization techniques for finding suitable state encodings can
be well integrated into existing algorithms for finding good variable orderings.

These optimization techniques immediately raise the question in which extent
the choice of the state encoding can influence the OBDD-size at all. We will
consider classes of counters which have a simple structure but which appear in
numerous practical examples. For these classes, we analyze the relationship be-
tween the state encoding and the OBDD-size from a combinatorial point of view
and give some precise answers concerning this relationship.

In particular, we consider the autonomous-counter and the loop counter shown
in Figure 1 [9].

In Figure la, the input symbol “—” means that this transition takes place for
both input 1 and 0. Furthermore we analyze an acyclic counter which can be
constructed out of the autonomous counter by deleting the “backward” edge from
the last state to the first state. The results, although derived for a quite specific
class of finite state machines, serve as reference examples for the task of finding
re-encodings. The main contributions of this work are:

»

1. When fixing the variable ordering in a reasonable way, we derive the exact
OBDD-sizes for the counters under some important encodings.

2. We present lower bounds for the OBDD-sizes of counter encodings which
are very close to the derived OBDD-sizes for the standard encoding. These
bounds underline the suitability of the standard encoding in this context.

3. We construct worst-case encodings which lead to exponential-size OBDDs
and hence demonstrate the sensitivity in choosing the appropriate state en-
coding.

4. In general, we give some ideas for the analysis of an important and still
growing topic, in which most of the previously known results are based on
experimental work.

ON THE INFLUENCE OF THE STATE ENCODING ON OBDDs 23
2. PRELIMINARIES

2.1. ORDERED BINARY DECISION DIAGRAMS

An ordered binary decision diagram (OBDD) is defined as a rooted directed
acyclic graph with two sink nodes which are labeled 1 and 0. Each internal
(= non-sink) node is labeled by an input variable z; and has two outgoing edges,
labeled 1 and 0 (in the diagrams the 0-edge is indicated by a dashed line). A linear
variable ordering 7 is placed on the input variables. The variable occurrences on
each OBDD-path have to be consistent with this ordering. An OBDD computes
a Boolean function f: {0,1}" — {0,1} in a natural manner: each assignment to
the input variables z; defines a unique path through the graph from the root to
the sinks. The label of the sink gives the value of the function on that input.

The OBDD is called reduced if it does not contain any vertex v such that
the 0-edge and the 1-edge of v leads to the same node, and it does not contain
any distinct vertices v and v’ such that the subgraphs rooted in v and v’ are
isomorphic. It is well-known that reduced OBDDs are a unique representation of
Boolean functions f: {0,1}" — {0,1} w.r.t. a given variable ordering [4]. The
size of an OBDD is the number of its internal nodes.

2.2. FINITE STATE MACHINES

Let M = (Q,1,0,8,\,Qp) be a finite state machine, where Q is the set of
states, I the input alphabet, O the output alphabet, §: Q@ X I — @ the next-state
function, A: @ x I — O the output function and Qo the set of initial states.
As usual in VLSI design, all components of the state machine are assumed to be
binary encoded. Let p be the number of input bits and n be the number of state
bits. In particular, with B = {0,1}, ¢ is a function B™ x B? — B™. For a finite
state machine M, the characteristic function of its transition relation is defined by

T(x1,. . , T, Y1s--- Yny€1,--. ,€p) = T(x,y,€) = H (ys = di(z, €)).

1<i<n

Hence, the function T' computes the value 1 for a triple (z,y, e) if and only if the
state machine in state z and input e enters the state y.

In references [6] and [7] it was shown that the representation of a finite state
machine by means of its transition relation goes well together with typical tasks for
analyzing finite state machines like checking equivalence. All these applications are
based on a reachability analysis. Hence, we can consider equivalently the transition
relation of the underlying non-deterministic machine in which the inputs have been
eliminated. In terms of Boolean manipulation this corresponds to an existential
quantification over the inputs. :

We want to remark that the most efficient implementations of this general
concept work with a partitioned transition relation [6].

24 C. MEINEL AND T. THEOBALD

2.3. VARIABLE ORDERINGS

For a finite state machine M, we derive the reduced OBDD-size for the
characteristic function of its transition relation. This size is shortly called OBDD-
size of M. The OBDD-size crucially depends on the chosen variable ordering.
There are two variable orderings which often appear in connection with finite
state machines: the separated ordering z1,... ,Zn,¥1,--. ,Yn and the interleaved
ordering %1, Y1, Z2, Y2, - - - » Tn, Yn [1].

For practical applications, the interleaved variable ordering is often superior to
the separated ordering. If one considers for example a deterministic autonomous
(i.e. input-independent) machine with a bijective next-state function, then the
OBDD w.r.t. the separated ordering has exponential size. The reason is that
after reading the variables z4, ... ,z, all induced subfunctions are different. The
restriction to fix the variable ordering is reasonable in our context, as we want to
analyze the effect of different state encodings.

3. THE LOWER BOUND

We will investigate lower bounds for the OBDD-size of an autonomous counter
with 2" states where we vary over all (2™)! possible n-bit state encodings (and in
Theorem 1 also over all variable orderings). For the first lower bound we use that
the next-state function of the autonomous counter is bijective.

Theorem 1. Let Man be an autonomous finite state machine with 2™ states, n

encoding bits and a bijective next-state function. For any variable ordering, the
OBDD-size of Man is at least 3n.

Proof. Let u and w be two neighboring variables in the ordering, u,w € {z;,y;:
1 <4< n}, and w.lo.g. let u occur before v in the ordering. We show that there
are at least 3 nodes labeled by u or v.

As the next-state function is bijective, each of the 2n input variables appears
on every path from the root to the 1-sink. In particular, this also holds for v and
v. Now assume that u and v both appear only once in the OBDD. Then every
path from the root to the 1-sink passes through both of them. Furthermore, for
the node labeled by u, neither of the two outgoing edges can lead to a sub-OBDD
representing the constant 0-function (since otherwise, the next-state function can-
not be a total and bijective function). Therefore both outgoing edges lead to the
only node with label v, and hence, the node with label v can be reduced. The
resulting OBDD has a path from the root to the l-sink on which the variable v
does not appear, a contradiction.

As this local statement holds for any two neighboring variables in the ordering,
altogether, there are at least 3n nodes in the OBDD. O

Note that the lower bound of Theorem 1 is sharp; if the next-state function of a
finite state machine M with 2™ states and n encoding bits is the identity, then the

ON THE INFLUENCE OF THE STATE ENCODING ON OBDDs 25

OBDD-size of M w.r.t. the interleaved variable ordering is exactly 3n. The next
theorem improves the lower bound by explicitly using the properties of a counter.

Theorem 2. The OBDD-size of an autonomous counter with 2" states, n
encoding bits and interleaved variable ordering is at least 4n — 1.

Proof. First, we show that every variable zs,... ,z, must appear at least twice
in the OBDD. Assume for a contradiction that z; appears only once. As the
next-state function is bijective each 1-path in the OBDD goes through the ver-
tex labeled by z;. Every assignment (z1,%1,-..,%i—1,%i—1) € {0,1}?72 that
leads to the z;-node can be combined with every assignment (z;, s, ... ,Zn,Yn) €
{0,1}2"~2+2 that leads from the z;-node to the 1-sink in order to construct a tran-
sition of the counter. Intuitively, these two groups of variables act independently.
For each (z;,... ,zy) there exists a vector (y;,...,Yn) such that the assignment
TiyYiy- -+ »Tn,Yn leads from the z;-node to the 1-sink. After exactly 27~ *+! tran-
sitions of the form z;...x, — ¥;...yn the cycle w.r.t. the last n — i + 1 variables
is finished. Analogously, the first ¢ — 1 variables form a cycle of length 2¢~1. The
resulting cycle is of length 2™ if and only if the least common multiple of 2°~! and
27~%*+1 js 2™ which is impossible for 2 < i < n. Analogously, we can show that
each variable y; must appear at least twice in the OBDD. Altogether there are at
least 4n — 1 internal nodes. O

We remark that the argument used in the proof of Theorem 2 does not seem to
apply to arbitrary variable orderings.

4. THE BEHAVIOR OF IMPORTANT ENCODINGS

4.1. THE STANDARD MINIMUM-LENGTH ENCODING

First, we consider the standard encoding where 2™ states are represented by n
bits, and the encoding of a state g; is the binary representation of i. Let Ma» be
the autonomous counter with 2™ states under this encoding.

The MSB-first (most significant bit first) variable ordering is the interleaved
variable ordering which reads the bits in decreasing significance. In contrast, the
LSB-first variable ordering reads the bits in increasing significance.

Lemma 3. For n > 2, the reduced OBDD for Man w.r.t. the MSB-first variable
ordering has 5n — 3 internal nodes.

Proof. The idea is to use the OBDD for Myn-1 in order to construct the OBDD for
M. Formally, this leads to a proof by induction. We show: The reduced OBDD
is of the form like in Figure 2a (in the sense that the shown nodes exist and are
not pairwise isomorphic) with sub-OBDDs A and B and has exactly 5n — 3 nodes.
The case n = 2 can easily be checked.

Induction step: The OBDD for the n — 1 bits z,... ,z, has the form like in
Figure 2b. Let |z| be the binary number that is represented by a bit-string

26 C. MEINEL AND T. THEOBALD

(a) Structure of (b) Induction (c) Induction
the OBDD hypothesis step

i
AVANAYA

FIGURE 2. MSB-first.

z € {0,1}" with most significant bit z;. Using this notation we have:
A: leads to the 1-sink if and only if |y3...yn| = |z3... Zn|+1, 25...2p #11...1.
B: leads to the 1-sink ifand only if z3=... =z, =1, y3=... =yn =0.

We construct the reduced OBDD for My~ like in Figure 2c. The subfunctions
rooted in C and D have the following meanings:
C: leads to the 1-sink if and only if |y2...yn| = |Z2... @n|+1, 22... 2, #11... 1.

D: leads to the 1-sink if and only if zo = ... =z, =1,y =... =y, =0.

It can easily be checked that all the subfunctions rooted in the new invented
nodes are pairwise different. Therefore size(Man) = size(Mgn-1) — 3 + 8 =
size(Man-1) + 5. _ O

Analogously, it can be shown that for n > 2, the OBDDs for the LSB-first
ordering lead to the same number of nodes as for MSB-first although the OBDDs
are not isomorphic. The main reason for this equality is the fact that in both
OBDDs there is only one bit of information that has to be passed from the level
of y;—1 to the level of z; for 2 < i < n.

It is quite remarkable that these OBDD-sizes for the standard encoding nearly
meet the lower bound of 4n — 1. We conjecture that the standard encoding is
even optimal. In order to prove a better lower bound, one might have to estab-
lish much more sophisticated communication complexity arguments which connect
local OBDD-properties with the global single-cycle-property of a counter.

4.2. THE GRAY ENCODING

Another important minimum-length encoding is the one where the encoding of
state i is the Gray code representation of i (see e.g. [10]). The Gray code has
the property that all successive code words differ in only one bit. The n-bit Gray
code can be constructed by reflecting the (n — 1)-bit Gray code. To all the new

ON THE INFLUENCE OF THE STATE ENCODING ON OBDDs 27

Decimal number]

01 2 3 45 6 7|8 9 10 11 12 13 14 15

T4 6 00 0 0 0 O0O0O|]1 1 1 1 1 1 1 1

Gray z3 0 0 0 01 11 1]1 1 1 1 0O 0 0 O
code zo 0 011110000 1 1 1 1 0 O
T 011001 10/01 1 0 0 1 1 O

FIGURE 3. 4-bit Gray code.

codewords, a leading 1 is added. Figure 3 shows a 4-bit Gray code with least
significant bit z;.

By analogous constructions like in the previous subsection, it can be verified
that for n > 2 the OBDD-size of the Gray-encoded autonomous counter with
MSB- or LSB-first variable ordering is 10n — 11. However, the OBDDs are not
isomorphic. The constructions in both cases are based on the reflecting property
of the Gray code. The essential reason why the Gray encoding has a bigger factor
than the standard encoding is the reflecting property of the Gray code which does
not allow an immediate use of the OBDD for Mzn 1, when constructing the OBDD
for M.

5. A WORST-CASE ENCODING

Of course, it is easy to construct autonomous finite state machines with bijective
next-state function together with an encoding which have exponential OBDD-size
w.r.t. the interleaved variable ordering. Things become more difficult if one wants
to construct the encoding of an autonomous counter that leads to exponential
OBDD-size. In the following we construct an encoding in that the first nodes in
the OBDD are labeled by z1,y1, - .-, Zn/2,Yn/2 and their outgoing edges lead to
a complete tree. The number of nodes with label z,/5,; will therefore be 2™ and
the OBDD will have more than 27*! nodes.

There are 2™ different assignments to the leading wvariables z1,v1,...,
Tpn/2,Yn/2 and 27 transitions in the finite state machine. To ensure that the lead-
ing variables in the OBDD generate a complete tree, we construct the next-state
function in the following way:

1. For each assignment to the leading variables, there exists exactly one as-

signment to the tail variables T, 2411,Yn/241,--- > Tn,Yn Which leads to the
1-sink in the OBDD.

2. Each of the 2™ assignments to the tail variables appears exactly once in the
construction.

For the construction of the worst-case counter, we build up two tables, the tran-
sition table and the tasil table.

Transition table: This table consists of 2™ rows. Each row describes one tran-
sition 1 ...Zn — Y1 -..Yn Of the counter. Initially, some of the bits are already

28 C. MEINEL AND T. THEOBALD

Ty ... :z:n/2 Tnj2+41---Tn Yi.--Yn/2 Yn/2+1---Yn visited
00 ... 00 * 00 ... 00 * FALSE
00 ... 00 * 00... 01 * FALSE
00 ... 00 * 11... 11 * FALSE
00... 01 * 00 ... 00 * FALSE
11... 11 * 11...11 * FALSE

FIGURE 4. Initial structure of the transition table.

Tn/241:--Tn Yn/241---Yn used
00... 00 00 ... 00 FALSE
00... 00 00... 01 FALSE

11... 11 11... 11 FALSE

FIGURE 5. Initial structure of the tail table.

set to 1 or 0: all the 2™ assignments for the leading variables z1,91,... , Zn/2,Yn/2
are inserted in the table in the following way: in row 7 of the table, 0 < ¢ < 27,
the integer 4 is represented in binary by the bits z1...2,/2Y1 . ..Yn/2. The bits of
the tail variables are not affected by this initial construction — these entries are
marked by stars and will be filled during the construction. The transition table
after this initial step is shown in Figure 4.

There is an additional entry called visited in each row which helps to keep track
which rows of the table have already been filled during the construction algorithm.
Initially, every entry in the wisited column is set to “FALSE”.

Tail table: This table consists of 2" rows which contain the 2™ different assign-
ments for the tail variables Tn/241,... ,Tn;Yn/241,-+- ,Yn. In each row there is
an additional entry called used which helps to ensure that each assignment is only
- used once during the construction. Initially, every entry in the used column is set
to “FALSE”. The tail table is shown in Figure 5.
The entries of the transition table which are marked with a star are filled during
the construction. The task is to put each assignment for the tail variables into one
- row of the transition table in such a way that the induced transitions z; ...z, —
y1..-Yn form a cycle of length 2. Note that this construction guarantees that
the two properties are satisfied. We use the algorithm of Figure 6.

Claim. The finite state machine that is constructed by the algorithm is a counter,
i.e. the cycle has length 2™.
The claim follows from three statements:

1. In step 3(b) there exists an assignment in the tail table with the desired
properties.

ON THE INFLUENCE OF THE STATE ENCODING ON OBDDs 29

1. For each row of the transition table: set Z,/041...Tn = y1...Yn/2-
2. Set the present row to the top row of the transition table.
3. While visited in the present row is set to “FALSE”

(a) Set the visited entry in the present row of the transition table
to “TRUE”.

(b) Choose the maximal (w.r.t. the represented binary number)
assignment for the tail variables from the tail table which
matches the assignment for x,/34;...Z» in the present row
and whose used entry is set to “FALSE”.

(c) Set the used entry for the chosen assignment in the tail table
to “TRUE”.

(d) Set Yn/241---Yn in the transition table to the chosen assign-
ment for ¥, 241 .- Yn-

(e) Let R be the row in the transition table in which the assign-
ment for z; ...z, is identical with the assignment for y; ...y,
in the present row.

(f) Set the present row to row R.

FIGURE 6. Construction of the worst-case counter.

2. If the while-condition in step 3 is not satisfied (i.e. the while-loop termi-
nates), then z1 ...2, = 00...0 in the present row of the transition table.

3. When the while-loop terminates, all 2™ assignments for the tail variables
have been marked as used. '

Before proving the statements we show why the claim follows from them: from
statement 1 it follows that step 3(b) is well-defined in each processing of the loop
body. Due to the finiteness of the tail table and step 3(c), the algorithm terminates.
Statements 2 and 3 guarantee that the construction builds a cycle of length 2™.

Proofs of the statements:

1. The visited column of the transition table guarantees that each row of the
transition table is at most once the present row — otherwise, the while-loop im-
mediately terminates. For a fized assignment X to /241 ...Tn the number of
rows in the transition table in which the assignment X appears is 2%/2. Therefore
there are at most 2"/ situations during the run of the algorithm in which an as-
signment is needed in step 3(b) that extends X. On the other hand there are also
27/2 assignments for the tail variables in the tail table which extend X. Therefore
in each processing of step 3(b), there is at least one previously unused suitable
assignment left.

2. Consider the assignment for y; ...y in the present row after step 3(d). Due to
step 1 of the algorithm this assignment is equal to Z,,/211 - .- ZnYn/241 - - - Yn in the
present row. Dtie to stéps 3(d) and (e) this assignment determines the assignment
for z; ...z, in the new present row. It follows: Whenever a row with a given bit
sequence for x; ...z, becomes the present row in step 3(f), this bit sequence has

30 C. MEINEL AND T. THEOBALD

just been marked as used in the tail table in step 3(c). This makes it impossible
that a row becomes the present row in step 3(f) more than once.

After the first processing of the loop body, the top row is marked as visited, but
the bit sequence 00...0 has not been marked as used in the tail table. Therefore
the only possibility to enter a row whose visited entry is already set to “TRUE”
is to enter the top row.

3. Due to statement 2, the last chosen assignment for the tail variables is 00...0.
As in step 3(b) the maximal assignment is chosen, all 2*/2 assignments of the form
00...0... € 072{0,1}"/2 must have already been used now. Therefore, due to
the bit shifting in step 1 and step 3(e), all assignments ...00...0 € {0,1}/20"/2
in the tail table must have already been used now. Using again that in 3.(b)
the maximal assignment is chosen, it follows that all 2™ assignments for the tail
variables have been used when the while-loop terminates. a

Remark. The first paragraph of this section implies that the constructed OBDD
has at least 2™ subfunctions of the form lezal,_..,mn/2=an/2,y1=b1,...,yn/zzbn/z for
A1y ,0n/2,01,. .., bpya € {0,1}. Hence, the worst-case construction also holds
for a bigger class of variable orderings than only the fixed interleaved ordering
Z1,Y1,- -+ , Tn, Yn: Damely, it also holds for all variable orderings in which all vari-
ables from the upper half come from the set {z,...,Zn/2,%1,-..,Yn/2} and all
variables from the lower half come from the set {Z,/241,--- Zn,Unj241,- -+ »Yn}-

6. RELATED TOPOLOGIES

With similar techniques most of the results that have been proven for the au-
tonomous counter can also be established for the loop counter and the acyclic
counter. The lower bound of 4n — 1 can be transferred to the acyclic counter. The
construction can be slightly modified to prove a 4n — 2 lower bound for the loop
counter which becomes non-deterministic after the elimination of the inputs. The
worst-case construction for the autonomous counter can also be used to construct
a worst-case encoding for the acyclic counter.

7. CONCLUSION AND OPEN QUESTIONS

We have given some precise results on the relation between state encodings
and the size of OBDD-representations. These results show a strong dependence
and therefore underline the 1mp0rta.nce of the OBDD-optimization by re-encoding
techniques [13].

The general open problems are to analyze non-linear topologies of finite state
machines, more general variable orderings and the behavior during reachability
analysis in the context of state encodings. For these tasks, the presented results
and analysis techniques form the basic ingredients.

We wish to thank the unknown referees for valuable comments.

(1

10]
(11]

(12]

(13]

(14]

[15]

[16]

ON THE INFLUENCE OF THE STATE ENCODING ON OBDDs 31

REFERENCES

A. Aziz, S. Taziran and R.K. Brayton, BDD variable ordering for interacting finite state
machines, in Proc. 81st ACM/IEEE Design Automation Conference (San Diego, CA, 1994)
283-288.

J. Bern, Ch. Meinel and A. Slobodové, Global rebuilding of OBDDs - avoiding memory
requirement maxima, in Proc. Computer-Aided Verification, Springer, Berlin, Lecture Notes
in Computer Science 939 (1995) 4-15.

B. Bollig and 1. Wegener, Improving the variable ordering of OBDDs is NP complete. I[EEE
Trans. Comput. 45 (1996) 993-1002.

R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. C—35 (1986) 677-691.

R.E. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys 24 (1992) 293-318.

J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan and D.L. Dill, Symbolic model check-
ing for sequential circuit verification. IEEE Trans. Computer-Aided Design of Integrated
Circuits 13 (1994) 401-424.

O. Coudert, C. Berthet and J. C. Madre, Verification of synchronous sequential machines
using symbolic execution, in Proc. Workshop on Automatic Verification Methods for Finite
State Machines, Springer, Berlin, Lecture Notes in Computer Science 407 (1989) 365-373.
O. Coudert and J. C. Madre, The implicit set paradigm: a new approach to finite state
system verification. Formal Methods in System Design 6 (1995) 133-145.

A. Ghosh, S. Devadas and A. R. Newton, Sequential logic testing and verification, Kluwer
Academic Publishers, Boston, MA (1992).

R.W. Hamming, Coding and information theory, Prentice-Hall, Englewood Cliffs, NJ (1980).
Ch. Meinel and A. Slobodové, On the complexity of constructing optimal ordered binary de-
cision diagrams, in Proc. Mathematical Foundations in Computer Science, Springer, Berlin,
Lecture Notes in Computer Science 841 (1994) 515-524.

Ch. Meinel, F. Somenzi and T. Theobald, Linear sifting of decision diagrams, in Proc. 34th
ACM/IEEE Design Automation Conference (Anaheim, CA, 1997) 202-207.

Ch. Meinel and T. Theobald, Local encoding transformations for optimizing OBDD-
representations of finite state machines, in Proc. International Conference on Formal Meth-
ods in Computer-Aided Design (Palo Alto, CA), Springer, Berhn Lecture Notes in Com-
puter Science 1166 (1996) 404-418.

R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in Proc. IEEE
International Conference on Computer-Aided Design (Santa Clara, CA, 1993) 42-47.

S. Tani, K. Hamaguchi and S. Yajima, The complexity of the optimal variable ordering
problems of shared binary decision diagrams, in Proc. International Symposium on Algo-
rithms and Computation, Springer, Berlin, Lecture Notes in Computer Science 762 (1993)
389-398.

1. Wegener, Efficient data structures for Boolean functions. Discrete Math. 136 (1994)
347-372. .

Communicated by W. Brauer.
Received June, 1997. Accepted July 1998.

