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STRONGLY LOCALLY TESTABLE SEMIGROUPS
WITH COMMUTING IDEMPOTENTS

AND RELATED LANGUAGES

CARLA SELMI 1

Abstract. If we consider words over the alphabet which is the set of
all éléments of a semigroup 5, then such a word détermines an element
of S: the product of the letters of the word. S is strongly locally testable
if whenever two words over the alphabet S have the same factors of a
fixed length fc, then the products of the letters of these words are equal.
We had previously proved [19] that the syntactic semigroup of a rational
language L is strongly locally testable if and only if L is both locally
and piecewise testable. We characterize in this paper the variety of
strongly locally testable semigroups with commuting idempotents and,
using the theory of implicit opérations on a variety of semigroups, we
dérive an elementary combinatorial description of the related variety
of languages.

1. INTRODUCTION

Eilenberg's variety theorem, published in 1976, asserts that there exists a
one-to-one correspondence between certain classes of recognizable languages (the
varieties of languages) and certain classes of fmite semigroups (the varieties of
semigroups). The algebraic characterizations of star-free languages [17], locally
testable languages [10] and piecewice testable languages [20], among others, are
instances of this correspondence.

The theory of implicit opérations, introduced by Reiterman [16] and developed
by Almeida [1-5] (see also Almeida and Weil [6,7], Weil [21] and Zeitoun [24]),
allows us to solve some questions about varieties of finite semigroups. One can
associate to a given variety of semigroups V and to a given alphabet A, a topo-
logical semigroup, denoted by F A ( V ) , which is called the semigroup of implicit
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opérations on V. The semigroup FA(V) plays the role of the free object for the
variety on the alphabet A, in a certain sense. Moreover, the family of languages
on A+ associated to V is characterized by the topological structure of F

We characterize in this paper the variety of strongly locally testable semigroups
with commuting idempotents (denoted by SLTnE c o m ) and we use this algebraic
characterization and the theory of implicit opérations, to dérive a combinatorial
description of the related variety of languages. Strongly locally testable semigroups
are a natural extension of locally testable semigroups, introduced by Zalcstein
[22,23]. The définition is the following: if we consider words over the alphabet
which is the set of all éléments of a semigroup 5, then such a word détermines
an element of S: the product of the letters of the word. A semigroup S is locally
testable if whenever two words over the alphabet S have the same factors of a fixed
length &, then the products of the letters of these words are equal. The variety of
languages associated to the variety of strongly locally testable semigroups is the
class of languages that are both locally testable and piecewise testable [19].

Our main resuit is the following: a language L on the alphabet A is recognized
by SLT n E c o m if and only if L belongs to the boolean algebra generated by the
languages of the form BQ a\B^ . . . ani?* where n > 0, the ai are letters of A, the
Bi are nonempty, mutually disjoint subsets of A, and where ai does not belongs to
Bi-i UBi. Note that this result connects with a number of descriptions of varieties
of languages involving languages of the form BQÜIB^ .. • CLnB^ with various condi-
tions on the letters ai and the subsets Bi of A (e.g. piecewise testable languages
(Simon [20]), 7^-trivial languages (Eilenberg [11]), doth-depth two languages (Pin
and Straubing [15]), Ash, Hall and Pin's result on commuting idempotents [8],
over testable languages [19], etc).

In Section 2 we recall the basic notions of the theory of varieties and implicit
opérations. In Section 3 we recall the notion of strongly locally testable semigroups
and of over testable languages. In Section 4 we characterize the variety SLT n
Ecom- In Section 5 we exhibit a family of languages recognized by SLTnEcom- In
Section 6 we describe the implicit opérations on SLTnE c o m . Finally, in Section 7
we prove our main result.

2. PRELIMINARIES

We first review basic définitions from the theory of varieties and implicit
opérations. For further details, the reader is referred to [1] and [14].

2.1. VARIETIES OF SEMIGROUPS AND VARIETIES OF LANGUAGES

A variety of semigroups (sometimes called pseudo-variety) is any class of finite
semigroups that is closed under taking subsemigroups, homomorphic images and
finite direct products.
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We dénote by J i the variety of idempotent and commutative semigroups, by
J the variety of J-trivial semigroups, by LJi the variety of locally idempotent
and locally commutative semigroups and by E c o m the variety of semigroups with
commuting idempotents.

Let V be a variety of semigroups. One associâtes to each finit e alphabet A
the class A^V of languages of A~*~ whose syntactic semigroup belongs to V. This
correspondence is a variety of languages. Thus, we have an application V —> V,
which maps each variety of semigroups to a variety of languages. Eilenberg's
variety Theorem [11], asserts that for any variety of languages V there exists a
unique variety of semigroups V such that V —> V: V is the variety generated by
the syntactic semigroups of languages belonging to A+V for any alphabet A,

2.2. I M P L I C I T OPERATIONS

Given a variety of semigroups it is in gênerai a difficult problem to find a set
of generators for the related variety of languages. A useful tool for solving this
question, is the détermination of free objects for that variety, when such objects
exist. But, in gênerai, a variety of semigroups does not have free objects. It turns
out to be necessary to consider certain infinité compact semigroups. This is done
in the framework of the theory of implicit opérations.

We define the basics of the theory of implicit opérations on a varieties of
semigroups. For the proofs of the results started in this section, the reader is
referred to Almeida [1].

Let V be a variety of semigroups, let n > 1 and let A = {a i , . . . , an}. An n-ary
implicit opération n on V is a family TT = (ns), indexed by the éléments S of V,
of mappings from Sn into 5, such that for each morphism I/J: S —> T between
éléments of V, we have

(Si, . . . , Sn)7TS1p = Oi, . . . , Sn^-ÏÏT

for every slt... ,sn G 5.
The set of ail n-ary implicit opérations on V is denoted by FA(V).

Example 2.1. Let V be a variety of semigroups. Let S G V and s E S. We
dénote by sw the unique idempotent of 5 which is a power of x. We dénote x^:
S —y S the map defmed by (s)x^ = sw. It is easy to verify that x^ = x^ is an
implicit opération on V.

Let ai G A and S G V. We dénote dits- Sn —> S the map defîned by
(si , . . . ^sn)aits = Si. It is easy to verify that a^L = (a^s)s ev is an n-ary im-
plicit opérations on V. The map t: A —> FA(V) extends to a morphism t:
A+ —> FA(V). We dénote by F A ( V ) the semigroup A+t and we call it the set
n-ary explicit opérations on V. An n-ary explicit opérations on V is an implicit
opérations on V induced by a.mot of A+.

Let TT and p G FA(V) and S G V. Then, for every s i , . . . s n 6 S , we define

(si , . . . , sn)(>irp)s = (si , . . . , sn)7r5(si, .. , sn)ps-



50 C. SELMI

This multiplication makes FA(V) a semigroup.
Let Z Ç V be two varieties of semigroups. Then the map p: FA(V) —

defined by 7vp — (irs)sez f°r anY ^ £ FA(V) is called the natural projection. The
natural project ion is a surjective semigroup morphism.

Example 2.2. Let V be a variety of semigroups. It is known that FA{3I) =
V{A), where V{A) is the set of all nonempty subsets on the alphabet A endowed
with the multiplication defined by union.
Let J i Ç V. We dénote by c: FA(V) —y ^U(Ji) = V(A) the natural projection
and we call it content

Let V be a variety of semigroups. A pseudo-identüy n — p for V is a formai
identity of implicit opérations on V. A semigroup 5 G V vérifies the pseudo-
identity n — p, 7r,p e FA(V), if TTS = Ps- The theorem of Reiterman [16], states
that any variety of semigroups is defined by a set of pseudo-identities.

We will use in Section 7 the following important reformulation of Reiterman's
theorem.

Theorem 2.3. Let V Ç Z be two varieties of semigroups. Then V ^ Z if and
only if there exists an alphabet A and 7r,p G FA(Z) such that ir ^ p but TTS = ps
for any 5 G V .

3. STRONGLY LOCALLY TESTABLE SEMIGROUPS

For each finite semigroup S, we let 5 + be the set of all finite séquences of
éléments of S.

Définition 3.1. Let 5 be a finite semigroup. Then S is strongly k-testable if
for each pair of éléments (xi , . . . , xn)7 (2/1,... , ym) of 5 + , n, m > fc, having the '
same set of /e-factors, one has x\ • • • xn — y\ • • • ym. A semigroup is strongly locally
testable if it is strongly fc-testable for some k > 1.

We dénote by SLT the class of strongly locally testable semigroups and by SLTk
the set of strongly fc-testable semigroups. We have that SLT = Ufcli SLTk.

Example 3.2. We have that SLTi = Jx. Indeed, let S e SLTi and let z G S+ .
By définition, the product of the components of z is completely determined by
the alphabet of z, so, SLTi Q J i - Now, let 5 G J i and let x — (xi , . . . ,xn),
y = (yi) • • • » î/m)) w, m > 1, be two séquences of éléments of 5 having the same
alphabet. Let {ai , . . . , aq} be the common alphabet of x and y. Then,

Xx'-Xn = a™1 • •. aqq = ai • • • aQ

where ni (rrii) is the number of occurrences of a* in x (y). So, J i Ç

The following theorem, proved in [19], contains a characterization of SLT.



STRONGLY LOCALLY TESTABLE SEMIGROUPS 51

Theorem 3.3. SLT = J n LJi and the variety J D LJi is defined by the pseudo-
identities (xy)" = (yx)" and x"yx" = x^yx^yx".

In particular this means that SLT constitutes a variety of semigroups. It follows
from the algebraic characterizations of locally testable languages [10] and piecewice
testable languages [20], that the variety of languages associated via Eilenberg's
variety theorem to SLT is the variety of languages that are both locally and
piecewice testable.

The following combinatorial description of locally and piecewise testable
languages is given in [19].

Theorem 3.4. Let L C A+. Then L is locally and piecewise testable if and only
if it is a boolean combination of languages of the form

L =

where Ui G A* for 0 < i < n} Bi Ç A for 1 < i < n} Bi Pi Bj — 0 if i ^ j and the
last letter of Ui-\ and the first letter of ui dont belong to Bi for 1 < i < n.

The notion of strongly locally testable language was introduced and studied by
Beauquier and Pin [9]. A language L is strongly locally testable if the membership
of a word in L is determined by the set of its factors of length fe, for some k.
Strongly locally testable languages are not characterized by a property of their
syntactic semigroups, so they do not constitute a variety of languages.

Locally and piecewise testable languages are strongly locally testable [19] and
hence, since the family of strongly locally testable languages does not form a
variety of languages, they constitute a strict subclass of the strongly locally testable
languages.

4. SLTnEcom

In this section we give the pseudo-identities defining the variety SLT O ECOm
formed by all strongly locally testable semigroups with commuting idempotents.

First, we exhibit an example of strongly locally testable semigroup S that does
not belong to E c o m . This proves that SLT n E c o m is a strict sub variety of SLT.

Example 4.1. Let A be an alphabet and let B and C be nonempty subsets of A
such that B f)C ^ 0. We consider the language L = B+C+. L is an elementary
language on A+. So, by Theorem 3.4, its syntactic semigroup 5 is in SLT. It is
easy to check that the minimal automaton for L is the automaton A.

C

-V-
<7o <7i Ç2
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Let 77: A+ —> S be the transition morphism of A. Then, for any a 6 B U C, ar] is
an idempotent of S. Let b e B and let c e C. The domain of (6c)?7 is {g0} and its
image is {32}- But the domain of (cb)r) is the empty set. So (bc)r) ^ (cb)rj. Then,
5 G SLT but S £ E c o m .

Proposition 4.2. T/ie variety SLT D E c o m

x^yx" = x^yx^yx" and x^y"

Proof. The variety E c o m is defined by z w ^ =
Theorem 3.3.

defined by the pseudo-identities

wxw. The proposition follows by
D

The rest of the paper will be devoted to obtaining a combinatorial description
of the languages whose syntactic semigroup belongs to SLT n Ecom-

5. A FAMILY OF LANGUAGES

In this section we exhibit a family of languages whose syntactic semigroups
belong to SLT H E c o m-

Let A be an alphabet. An elementary language on A+ is a language of the form

L —

where a% G A (1 < i < n), Bi ç A (0 < i < n), Bi n Bû = 0 if i ^
ai <£ Bi-x UBi (1 < i <n ) .

Remark 5.1. Since the sets Bi can be empty, the languages of the form

L =

j and

where uo,un G A*, Ui G A+ (1 < i < n— 1), BiC\Bj = 0 if i ^ j and the last letter
of UÎ_I and the first letter of Ui do not belong to Bi (1 < i < n), are elementary.

We dénote by A+W the boolean algebra generated by all elementary languages
on A+. We prove in this section that, if L G A+W then the syntactic sernigroup
S(L) belongs to SLT n Ec o m-

Remark 5.2. Let L = BQCLIB^ . . . dnB^ be an elementary language on A+ and
let A be the following automaton:

CO Ql Q2

The automaton A recognizes L and, since a.i ^ -B _̂i UBi (1 < i < w)j -4 is a
deterministic and co determinist ie automaton. So .4 is the minimal automaton
of L.
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Moreover, let 77: A+ —> S be the transition morphism of the automaton A.
Then A vérifies the following properties:

1. if qj = qi(xr]) with x G A+, then i < j \
2. loop alphabets of distinct states are pairwise disjoint;
3. ai ^ Bi-i U Bi for any 1 < % < n.

In the rest of the paper we will use the notation (u)alph for the set of letters which
occur in u G A+.

Lemma 5.3. Let L = B^aiBl... anJ5* be an elementary language on A+. Let
A be its minimal automaton and let r): A+ -—> S be the transition morphism of
A. Let xrj G E (S) for some x G A+ . If the domain of xr] is nonempty, then there
exists a unique 0 < % < n such that (x)alph C Bi, and the domain of xr] and its
image are exactly {(&}.

Proof The automaton A is the automaton represented in Remark 5.2. Let xrj G
E (S) and let g be a state of A belonging to the domain of xr]. Then q.xr] — q.(x2r}).
So, there exists 0 < i < n such that q.xn — qi and (x)alph Ç Bi. But, by statement
3 of Remark 5.2, â  ^ Bi and so q = qi. Conversely qi.xr] = <̂ . Moreover, by
statement 2, the alphabets Bj are pairwise disjoint, therefore there exists a unique
0 < i < n such that (x)alph Ç Bi. So, the domain of XTJ and its image are exactly

M- •
Proposition 5.4. Let L G A+W. Then S(L) G SLT O E c o m .

Proof Since A+ W is a boolean algebra and since SLT n E c o m is a variety of
semigroups, it is sufficient to prove the proposition for the elementary languages
on A+.
. Let L = BQÜIB^ . . . anB^ be an elementary language on A+. Let A be the
automaton represented in Remark 5.2 and let 77: A+ —> S be the transition
morphism of A. By Remark 5.2, .A is the minimal automaton of L and hence S is
the syntactic semigroup of L, Therefore, we prove S G SLT n E c o m .

By Proposition 4.2, it suffices to show that S vérifies the pseudo-identities
defining SLT n E c o m .

Let k be such that {xy)kiq and (yx)kr] are idempotents in S.. By Lemma 5.3,
there exist 0 < i, j < n such that (xy)alph Ç Bi, (yx)alph C Bj, and the domain
of (xy)kr] and its image are exactly {qi}. But (xy)alph = (yx)alph1 so i ~ j and
(xy)kr] = (yx)kr].

Let xy y G A+ and let (xr})k be the idempotent power of xrj in S. By Lemma 5.3,
there exists a unique 0 < i < n such that (x)alph Ç Bi, the domain of (xr])k and
its image are exactly {qi}- Let now y G A+. If (y)alph % Bi then the domain of
(xr])kyr](xr))k is the emptyset. Otherwise, (y)alph Ç Bi. In either case, we get
{xï])kyrj{xr])k = {xr])kyr]{xrj)kyr]{xr])k.

Let x, y G A+ and let (xr])k and (y??)fc be the idempotent powers of xr] and y77 in
S respectively. By Lemma 5.3, there exist 0 < i, j < n such that (x)alph Ç Ü̂  and
the domain of (yr])k and its image are exactly {#j}. By the hypothesis made on
L, Bif\ Bj = 0 if z ^ j . So, if z ̂  j , the domains of (xrj)k(yr])k and of (yri)k(xr])k
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are empty. Otherwise, i = j , and hence the domains of (xr])k{yrj)k, and (yr])k(x7j)k

and their images are exactly {<&}. D

6. THE IMPLICIT OPÉRATIONS ON SLT n Ecom

The variety SLTnE c o m does not have free objects. It turns out to be necessary
to consider the semigroup of implicit opérations on the variety SLT n Ecom- We
will use in Section 7 the properties of FA (SLT D Ec o m) to find a combinatorial
characterization of the languages recognized by SLT n E c o m .

6.1. FA(SLT H Ecorn): A NORMAL FORM

We give in this section a normal form for the éléments of

Let &: FA (SLT) —> FA (SLT n E c o m) be the natural projection. Since 3t =
SLTi n Ecom Ç SLT n ECom C SLT, we can define the content morphism for
FA (SLT n Ecom) and for FA (SLT), which we dénote by c and c respectively.

Now we give the description of FA (SLT), which we will use in the sequel [19].

Theorem 6.1. The idempotents of FA (SLT) are entirely determined by their con-
tent Each element of FA (SLT) can be written in a unique normal form as a
product n = uoViUi.. .vnun> where n>0,UiEÂ* (Le. Ui is explicit), the vi are
idempotent éléments of FA (SLT) such that (vi)cH (vm)c — 0 ij%l ̂  m, and the
first and the last letter of Ui do not belong to (vi)c and (vi+i)c respectively.

Proposition 6.2. The idempotents of FA (SLT Pi Ec o m) are determined by their
content.

Proof The proposition follows by surjectivity of the morphism #, by the identity
?n?c = TTC, for any ir G FA(SLT), and by Theorem 6.1. D

Let B Ç A,B 7̂  0. We dénote by É the unique idempotent of
FA (SLT D E c o m) whose content is B. By Theorem 6.1, we have the following
proposition.

Proposition 6.3. Let n G FA (SLT n Ec o m). Then, n — uoBiUi... Bnunj where
Ui e A* (0 < i < m), Bi Ç A, Bi ^ 0 (1 < i < m), Bi^Bj^^ if i ^ j and the
last letter of Ui-\ and the first letter of Ui do not belong to Bi (1 < i< n).

We will use the following important property of the product of the idempotents
of FA (SLT n E c o m) to dérive a normal form for the éléments of FA (SLT H E c o m) .

Proposition 6.4. Let B, C be two idempotents of FA(SLT n ECOm)- Then BC =
D} where D^BuC.

Proof. Since BC is an idempotent of FA(SLTnECOm) whose content is D =
BuC,by Proposition 6.2, BC = Z). D
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Let 7T G FA(SUT H E c o m) . We say that n is in normal form if

. . . BnUn

where w0, wn G A*, u* G A+" (1 < i < n — 1), B^ D Bj- = 0 if i / j and the last
letter of Ui-± and the first letter of u* do not belong to Bi (1 < i < m).

By Proposition 6.3, we have the following proposition.

Proposition 6.5. Any element ix G F A ( S L T D Ec

form.
) can be written in normal

Now, we show the uniqueness of the normal form for the éléments of
i<U(SLT DE c o m) . We dénote by W the variety generated by all semigroups
of the form S(L), L belonging A+W, for any alphabet A. By Proposition 5.4,
W Ç S L T n E c o m .

Proposition 6.6. Let TT = u\BiU2 •.. Bnunj p = V\C\V2 • •. CmVm be two
éléments of ̂ ( S L T H Ec o m) in normal form,

1. If 1rs = ps for Q>ny S e W then m = n, m = Vi (0 < i < n) and Bi = d
(1 < i < n);

2. 7T = p if and only if m — n} ui = Vi (0 < i < n).

Proof We suppose that TTS = Ps for any 5 G W. Let L =
Since ?r is in normal form, by Remark 5.1, L is an elementary language. So, by
Proposition 5.4, S G W. Let A be the minimal automaton and let rj: A+ —> S
be its transition morphism. A is the following automaton:

Qn+l

Let k be such that sk is an idempotent of 5 for any s e S. For any
1 < i < n, we choose Wi G A+ such that (wi)alph = Bi. Then, by Proposi-
tion 6.2, (Wi)s = (wf)s = (Bi)s. So, 1rs = (wo^i^i • • . ^ ) s - We choose
likewise, for any 1 < j < m, a word Zj G A+ such that (zj)alph = Cj. Then

ItBy hypothesis, TT̂
(uotufui... w^un)r] =
transition generated by

follows by définition of TT̂  and ps, that
By Lemma 5.3, the domain of the

.'• -Wnun)v is {go} and its image is {qn+i}. But
} to {çn + i}. By Lemma 5.3, there

exists 1 < i < n such that (zi)alph = Ci Ç S2-, qo{vor]) — qi and ^o(^o^i)^ = &•
So ÎXO is a prefix of VQ. Symmetrically, we can prove that i>o is a prefix of UQ,
so ^0 = ^0. This fact implies that i = 1 and C\ Ç Bi. Symmetrically, we have

• zmvm is the label of a path from
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also Bi Ç Ci. Hence Bi ~ C\. Repeating the same argument we obtain n — m,
Ui = vt (0 < i < n) and £ ; = C4 (0 < i < n).

For item 2, let TT = p. By Proposition 5.4, we have ns = Ps for all 5 G W .
Then, by item 1 of this proposition, m = n, U{ — vi (0 < i < n) and I?i = d
(l<i<n). D

7. A COMBINATORÏAL DESCRIPTION

We give in this section a combinatorial characterization of the languages
recognized by SLT Pi E c o m -

By Proposition 5.4, W C SLT O E c o m . By Theorem 2.3, to show that W =
SLT n Ecom, it is sufficient to prove the following proposition.

Proposit ion 7.1. Let 7r, p 6 F A (SLT n E c o m ) such that TV s = P5 /or any S e W .
Then, ir = p.

Proof. Let 7r = uiBiu2 . . . -Önnn and let p = ^ i C i ^ • • • CmVm be in normal form.
By Proposition 6.6, if TCS = ps f° r a n y 5 G W , then m = n, ^ = ^ (0 < i < n)
and Bi = Ci (1 < Ï < n) and hence TT ~ p. D

The next theorem is a corollary of Proposition 7.1.

Theorem 7.2. W = SLT n E c o m -

So, by Eilenberg's theorem, we have the following theorem.

Theorem 7.3. Let L Ç A+. Then L is recognized by SLT n ECOm tf and only ij
L e A + W .
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