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STRONGLY LOCALLY TESTABLE SEMIGROUPS
WITH COMMUTING IDEMPOTENTS
AND RELATED LANGUAGES

CARLA SELMI!

Abstract. If we consider words over the alphabet which is the set of
all elements of a semigroup S, then such a word determines an element
of S: the product of the letters of the word. S is strongly locally testable
if whenever two words over the alphabet S have the same factors of a
fixed length k, then the products of the letters of these words are equal.
We had previously proved [19] that the syntactic semigroup of a rational
language L is strongly locally testable if and only if L is both locally
and piecewise testable. We characterize in this paper the variety of
strongly locally testable semigroups with commuting idempotents and,
using the theory of implicit operations on a variety of semigroups, we
derive an elementary combinatorial description of the related variety
of languages.

1. INTRODUCTION

Eilenberg’s variety theorem, published in 1976, asserts that there exists a
one-to-one correspondence between certain classes of recognizable languages (the
varieties of languages) and certain classes of finite semigroups (the varieties of
semigroups). The algebraic characterizations of star-free languages [17], locally
testable languages [10] and piecewice testable languages [20], among others, are
instances of this correspondence.

The theory of implicit operations, introduced by Reiterman [16] and developed
by Almeida [1-5] (see also Almeida and Weil [6,7], Weil [21] and Zeitoun [24]),
allows us to solve some questions about varieties of finite semigroups. One can
associate to a given variety of semigroups V and to a given alphabet A, a topo-
‘logical semigroup, denoted by ﬁA(V), which is called the semigroup of implicit
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operations on V. The semigroup Fy (V) plays the role of the free object for the
variety on the alphabet A, in a certain sense. Moreover, the family of languages
on At associated to V is characterized by the topological structure of F4(V).

We characterize in this paper the variety of strongly locally testable semigroups
with commuting idempotents (denoted by SLT NEcom) and we use this algebraic
characterization and the theory of implicit operations, to derive a combinatorial
description of the related variety of languages. Strongly locally testable semigroups
are a natural extension of locally testable semigroups, introduced by Zalcstein
[22,23]. The definition is the following: if we consider words over the alphabet
which is the set of all elements of a semigroup S, then such a word determines
an element of S: the product of the letters of the word. A semigroup S is locally
testable if whenever two words over the alphabet S have the same factors of a fixed
length k, then the products of the letters of these words are equal. The variety of
languages associated to the variety of strongly locally testable semigroups is the
class of languages that are both locally testable and piecewise testable [19].

Our main result is the following: a language L on the alphabet A is recognized
by SLT N Ecom if and only if L belongs to the boolean algebra generated by the
languages of the form Bga1 B3 ... an By, where n > 0, the a; are letters of A, the
B; are nonempty, mutually disjoint subsets of A, and where a; does not belongs to
B;_1UB,. Note that this result connects with a number of descriptions of varieties
of languages involving languages of the form BgaiB; . .. a, By, with various condi-
tions on the letters a; and the subsets B; of A (e.g. piecewise testable languages
(Simon [20]), R-trivial languages (Eilenberg [11]), doth-depth two languages (Pin
and Straubing [15]), Ash, Hall and Pin’s result on commuting idempotents [8],
over testable languages [19], etc.).

In Section 2 we recall the basic notions of the theory of varieties and implicit
operations. In Section 3 we recall the notion of strongly locally testable semigroups
and of over testable languages. In Section 4 we characterize the variety SLT N
Ecom. In Section 5 we exhibit a family of languages recognized by SLTNE¢om. In
Section 6 we describe the implicit operations on SLTNE¢om. Finally, in Section 7
we prove our main result.

2. PRELIMINARIES

We first review basic definitions from the theory of varieties and implicit
operations. For further details, the reader is referred to [1] and [14].

2.1. VARIETIES OF SEMIGROUPS AND VARIETIES OF LANGUAGES

A variety of semigroups (sometimes called pseudo-variety) is any class of finite
semigroups that is closed under taking subsemigroups, homomorphic images and
finite direct products.
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We denote by Jy the variety of idempotent and commutative semigroups, by
J the variety of J-trivial semigroups, by LJ1 the variety of locally idempotent
and locally commutative semigroups and by Ecom the variety of semigroups with
commuting idempotents.

Let V be a variety of semigroups. One associates to each finite alphabet A
the class ATV of languages of AT whose syntactic semigroup belongs to V. This
correspondence is a variety of languages. Thus, we have an application V. —3 V),
which maps each variety of semigroups to a variety of languages. Eilenberg’s
variety Theorem [11], asserts that for any variety of languages V there exists a
unique variety of semigroups V such that V.— V: V is the variety generated by
the syntactic semigroups of languages belonging to ATV for any alphabet A.

2.2. IMPLICIT OPERATIONS

Given a variety of semigroups it is in general a difficult problem to find a set
of generators for the related variety of languages. A useful tool for solving this
question, is the determination of free objects for that variety, when such objects
exist. But, in general, a variety of semigroups does not have free objects. It turns
out to be necessary to consider certain infinite compact semigroups. This is done
in the framework of the theory of implicit operations.

We define the basics of the theory of implicit operations on a varieties of
semigroups. For the proofs of the results started in this section, the reader is
referred to Almeida [1].

Let V be a variety of semigroups, let n > 1 and let A = {a1,...,an}. Ann-ary
implicit operation w on V is a family # = (ng), indexed by the elements S of V,
of mappings from S™ into S, such that for each morphism ¢: S — T between
elements of V, we have

(51’ oo 781'7,)71-51/} = (Sly sae 7Sn)¢n7rT

for every s1,...,8, €S.
The set of all n-ary implicit operations on V is denoted by Fa(V).

Example 2.1. Let V be a variety of semigroups. Let S € V and s € S. We
denote by s* the unique idempotent of S which is a power of z. We denote z%:
S — S the map defined by (s)z¢ = s¥. It is easy to verify that z¥ = z¢ is an
implicit operation on V.

Let a; € A and § € V. We denote a;ts: S* —> S the map defined by
(s1,...,8n)aits = s;. It is easy to verify that a;c = (a;ts)secv is an m-ary im-
plicit operations on V. The map ¢: A — F '4(V) extends to a morphism ¢
A+ —s Fu(V). We denote by F4(V) the semigroup A*: and we call it the set
n-ary explicit operations on V. An n-ary explicit operations on V is an implicit
operations on V induced by a mot of AT.

Let w and p € ﬁA(V) and S € V. Then, for every si1,...5, € S, we define

(sla s aSn)(ﬂP)S = (511 s ,Sn)TrS(Sl,.. ) S'ﬂ)ps'
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This multiplication makes F4 (V) a semigroup.
Let Z C 'V be two varieties of semigroups. Then the map p: Fa(V) — F4(Z)

defined by np = (7g)sez for any 7 € F '4(V) is called the natural projection. The
natural projection is a surjective semigroup morphism.

Example 2.2. Let V be a variety of semigroups. It is known that ﬁA(J 1) =
P(A), where P(A) is the set of all nonempty subsets on the alphabet A endowed
with the multiplication defined by union.

Let J; C V. We denote by ¢: F4(V) — F4(J1) = P(A) the natural projection
and we call it content.

Let V be a variety of semigroups. A pseudo-identity m# = p for V is a formal
identity of implicit operations on V. A semigroup S € V verifies the pseudo-
identity m = p, m,p € Fa(V), if 7s = ps. The theorem of Reiterman [16], states
that any variety of semigroups is defined by a set of pseudo-identities.

We will use in Section 7 the following important reformulation of Reiterman’s
theorem.

Theorem 2.3. Let V C Z be two varieties of semigroups. Then V # Z if and

only if there exists an alphabet A and 7, p € ﬁA(Z) such that ™ # p but g = pg
for any S €'V.

3. STRONGLY LOCALLY TESTABLE SEMIGROUPS

For each finite semigroup S, we let S* be the set of all finite sequences of
elements of S.

Definition 3.1. Let S be a finite semigroup. Then S is strongly k-testable if
for each pair of elements (z1,...,Zn), (y1,-.. ,Ym) of ST, n, m > k, having the"
same set of k-factors, one has z1 -+ -z, = y1 - - - ym- A semigroup is strongly locally
testable if it is strongly k-testable for some k& > 1.

We denote by SLT the class of strongly locally testable semigroups and by SLTy
the set of strongly k-testable semigroups. We have that SLT = (Jp-; SLTk.

Example 3.2. We have that SLT; = J;. Indeed, let S € SLT; and let z € S*.
By definition, the product of the components of z is completely determined by
the alphabet of 2z, so, SLT; C J;. Now, let S € J; and let z = (z1,...,2Z,),

Yy = (yl‘, ... 3yYm), mym > 1, be two sequences of elements of S having the same
alphabet. Let {a1,...,aq} be the common alphabet of z and y. Then,

L1 Ly = a’fl...agq = al...aq

yl...ym = a;nl...a;nq — a’l"'aq

where n; (m;) is the number of occurrences of a; in = (y). So, J; C SLT;.

The following theorem, proved in [19], contains a characterization of SLT.
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Theorem 3.3. SLT = JNLJ; and the variety JNLJ, is defined by the pseudo-
identities (zy)* = (yz)¥ and z¥yz* = z¥yx¥yz*.

In particular this means that SLT constitutes a variety of semigroups. It follows
from the algebraic characterizations of locally testable languages [10] and piecewice
testable languages [20], that the variety of languages associated via Eilenberg’s
variety theorem to SLT is the variety of languages that are both locally and
piecewice testable.

The following combinatorial description of locally and piecewise testable
languages is given in [19]. '

Theorem 3.4. Let L C At. Then L is locally and piecewise testable if and only
if it is a boolean combination of languages of the form '

L= uoBful . -un_lB:un

where u; € A* for0<i<n, BiC A for1<i<n, BiNB; =0 ifi# j and the
last letter of u;—1 and the first letter of u; dont belong to B; for 1 <i<n.

The notion of strongly locally testable language was introduced and studied by
Beauquier and Pin [9]. A language L is strongly locally testable if the membership
of a word in L is determined by the set of its factors of length k, for some k.
Strongly locally testable languages are not characterized by a property of their
syntactic semigroups, so they do not constitute a variety of languages.

Locally and piecewise testable languages are strongly locally testable [19] and
hence, since the family of strongly locally testable languages does not form a
variety of languages, they constitute a strict subclass of the strongly locally testable
languages.

4. SLT N Ecom

In this section we give the pseudo-identities defining the variety SLT N Ecom
formed by all strongly locally testable semigroups with commuting idempotents.

First, we exhibit an example of strongly locally testable semigroup S that does
not belong to Ecom. This proves that SLT N Ecom is a strict subvariety of SLT.

Example 4.1. Let A be an alphabet and let B and C be nonempty subsets of A
such that BN C # (). ‘We consider the language L = BYC*. L is an elementary
language on A*. So, by Theorem 3.4, its syntactic semigroup S is in SLT. It is
easy to check that the minimal automaton for L is the automaton A.

B C ‘
—@
q1 q2

90
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Let 7: AT — S be the transition morphism of A. Then, for any a € BUC, a7 is
an idempotent of S. Let b € B and let ¢ € C. The domain of (be)n is {go} and its
image is {g2}. But the domain of (cb)n is the empty set. So (bc)n # (cb)n. Then,
S € SLT but S ¢ Ecom-

Proposition 4.2. The variety SLT N Ecom is defined by the pseudo-identities
(zy)* = (yz)¥, z¥yz* = z*ya*yz* and z¥y* = y“zv.

Proof. The variety Ecom is defined by z¥y“ = y“z*. The proposition follows by
Theorem 3.3. O

The rest of the paper will be devoted to obtaining a combinatorial description
of the languages whose syntactic semigroup belongs to SLT N Ecom.

5. A FAMILY OF LANGUAGES

In this section we exhibit a family of languages whose syntactic semigroups
belong to SLT NEcom-
Let A be an alphabet. An elementary language on A" is a language of the form

L= Bja,B;...anB:

n

where a; € A (1 £i<mn), B C A(0<i<n),B,nNnB; =0ifi # j and
ai¢B7;_1UB1; (].Sifn)

Remark 5.1. Since the sets B; can be empty, the languages of the form

L =woBlu; ... Bhuy
where ug, un € A*,u; € AT (1 <i<n-1), BiNB; =0 if i # j and the last letter
of u;—1 and the first letter of u; do not belong to B; (1 <1 < n), are elementary.

We denote by ATW the boolean algebra generated by all elementary languages
on At. We prove in this section that, if L € AT W then the syntactic semigroup
S(L) belongs to SLT N Ecom.

Remark 5.2. Let L = B}a1Bj...a, B} be an elementary language on A* and
let A be the following automaton:

| By By B, B,
qo q1 g2 dn

The automaton A recognizes L and, since a; ¢ B, UB; (1 <i<mn), Aisa
deterministic and codeterministic automaton. So A is the minimal automaton
of L.
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Moreover, let 7: At — S be the transition morphism of the automaton .A.
Then A verifies the following properties:

1. if g; = gi(xn) with z € A, then i < j;

2. loop alphabets of distinct states are pairwise disjoint;

3. a;,¢ Bi-1UB; forany 1 <7< n.

In the rest of the paper we will use the notation (u)alph for the set of letters which
occur in u € AT.

Lemma 5.3. Let L = Bfa1B}...a, B} be an elementary language on A*. Let
A be its minimal automaton and let n: At — S be the transition morphism of
A. Let xn € E(S) for some x € A*. If the domain of zn is nonempty, then there
exists a unique 0 < i < n such that (z)alph C B;, and the domain of xzn and its
image are ezactly {q;}.

Proof. The automaton A is the automaton represented in Remark 5.2. Let zn €
E(S) and let q be a state of A belonging to the domain of z. Then q.zn = ¢.(z%n).
So, there exists 0 < ¢ < n such that g.zn = ¢; and (z)alph C B;. But, by statement
3 of Remark 5.2, a; ¢ B; and so ¢ = g;. Conversely ¢;.2n = ¢;. Moreover, by
statement 2, the alphabets B; are pairwise disjoint, therefore there exists a unique
0 < ¢ < n such that (z)alph C B;. So, the domain of zn and its image are exactly
{a:}- o

Proposition 5.4. Let L € ATW. Then S(L) € SLT N Ecom-

Proof. Since ATW is a boolean algebra and since SLT N Ecom is a variety of
semigroups, it is sufficient to prove the proposition for the elementary languages
on AT,

Let L = Bja1 B3 ...a, B} be an elementary language on A*. Let A be the
automaton represented in Remark 5.2 and let 5: AT —— S be the transition
morphism of A. By Remark 5.2, A is the minimal automaton of L and hence S is
the syntactic semigroup of L. Therefore, we prove S € SLT N Ec¢om.

By Proposition 4.2, it suffices to show that S verlﬁes the pseudo-identities
defining SLT N Ecom-

Let k be such that (zy)*n and (yz)*n are idempotents in S. By Lemma 5.3,
there exist 0 < %, j < n such that (zy)alph C B;, (yz)alph C Bj, and the domain
of (zy)*n and its image are exactly {g;}. But (zy)alph = (yz)alph, so i = j and
(zy)*en = (yz)*n

Let 2,y € A" and let (zn)* be the idempotent power of zn in S. By Lemma 5.3,
there exists a unique 0 < ¢ < n such that (z)alph C B;, the domain of (zn)* and
its image are exactly {g;}. Let now y € A". If (y)alph € B; then the domain of
(zn)*yn(zn)* is the emptyset. Otherwise, (y)alph C B;. In either case, we get
(zm)eyn(zn)* = (zn)Fyn(zn)*yn(zn)*.

Let z,y € A" and let (zn)* and (yn)* be the idempotent powers of zn and y7 in
S respectively. By Lemma 5.3, there exist 0 < 4, j < n such that (z)alph C B; and
the domain of (yn)* and its image are exactly {g;}. By the hypothesis made on
L,B;NB; =0 ifi#j. So,ifi# j, the domains of (zn)*(yn)* and of (yn)*(zn)*
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are empty. Otherwise, i = j, and hence the domains of (xn)*(yn)* and (yn)*(zn)*
and their images are exactly {g¢;}. O

6. THE IMPLICIT OPERATIONS ON SLT NE.om

The variety SLTNEcom does not have free objects. It turns out to be necessary
to consider the semigroup of implicit operations on the variety SLT N Ecom. We
will use in Section 7 the properties of F 'A(SLT N Ec¢om) to find a combinatorial
characterization of the languages recognized by SLT N Ecom.

6.1. ﬁA(SLT M Ecom): A NORMAL FORM

We give in this section a normal form for the elements of
F4(SLT NEcom).

Let 9: F4(SLT) — F4(SLT N Ecom) be the natural projection. Since J; =
SLTy N Ecom € SLT NEcom C SLT, we can define the content morphism for
Fy (SLT NE¢om) and for ﬁA(SLT), which we denote by € and ¢ respectively.

Now we give the description of F4(SLT), which we will use in the sequel [19].

Theorem 6.1. The idempotents of Fo(SLT) are entirely determined by their con-
tent. FEach element of ﬁA(SLT) can be written in a unique normal form as a

- product T = UQUIU1 . . . UnUn, where n >0, u; € A* (i.e: wu; is explicit), the v; are
idempotent elements of F4(SLT) such that (v;)c N (vm)c = 0 if | # m, and the
first and the last letter of u; do not belong to (v;)e and (viy1)c respectively.

Proposition 6.2. The idempotents of ﬁA(SLT NEcom) are determined by their
content.

Proof. The proposition Afollows by surjectivity of the morphism ¥, by the identity
w¥¢ = me, for any m € F4(SLT), and by Theorem 6.1. O

_Let B C A/B # 0. We denote by B the unique idempotent of
F4(SLT N Ecom) whose content is B. By Theorem 6.1, we have the following
proposition.

Proposition 6.3. Let 7 € I?‘A (SLT NEcom)- Then, m = uoB1u . .. Bnun, where
u € A* (0<i<m),BiCA B;#0(1<i<m), BNB; #0 if i # j and the
last letter of u;—1 and the first letter of u; do not belong to B; (1 < i < n).

We will use the following important property of the product of the idempotents
of FA(SLT N Ecom) to derive a normal form for the elements of F4(SLT N Ecom)-

Proposition 6.4. Let B, C be two idempotents of ﬁA(SLT N Ecom). Then BC =
D, where D =BUC.

Proof. Since BC is an iden~1p_oten'g of ﬁA(SLTﬂEcom) whose content is D =
B U C, by Proposition 6.2, BC = D. O
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Let 7 € F "A(SLT N Ecom). We say that « is in normal form if

T =ugBiuy ... Bpun

where ug,un € A*, u; € AT (1 <i<n-1), B,NB; =0 if i # j and the last
letter of u;-1 and the first letter of u; do not belong to B; (1 <i < m).
By Proposition 6.3, we have the following proposition.

Proposition 6.5. Any element 7 € F '4(SLT NEcom) can be written in normal
form.

Now, we show the uniqueness of the normal form for the elements of
F 'A(SLT NEcom). We denote by W the variety generated by all semigroups
of the form S(L), L belonging ATW, for any alphabet A. By Proposition 5.4,
W C SLT NEcom-

Proposition 6.6. Let 7 = ulélug ... E’num p = vlé’lm ... C’mvm be two
elements of ﬁA(SLT N Ecom) in normal form.
1. If s = ps for any S € W thenm =n, u; = v; (0 < i <n) and B; = C;
(1<i<n);
2. m=pifand only if m=n, u; =v; (0<17<n).

Proof. We suppose that 7g = pg for any S € W. Let L = ugBjuy...B}uny.
Since 7 is in normal form, by Remark 5.1, L is an elementary language. So, by
Proposition 5.4, S € W. Let A be the minimal automaton and let n: A* — S
be its transition morphism. A is the following automaton:

Bl Bz Bn
Ug U1 Un—1 Un
q0 q1 q2 gn

gn+1

Let k be such that s* is an idempotent of S for any s € S. For any
1 < 4 < n, we choose w; € AT such that (w;)alph = B;. Then, by Proposi-
tion 6.2, (wF)s = (w¥)s = (Bi)s. So, ms = (wowhuy ... wku,)s. We choose
likewise, for any 1 < j < m, a word z; € A" such that (z;)alph = C;. Then
ps = (voz¥vr... 2K vm)s.

By hypothesis, ms = pgs. It follows by definition of ng and pg, that
(wowfuy ... whu,)n = (vozkvy...2Ev,)n. By Lemma 5.3, the domain of the
transition generated by (ugwfu; ... wFu,)n is {go} and its image is {gn+1}. But
vozkvy ... 2% vy, is the label of a path from {go} to {gns1}. By Lemma 5.3, there
exists 1 < i < n such that (z1)alph = C1 C By, qo(von) = ¢; and go(vo2¥)n = q;.
So ug is a prefix of vg. Symmetrically, we can prove that vy is a prefix of uy,
so up = vp. This fact implies that ¢ = 1 and Cy C Bj. Symmetrically, we have
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also By € C;. Hence B; = C;. Repeating the same argument we obtain n = m,
u; =v; (0<i<n)and B; =C; (0 <i<n).

For item 2, let # = p. By Proposition 5.4, we have ng = pg for all S €¢ W.
Then, by item 1 of this proposition, m = n, u; = v; (0 < i < n) and B; = C;
(1<i<n). O

7. A COMBINATORIAL DESCRIPTION

We give in this section a combinatorial characterization of the languages
recognized by SLT NEcom-

By Proposition 5.4, W C SLT N E - By Theorem 2.3, to show that W =
SLT N Ecom, it is sufficient to prove the following proposition.

Proposition 7.1. Letn,p € ﬁA (SLT N Ecom) such that tg = ps for any S € W.
Then, m = p.

Proof. Let m = w1 Biusg . .. Bpu, and let p= v1C1v3 . .. Cmm be in normal form.
By Proposition 6.6, if ng = pg for any S € W, then m =n, u; = v; (0 <1i < n)
and B; = C; (1 <1< n) and hence 7 = p. O

The next theorem is a corollary of Proposition 7.1.
Theorem 7.2. W = SLT N Ecom-
So, by Eilenberg’s theorem, we have the following theorem.

Theorem 7.3. Let L C A*. Then L is recognized by SLT N Ecom if and only if
LeAtw.
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