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ON-LINE FINITE AUTOMATA FOR ADDITION
IN SOME NUMERATION SYSTEMS

CHRISTIANE FrROUGNY!

Abstract. We consider numeration systems where the base is a
negative integer, or a complex number which is a root of a negative
integer. We give parallel algorithms for addition in these numeration
systems, from which we derive on-line algorithms realized by finite
automata. A general construction relating addition in base 4 and ad-
dition in base 8™ is given. Results on addition in base 8 = /b, where
b is a relative integer, follow. We also show that addition in base the
golden ratio is computable by an on-line finite automaton, but is not
parallelizable.

1. INTRODUCTION

A positional numeration system is given by a base and by a set of digits. In
the most usual numeration systems, the base is an integer b > 2 and the digit set
is {0, ... ,b—1}. In order to represent complex numbers without separating the
real and the imaginary part, one can use a complex base. For instance, it is known
that every complex number can be expressed with base iv/2 and digit set {0,1}
(see [20]). For example, —3/2 — iv/2/2 = (101 - 11), /5. Recently there have been
several contributions to complex arithmetic [2,10,15,18,26,31].

Among the complex bases 8 that have been considered so far, the most studied
ones have the property that there is a power of 8 which is an integer, namely for
base 3 = iv/b, where b > 2 is an integer, 32 = —b, and for base § = =141, 3* = —4
[19,28]. In those systems, the digits are integers. We might also mention that some
authors have considered numeration systems with complex digits. For instance,
every complex number has a representation in base 2 using digit set {0,1,%,1+}
[27]. Herreros [18] has studied the representation of complex numbers using base
2 and digit set {0,1,(, ...,¢°%}, where (6 = 1. Robert [30] has considered base
iv/3 and digit set {0,1, (1 +1iv/3)/2}.
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In this work, we do not consider the question of the representability of the
complex plane, but we focus on the addition process. Addition of two numbers
in the classical b-ary numeration system, where b is an integer > 2, has a linear
time complexity. In order to save time, several solutions have been proposed.
A celebrated one is the Avizienis signed-digit representation [3], which consists
of changing the digit set. Instead of taking digits from the canonical digit set
{0, ... ,b— 1}, they are taken from a balanced set of the form {a, ... ,a}, where
@ denotes the digit —a, a being an integer such that /2 < a < b—1 (b has to
be > 3). Such a numeration system is redundant, that is to say, some numbers
may have several representations. This property allows one to perform addition in
constant time in parallel, because there is a limited carry propagation. A similar
algorithm for base 2 has been devised by Chow and Robertson [8] using digit set
{1,0,1}. Here addition is realized in parallel with a window of size 3. In terms of
automata theory, such functions are called local: a function is p-local if the value
of an output digit is determined through a window of size p.

On-line arithmetic is the performing of arithmetic operations in Most
Significant Digit First (MSDF) mode (that is, from left to right), digit serially
after a certain latency delay [12]. This allows the pipelining of different opera-
tions such as addition, multiplication and division. It is also appropriate for the
processing of real numbers having infinite expansions. It is well known that when
multiplying two real numbers, only the left part of the result is significant.

On-line multiplication uses parallel addition, and this allows one to have a
linear time algorithm for multiplication. It is then necessary to use a redundant
numeration system (see [32]).

In this paper, the finite state automata is our model of computability.
A function is computable by a finite automaton if it needs only a finite auxil-
iary storage memory, independent of the size of the data. In that setting, one
knows that addition of two integers in the classical b-ary system is computable
by a finite automaton but that squaring is not (see [11]). Actually, the natural
finite automaton one designs to perform addition processes numbers in the Least
Significant Digit First (LSDF) mode (that is, from right to left), and is called a
right subsequential automaton. Moreover, one input digit gives one output digit.

On-line finite automata have been introduced by Muller [25]. They are
sequential finite automata processing data in MSDF mode, and such that one
input digit gives one output digit, after a certain latency delay. They are a spe-
cial kind of left subsequential automata. The Avizienis and the Chow-Robertson
algorithms for parallel addition in integral base lead to the construction of on-line
finite automaton for addition (see [16,25]). There is a general result which says
that if a function is p-local, then it is computable by an on-line finite automaton
with delay p — 1. However, in this paper, we will always give an explicit construc-
tion of an on-line finite automaton realizing a local function, having less states
than the general one. '

Let us recall a result we shall use latter on: a function is said to have a bounded
delay if it is realized by a finite automaton such that on every loop, the input and



ON-LINE FINITE AUTOMATA FOR ADDITION... 81

the output have same length. If a function has a bounded delay and if it is left
(sub)sequential, then it is computable by an on-line finite automaton [16].

Parallel algorithms for addition in bases —2, iv/2, 2¢ and —1 + ¢ have been
given in [26]. Results on addition in bases —b, iv/b and —1 + 4 in connexion with
automata theory have been presented in [15]. Note that in the system defined by
Herreros, addition can be performed in parallel {10,18], and is computable by a
right subsequential finite automaton [31]. In the Robert’s system, addition is a
right subsequential function [31].

In this paper, we first consider addition in negative base, and we show that
properties similar to addition in the standard b-ary system are still satisfied. We
then show how algorithms for addition in base ivb can be deduced from those
in base —b. We give the full constructions because they explain the general case.
We then present a general result which says that if ¢ and i are two digit set
conversions, ¢ in base 8 and v in base v = ™, then if 9 is local, resp. computable
by an on-line automaton, resp. letter-to-letter right subsequential, so is ¢ (Th. 1).
Conversely, if ¢ is computable by a letter-to-letter finite automaton so is ¥, but
not on the same digit sets (Prop. 10).

From that we derive that, if b is an integer, |b| > 2, in base 8 = %/b, addition
on {0, ...,|b| — 1} is a right subsequential function. If |b| > 3,let D = {a, ... ,a}
where a = ||b]/2] + 1. Then addition in base 8 on D is a (m + 1)-local function
and it is computable by an on-line finite automaton with delay m. If |b] > 2 is
even, let @ = |b]/2 and D' = {a, ...,a}. Then addition in base 8 on D’ is a
(2m + 1)-local function and it is computable by an on-line finite automaton with
delay 2m. This applies in particular to base 8 = —1 L 1.

We then consider a base which is not a root of an integer, namely base 7, where
7 is the golden ratio. We give the explicit on-line finite automaton with delay 3
realizing addition in base 7 and digit set {0,1}. The same construction is valid
for the Fibonacci numeration system. Note that addition in those systems is not
computable in parallel.

2. PRELIMINARIES

2.1. Number representations

Let 3 be a real or complex number such that |3| > 1, and let A be a finite set
of real or complex digits. A B-representation of x with digits in A is a finite or
a right infinite sequence (zi)k<n with zx € A such that z = Y . % zp8*%. It is
denoted by

(B0 T1T g+ ). '
We will present the resuits for finite words, if the expansions are infinite the
constructions are similar. To perform addition in a given numeration system with
base 8 and digit set A, the process will always be the same: take two numbers
T =2Zp-1---%o and y = y,_1---yo such that z = Z;é ziBF, y = ZZ;S YO,
with zp and yi in A. In parallel, compute zx = zx + yx. Then z; is an element of
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B={c+d|c,de A},andz+y = ,7:;3 2,3%. Addition consists of transforming
the representation z,_1---29 of z +y on B into an equivalent one sp_14; - - So,

such that = +y = Y pCs " 818, with sy, € A.

2.2. WORDS AND AUTOMATA

Let us recall some definitions. More details can be found in [11]. An alphabet
A is a finite set. A finite sequence of elements of A is called a word, and the set
of words on A is the free monoid A*. The empty word is denoted by €. A factor
of a word w is a word f such that there exist words w’ and w” with w = w' fw".
When w' = ¢, f is said to be a prefiz of w, and when w"” = ¢, f is said to be a
suffiz of w. The prefix (resp. suffix) is strict when it is not equal to the entire
word w. The length of a word w = wy - - - w, with w; in A for 1 <7 < n is denoted
by |w| and is equal to n. By w™ is denoted the word obtained by concatenating w

- n times to itself. The set of words of length n (resp. < n) of A* is denoted by A™
(resp. AS™).

The set of infinite sequences or infinite words on A is denoted by AN. The
infinite word vvv - - - is denoted by v“.

An automaton over A, A = (Q,A,E,I,T), is a directed graph labelled by
elements of A; () is the set of states, I C @ is the set of initial states, T C Q
is the set of terminal states and E C Q X A x Q is the set of labelled edges.
If (p,a,q) € E, we write p — q. The automaton is finite if Q is finite. The
automaton A is deterministic if E is the graph of a (partial) function from @ x A
into @, and if there is a unique initial state. A subset H of A* is said to be
recognizable by a finite automaton if there exists a finite automaton A such that
H is equal to the set of labels of paths starting in an initial state and ending in a
terminal state. A subset K of AN is said to be recognizable by a finite automaton if
there exists a finite automaton A such that K is equal to the set of labels of infinite
paths starting in an initial state and going infinitely often through a terminal state
(Biichi acceptance condition, see [11]).

Let X and Y be two alphabets. A 2-tape automaton is an automaton over
the non-free monoid X* x Y*: A= (Q,X* x Y*,E,I,T) is a directed graph the
edges of which are labelled by elements of X* x Y*. Words of X* are referred to
as input words, words of Y* are referred to as output words. If (p,(f,9),q) € E,

we write p —]l% g. The automaton is finite if the set of edges E is finite (and
thus @ is finite). These finite 2-tape automata are also known as transducers.
A relation R of X* x Y* is said to be computable by a finite 2-tape automaton if
there exists a finite 2-tape automaton A such that R is equal to the set of labels
of paths starting in an initial state and ending in a terminal state. It is equivalent
to saying that R is a rational subset of X* x Y*. A function is computable by a
finite 2-tape automaton if its graph is computable by a finite 2-tape automaton.
These definitions extend to relations and functions of infinite words as above.

A 2-tape automaton A is said to be left sequential if edges are labelled by
elements of X x Y*, if the underlying input automaton obtained by taking the
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projection over X of the label of every edge is deterministic and if every state
is terminal (see [5]). A left subsequential 2-tape automaton is a left sequential
automaton 4 = (Q,X x Y* F,{q},w), where w is the terminal function w:
Q — Y*, whose value is concatenated to the output word corresponding to a
computation in A.

A 2-tape automaton A is said to be letter-to-letter if the edges are labelled by
couples of letters, that is, by elements of X x Y.

An on-line finite automaton with delay § is a particular left subsequential
automaton (see [16]): it is composed of a transient part, in which every path
of length § starting in the initial state 7¢ is of the form

io L5 4y 205 2l gy,
where a; € X, for 1 <1 < 4, and the only edge arriving in a state ig, ... , i5—1 is as
above, and of a synchronous part where edges are labelled by elements of X x Y.
This means that the automaton starts reading words of length < § outputting
nothing, and after that delay, outputs serially one digit for each input digit.

The same definition works for functions of infinite words, considering infinite
paths in A, but there is no terminal function w in that case.

All the automata considered so far work implicitly from left to right, that is
to say, words are processed from left to right, but one can define similarly right
automata processing words from right to left.

2.3. LOCAL FUNCTIONS AND ON-LINE AUTOMATA

The notion of local function comes from symbolic dynamics (see [4,23]), where it
is defined on biinfinite words and often called a sliding block code. The definition
on infinite words is the following one. A function p: XN — YN is said to be
p-local if there exist a positive integer p, a function @ from XP? to Y such that if
z = (z:)i>0 € XN and y = (y%:)i>0 € YV, then y = ¢(z) if and only if for every
i>0,y; = ®(z;---Ti4p—1). This means that the image of z by ¢ is obtained
through a sliding window of length p. The following result is folklore.

Fact 1. A p-local function is computable by an on-line finite automaton with

delay p— 1.

Proof. Let the set of states be @ = X<P~! and the initial state be . Edges

are of the form: for a € X, set-¢ EE) a, ford,---d; € Q@ withl <¢<p-2
®(dy---dp—

set dy--d; 25 dy---dia, and for dy---dy_y € Q, set dy -+ dp_y TGP

d2 s dp_la. O

In this paper the constructions of on-line automata associated with p-local
functions we give are different. Using the redundancy of representations, we can
construct on-line automata with the same delay p — 1, but having less states.

It is known that the underlying input automaton of any sequential automaton
realizing a p-local function is a p-local automaton, that is, the arrival state of any
path of length p is entirely determined by the label of the path (see [4]).
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One can define local functions of finite words (see [6,33]). A function ¢:
X* — Y* is said to be p-local if there exist nonnegative integer ! and r such
that r +1+1 = p, and a function ® from X? to Y such thatifx =z, ---z,, € X~
and y = y1---yn € Y*, then y = @(z) if and only if for every 1 <4 < n, y; =

®(zi_; - Titr), with the convention that, if at the borders z;_i, ... , Tx~1 are not
defined, ®(zy -+ - Tijgr) = ®(e- - €xk - - Titr), and similarly, if z;44, ..., 24, are
not defined, ®(z;—; - xz;) = ®(xi—;---zje---€). A p-local function can be com-

puted in parallel with a window of length p. It is both left and right
subsequential (see [33]).

Note that, when dealing with representation of numbers, one can always assume
that a representation is prefixed or suffixed by an adequate number of zeros. In
the sequel, we will always consider functions such that input and output have the
same length.

2.4. STANDARD b-ARY NUMBER SYSTEM

Let us recall some results on addition base b, where b is an integer > 2.

Proposition 1. 1) Addition in base B = b, b > 2, with digits in A = {0, ...,
b — 1}, is a letter-to-letter right subsequential function.

2) Suppose that b > 3, and let D = {a, ...,a} where a = |[b/2] + 1. Then
base b addition on D is a 2-local function, and is computable by an on-line finite
automaton with delay 1.

3) Suppose that b = 2a, a being an integer > 1, and let D = {a, ... ,a}. Then
base b addition on D is a 3-local function, and is computable by an on-line finite
automaton with delay 2.

1} The fact that addition is a right subsequential function can be found in [11].
2) That addition is a 2-local function is due to Avizienis [3]. For the on-line finite
automaton realizing addition in that case, see [25].

3) That addition for b = 2 is a 3-local function is in Chow and Robertson (8]. For
the construction of the on-line automaton, see [25] and [16].

3. NEGATIVE BASE NUMERATION SYSTEMS

Let 8 = —b, where b is an integer > 2. It is well known (see [20, 21, 24]} that
any real number can be represented without a sign in base —b with digits from
the canonical digit set A = {0, ... ,b— 1}. Integers have a unique representation
of the form dy - - - dg. We show that properties satisfied by base b addition are also
valid for base —b.

Proposition 2. Addition in base 8 = —b, b > 2, with digits in A = {0, ... ,b—1},
is a letter-to-letter right subsequential function.

Proof. As explained above in Section 2.1, we have to convert representations over
B = {0, ...,2b — 2} into equivalent representations over A. Number
representations are processed from right to left. We construct a right subsequential
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automaton A = (Q, Bx A, E, {go},w) as follows. The set of states is @ = {1,0,1}.
The name of a state indicates the value of the carry. The initial state is go = 0.

Let g be in @ and let z be in B. By the Euclidean division of ¢ + z by 8 = —b,
there exist unique s € A and ¢’ such that g+2z = —bg’+s. Since —1 < g+2z < 2b—1,
—2<q =(s—(q+2))/b <1 and thus ¢’ € Q. Hence one defines an edge

qf/—s>q'eE <=>_q+z:ﬁq'+s. (1)

The terminal function w is defined by w(0) = ¢, w(1) =1 and w(1) = 1(b — 1).

Let zp1---20 € B*and N = ZZ;& 2, B*. Starting in initial state go = 0, and
reading from right to left, we take the unique path

0% g % gy S g,

Since, for 0 < k < n—1, g +2x = Bqr4+1 + ar, we get N = ap +a18+--- +
@n—18""1 4 ¢,8". Thus the B-representation of N is w(gn)an—_1---ap € A*. O

Example 1. Let 8 = —2 and A = {0,1}. Here is the right subsequential
automaton realizing addition in this system®.

0/0,1/1

Let z = 11001, y = 11101, thus = + y = 22102. In the automaton, from right
to left,
ELSLLRT S

and w(1) = 11, thus z + y = 22102 = 1101010.
Remark 1. Addition in base —b with digits in A is not left subsequential.
Proof. Let us consider b = 2 and A = {0,1}. Let d be the left-distance defined by

02%1

d(v,w) = |v| +|w| -2 [vAw|
where v A w denotes the longest common prefix to v and w.

11 thank Paul Gastin for his set of macros Autograph.
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Let v = (01)"02 and w = (01)"*!. Then d(v,w) = 4. The conversion of v
on A is v/ = 1(10)"*!, and that of w is w’ = w. We have d(v',w’) = 4n + 5,
thus the left-distance between v’ and w’ becomes unbounded when n goes to
infinity, as the distance between v and w is bounded. There is a result in [9] which
says that, if a function ¢ is left subsequential, then it has the following property:
Vk >0, 3K > 0, d(v,w) < k = d(p(v), p(w)) < K. It implies that addition on
A cannot be realized by a left subsequential 2-tape automaton. |

We introduce another set of digits in order to obtain a redundant numeration
system, analogous to the Avizienis signed-digit representation [3]. Let a such
that /2 < a < b—1and let D = {@, ...,a}. Then every real number has
a representation in base —b with digits in D. The system is redundant because
|[D| = 2a+1 > b. We consider the smallest balanced digit sets allowing one to
perform addition in parallel.

Proposition 3. Let § = —b, where b is an integer > 3, and let D = {&, ... ,a}
where a = |b/2] + 1. Then base —b addition is a 2-local function. Addition is
computable by an on-line finite automaton with delay 1.

Proof. 1) Letz+y = ,_ . 5 zKB3*, with 2z € C = {(2a), ..., (2a)}. Write z on
the form z, = Bcg4+1 + 'rk, Wlth the following rules: if @ < 2z; < 2a, let cpq1 = 1
and 7y =2 — b if —2a <z < —a,let g1 =land rp = b+ 2. If |2 < a -1,
let cxy1 =0and ry = 2. Put sy =71+ ¢ for0< k<n-—1and s, =c¢,. Thus
z+y = Xpo suB*.

Ifa<z, <2, thena—-b<rg<2e—banda-b-1<s<2a—-b+1.
Since a < b—1, sy < a, and since 2a < b+ 1, s > —a, hence s € D. The case
—2a < z; < —a is symmetric, and the case |zx| < a — 1 is trivial. Thus sy, € D for
0 < k < n. Hence si is a function of zxzx_1, and addition is 2-local.

2) To avoid overflow, we assume that input words begin with a 0. Let 2 = 2z, € C
and let p(z) = (¢,7) = (cg+1,7x) as determined in the above algorithm. We
construct an on-line automaton £ = (Q,C x (D Ue), E, {go},w) with delay 1

realizing addition. Let K = {—a + 1, ...,a — 1}. The set of states of the
automaton is @ = {¢} U K, and the initial state is go = £. Synchronous edges are
z/ctq

defined by: for any ¢ € K and for any z € C, ¢ = r in E, with {¢,r) = p(z).

Since |c] < 1and |l <a—1,¢c+¢q € D and r € K. There is a transient edge

62/—€>0

All edges of L satisfy the following condition
z/d
g—rek < fg+z=0d+r, (2)
that is to say, the two words qz and dr have the same numerical value in base 3.
The terminal function is defined by w(q) = g for any q € Q.
Let zp_1---29 € C* and N = Zk -0 zkﬂ Starting in initial state gg = €, and
reading from left to right, we take the unique path

0/e zn__l/a,n Zn—2/@n-1 z0/a1

e—0 qr  —*  Qn-1 — Qn-
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Let w(gn) = ao. By (2) we get Sp—p z8* = Si_, axB*, with ay € D, and
addition is realized by L. _

Note that the automaton £ has 2a states, compare with the on-line automaton
constructed in Fact 1 which has |C| + 1 = 4a + 2 states. d

Example 2. Let 3 = —3 and let D = {2, ... ,2}. Below is the on-line finite
automaton with delay 1 realizing addition in this system.

0/0,3/1,3/1  1/1,3/2,4/0

and w(1) =1, thus ¢ +y = 1101.

In the case that 8 = —2, the previous algorithm does not apply. We give an
algorithm for that case as well as for any even b, which is analogous to the Chow
and Robertson algorithm for base 2. '

Proposition 4. Let 8 = —b, where b = 2a, a being an integer > 1, and let
D = {a, ...,a}. Then base —b addition is a 3-local function and is computable
by an on-line finite automaton with delay 2.

Proof. 1) Let z+y = ZZ;; 2%, with 2, € C = {b,--- , b}, and let zx = Becp+1+7k
be defined by:

Ifa+1<zy<bletckyy=1landry =25 —b;if b< 2z < —a—1,let cpy1 =1
and rp = b+ 2.

If z = a and if 2;,_; < O then let cx47 = 1 and rx = @, else let cxy; = 0 and
T — Q.

If 2z = —a and if zx_; > 0 then let cx+1 = 1 and rx = a, else let cxy1 = 0 and
T = —Qa.

If |2k <a—1,let ¢y = 0 and 7y, = 2.
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Let sy =rx +cx for 0 <k <n—1and s, =c,. Clearly z+y =3 _, sx8°. We
have to show that sy € D. When a+ 1 < |z,| < b, whatever the value of z;_, is,
we get |7x| < a —1 and |cg] < 1, thus |sg| < a.

If 2 = a, and if 253 < O then rp, = —a and ¢x = 0 or 1, thus sy = —a or —a+1
and thus belongs to D. If z; = a and 251 > 0, then 7, = a and ¢y = —1 or 0,
and so sy, = a — 1 or a. The case 2z = —a is symmetric.

If |2x] < a—1, 7, = 2z and |cx| < 1, thus s, € D. Smce sk is a function of
2k Zk—-12k—2, addltlon is a 3-local function.

2) We construct an on-line finite automaton £ = (Q,C x (D Ue), E, {go},w) with
delay 2 realizing addition. Input words begin with a 0. If z = 2; € C is such that
a+1< |z <bor |z < a—1, we define p(z) = (¢,7) = (¢k+1, k) as in the above
algorithm. If |z| = a we put p(2) = (¢,7) = (0, 2).

Let K = {(d,e) € Dx D |ifd =athene > 0 and if d = —a then e <
0}\ {(1,a),(1,a)}. These two couples are removed because they are equivalent to
(0,a) and (0, a) respectively, since b = 2a. The set of states of the automaton is
Q = {(g,€), (¢,0)} U K. The initial state is go = (¢, ). The synchronous part of £
is defined this way: let (d,e) € K.

— If le] < @ — 1, then for each z € C, there is an edge (d, e) =4 (¢ + e,r) where
(¢,r) = p(z). Since le] <a—1,|c+e|<a. Ifct+e=a,thene=a—1landc=1,
thus r > 0, and (c+e,7) € K (the symmetric case is similar).

—Ife=aand z <0, put (d,a) gy (¢ — a,r) where (¢,7) = p(2). Since z < 0,

c=0o0r1,and c—a € D. We know that d # —a, thus d—1 € D. If ¢ =0, then
r=2z<0, thus (c—a,r) € K.

—Ife=aand z > 0, put (d,a) =4 (¢ + a,7) where {¢,7) = p(2). In that case
c=0o0r —1,and thus c+a € D. If c=0 then r = z > 0, thus (c + a,7) € K.

z/ 41

— The case e = —a is symmetric: if z > 0, put (d,a) — (¢ + a,r) where

(c,r) = p(2). If 2 <0, put (d,a) i/—> (¢ — a,r) where (¢, 7) = p(2).
The transient part of L is defined by:
— (g,8) o, (g,0), and for z € C, there is an edge (g,0) A (e, ) where (¢,7) =

p(z).

Hence, for any edge in £

(d, f) (e,g)eE — B2+ pBf+z=0F%c+PBe+g (3)

i.e. the two words dfz and zeg have the same numerical value in base 8. The
terminal function is defined by w((d, e)) = de for (d,e) € Q.

Let z,_1---20 € C* and N = Zk—o 2%, Starting in initial state go = (&, ¢€),
we take the unique path

(€,6) 25 (£,0) 24 (dy, f2) 225 - (doers Frr) LT (da, f).
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Let w((dn, fn)) = a1a0. By (3), Sor—g z8* = Sr_oarB*, with ax € D, and
addition in base —b with digit set D is realized by the on-line automaton £, with
4a2 + 1 states. The construction of Fact 1 gives an automaton with 16a2 + 12a + 3
states. O

Corollary 1. The digit set conversion in base —b between numbers written with
digits in the canonical digit set A= {0, ... ,b— 1} into their representation with
digits in D = {a, ...,a}, witha = |b/2] +1, or b= 2a, is computable in parallel
in constant time.

Proof. Since A C C, the result follows. O

Remark 2. The inverse conversion, from D to A, cannot be computed on-line,
but is right subsequential.

In the same spirit, in [1] it is shown that conversion between numbers written
in base b, b integer > 2, with digit set A = {0, ... ,b— 1} into their representation
in base —b with the same digit set is right subsequential. We now show how to
convert directly a classical expansion in base b with digit set A = {0, ... ,b— 1}
into an equivalent representation in base —b and digit set D = {a, ..., a}, where
a+1<b<2a.

Proposition 5. Let b be an integer > 2. The conversion from base b and digit set
A =H0, ...,b—1} into base —b and digit set D = {a, ... ,a}, withb/2 < a < b-1,
s a right subsequential function.

Proof. The set of states of the automaton is Q = {¢,0,1,1}. The initial state is
€. Let z € A. Edges are defined by:

if0<z<alete Z50;ifat+1<z<b—1,lete 5°T;
if0<z<alet 0 S e;ifa+1<z<b—1,let 02571,

ifo<z<a—1,let 1728 0 ifa<z<b—1,let 178" 1,

f0<z<a-1let 175 e ifa<z<b—1let 175" 1
The terminal function w is given by w(e) = w(0) = ¢, w(1) =1, and w(1) = 1. It
is straightforward to check that, since a + 1 < b < 2a, the output is in D. O

Note that the inverse conversion is also right subsequential.

4. BASE 8 =ivb

The interest of choosing a complex base and integral digits to represent complex
numbers is that computations are handled in a compact way, as when using an
integral base for real number computations. ’

Let 8 = iv/b, where b is an integer > 2. Any complex number is representable
in base (3 with digits in the canonical digit set A = {0, ... ,b—1} (see [17,19,20]).
If b = ¢? is a square then every Gaussian integer has a unique finite representation
of the form ag---ap-a_1, a; € A.
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Let j be an integer > 0, possibly infinite, and let n > 0. Since 8% = —b, we
have

(a2n cer@Q a1 a—Qj)ﬂ = (a2na2n—2 Qo G2 “a—2j)—b

+ i\/g(a2n—1a2n—3 treQ1 Q-1 a—2j+1)—b-

Thus, if z =z + iy € C, z and y in R, the B-representation of z can be obtained
by intertwinning the —b-representation of z and the —b-representation of y/ Vb.

Base 3 = —iv/b satisfies the same properties. We treat only the case 8 = iv/b.
Most studied cases are 8 = 2i and A = {0, ..., 3}, strongly related to base —4,
and 8 = iv/2 and A = {0,1} ( [15,20,21,26]).

We now show how properties satisfied by base —b addition can be extended to

base iv/b.

Proposition 6. Addition in base 8 = iv/b, b > 2, with digits in A = {0, ... ,b—1}
s a letter-to-letter right subsequential function.

Proof. Since 32 = —b, the automaton will be deduced from the right subsequential
automaton A = (Q, B x A, E,{qo},w) realizing addition in base —b (Prop. 2).

Let B = (S,B x A, F,{so},0) be defined as follows. The set of states is S =
Q@ X @ and the initial state is sg = (go, go)- The set of edges F' is defined by

F={pa B n)a5¢cE pecq}

The terminal function in a state (p, ¢) is defined by the S-expansion of Gp+ g, that
is to say, 0((0,0)) = ¢, 0((0,1)) = 1, 0((170)) = 10, 0((111)) = 11, U((lii)) =
11(b— 1), 0((1,1)) = 10(b - 1)1, o((1,1)) = 11(b — 1)(b—1).

The automaton B is right subsequential (and letter-to-letter). Take a word
Zon—1°+-20 € B* and let Z = Zk o zkﬂ There is a path in B

z2/az 22— 2/azn 2

/a /a
(g0, 20) 20 (g1, 90) A (p1,q1) — (gn,Pn—1)

an—l/a2n~l
25

e (pn—l, qn—l)
(pn: qn)
if and only if there is in A a path

zo/ao z2/az za/aa 2Z2n—2/02n—2

o — Q1 —> Q2 — **"Qn-1" — dn

and a path

z1/a1 z3/a3 z5/as Zan—1/G2n-1
0 —> P —> P2 — ' Pn-1 — Pn-

Since g,02n_2a2n_4 - -a2a0 i the —b-expansion of EZ;; 2o6(—b)% and ppazn—1
. . -1

G2n-3 - - - a3a1 is the —b-expansion of Y} o Zop+1(—b)*, and o ((Pn, qn)) = BPn+an,

we get that pngnaan—1G2on—2---aiap is the B-expansion of Z. Thus the right

subsequential automaton B realizes addition in base 8 = iv/b. U
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Addition in base ivb and digit set A cannot be computed on-line: consider
(0001)"0002 and (0001)™0001 (see Rem. 1). Similarly to negative base —b, we
consider digit sets for which addition can be parallelizable.

Proposition 7. Let 8 = iv/b, where b is an integer > 3, let a = |b/2| + 1 and
let D ={a,--- ,a}. Then base 8 = iVb addition is a 3-local function. Addition is
computable by an on-line finite automaton with delay 2.

Proof. 1) Let z € C = {(2a), -+ ,(2a)} and write zx = B%cr42+ 7k = (—b)ckt2 +
Tk, as in Proposition 3:
ifa< 2z <2a,let cppo=1and ry = 2 — b, if —2a < 2z < —a, let cg42 =1 and
rp = b+ 2, if |zk] < a—1, let cxy2 = 0 and 7, = 2¢. In any case, |cx| < 1 and
rl <b—a<a-1.

Let s =g +cp for 0 < k <m—1, s = Cn, Spt1 = Cn+1, and Sp42 = Cpy2.
We have z +y = Z?;Loz s,B8% with |sx| < a. Since si is a function of zx and zj_2,
addition is 3-local.

2) To avoid overflow, input words begin with 00. Recall that the on-line automaton
L = (KUe,Cx(DUg), E,{c},w), where K = {—a+1, ... ,a—1}, realizes addition
in base —b with digit set D, see Proposition 3.

We construct an on-line automaton with delay 2, M = (S, Cx (DUe), F,{so}, o)
as follows. Let the set of states be S = {(g,¢), (¢,0)} U (K x K), the initial state
be so = (e,€). The synchronous transitions of M are defined this way: for any p
and ¢ in K,

z2/q+c

z@)c(p,r)EF <> q — reE.

(¢,p)
The transient part is (g, ) s (€,0) and (g,0) o (0,0). The terminal function
is o(g,p) = gp for (g,p) € S. Note that for any edge in M
(0,0) 3 (¢,p)eF < Bq+Pp+z=Fz+pd +7 (4)
i.e. the two words gpz and z¢'p’ have the same numerical value in base 3.

Let 29120 € C* and Z = Eizgl zi3%. There is a path in M

(&,6) 25 (6,0) 25 (0,0) 2%+ (0, gp) *2A
(Pr1,0n-1) 225 (@a-1,P0) L% (pnrn)
if and only if there is in £ a path

0/e . zan_2/a2n Zan—a/Q2n—2 zo/az

e—0 — 1 — c Qn—1 — gn
and a path
0/e . zan—1/@2n41 z2n—3/@2n-1 z1/as3
e—20 — — “e Dpn—1 — Dn-
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Letting ag = ¢» and a; = pn, we have that 373 zox(—b)¥ = S7_; azk(—b)¥,
Yo zoks1(—b)* = _yazkt1(—b)* and thus the representation of Z on the
alphabet D is a2n+202n+1 " * " A10Q- O

‘We now consider the case where b is even.

Proposition 8. Let 8 = ivb, where b > 2 is even, let a = b/2 and let D =
{a, ...,a}. Then base 8 = iVb addition is a 5-local function. Addition is com-
putable by an on-line finite automaton with delay 4.

Proof. 1) For z € C = {=b, ... ,b} let zx = B%cr42 + 1k = (=b)Ckt2 + Tk, as in

Proposition 4:

ifa4+1< 2, <2a,let cpyo =1and rg = 2z — b,

if —2a < zx < —a—1,let cxy2 =1 and rp, = b+ 2k,

if zx = a and if 2;_3 < 0, let cx42 = 1 and 7, = @ else let cxy2 = 0 and 7y = a,

if zx =@ and if zx_3 > 0, let cx42 = 1 and 7, = a else let cg42 = 0 and 7 = a,

if |zk] < a—1, let ¢y = 0 and g = 2.

Let sy =rg +ceprfor 0 <k <n-—1, s, =cp, and spy1 = Ccpy1- Thenz +y =

Z?:OI skB%. That sy belongs to D is proved in Proposition 4. Since sy, is a function

of zx, zk—2 and zx_4, addition is a 5-local function.

2) Consider words with digits in C, beginning with 00. Let £ = (Q,C x (D U

€), E,{(g,¢)}, w) be the on-line finite automaton with delay 2 realizing addition

on D in base —b with K = {(d,e) e Dx D |ifd=athene>0andifd = —a

then e < 0} \ {(1,a),(1,a)} and Q = {(¢,¢), (¢,0)} U K (Prop. 4). We construct

an on-line automaton with delay 4, M = (S,C x (D Ue), F,{so},0) as follows.
Let us define the shuffle of two words by (d, f) wu (e, g) = (d, e, f,g). Note that

this is not the general shuffle product, but the internal shuffle product (see [11]).

Let K ui K = {(d,f) w(e,g9) | (df) € K, (e,g9) € K}. Let the set of states

be S = {(g,¢) wi (¢,€); (g,€) Ly (£,0); (¢,0) i (6,0)} U {(¢,0) u (c,7) | (¢,7) €

{-1,0,1} x D} U (K ws K) and the initial state be so = (¢,€) ru (¢,€). The

synchronous transitions of M are defined this way: let (d, f) wi(e,9) € K w K,

(A ) (e q) 25 (e,9) wu(d, f) e F < (d,f) 3 (d,f)€E

The transient part of M is: (g,€) w (g,¢) o5 (e,€) i (5,0) and (e,e) wu
(g,0) AN (g,0) L (g,0). For z € C, let p(z) = (¢,r) € {—1,0,1} x D such that
z = [2c+r. We define edges (¢,0) Lu (¢,0) 2 (€,0) Lu(e,r) where (¢,7) = p(2);

for 2/ € C, (g,0)wu(c,r) 2/ (e,7) (', ") where (/,7') = p(2).
Note that for any edge in M

(d,f)u—'(e,g)fg(d',f')w(el,gl)EF — B'd+ e+ B f+Bg+2z (5)
:,64.’E+,83d’+,32€,+,6f,+g,

i.e. the two words defgz and zd'e' f'g’ have the same numerical value in base (.



ON-LINE FINITE AUTOMATA FOR ADDITION... 93

The terminal function is o((d, f) L (e 9))=defg for (d, f)ui(e,g) € S.
Let zon_1---20 € C* and Z = Zk o ! 2&8%. There is a path in M

(,) i (e,8) L5 (6,0) L (6,0) L5 (6,0) s (6, 0) =¥ (6,0 s (dn, ) ¥

(d, f1) o (e1, 1) 2" "LE™ (er, g1) L (da, fo) 287 ..

z1/as.

(en 1y 9n— I)U—’(dn lyfn 1) (dn lafn l)LU(enagn) 7-0/0'4 (envgn)'—u(dn;fn)

_if and only if there is in £ a path

Q Zop—2/€ Zop—a/Gon z 4
(e.6) 25 (6,0) *22¥° (dy, f2) 25" - (dnry Fro1) L5 (dny )
and a path

Z2n— 1/6 22n—3/Q2n+1 21/a5
n _} R

(e,6) 25 (¢, 0) (€ns gn)-

(e1,41) < (en-1,9n-1) —
Letting a3z = e,, ag = dyn, a1 = g, and ag = f,, we have that ZZ;; 29 (=b)* =
> ko ask(—b)k, Z;g 2op4+1(—b)F = > r—o azk+1(—b)* and thus the representa-
tion of Z on the alphabet D is aany102n - - - a100. O

Corollary 2. The digit set conversion in base 8 = iv/b between numbers written
with digits in the canonical digit set A= {0, ... ,b— 1} into their representation
with digits in D = {a, ... ,a}, whith a = |b/2} + 1, or b = 2a, is computable in
parallel in constant time.

Remark 3. The inverse conversion, from D to A cannot be computed on-line,
but it is a right subsequential function.

5. A GENERALIZATION

We now consider two complex bases § and -« with the property that, for some
naturalm > 0, f™ = v. Let £ = (Zpm—1Tnm—2 - - - To)g be a representation in base
$ on a certain alphabet X of digits of a number Z = }"_; <,.m—1 TkB" (it is always
possible to suppose that representations have length a multiple of m by padding
with some zeroes). Let, for 0 < j < m — 1, z@ = (Tmk+j)o<k<n—1. Then obvi-
ously z = iy, (z(m=D, z(m=2) 21 2 where Lii,, denotes the m-shuffle?
of m words of same length. Hence (Zpm-1ZTnm—2---2o0)g = B™ Hz(™ V), +
ﬂm_z(w(m_z))v +ooet ,3(:1:(1))7 + (*77(0))7'

First we show a result on automata, which is more or less folklore, but we will
use latter on the construction given in its proof. Let L C A*, and denote by L*-™

2In Section 4, pLLiq stands for LLis (p, g).
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the set of m-shuffles of elements of L of same length

Uy 0,0 0 1,1 1 m—1, m—1 m—1y __
L m—{L_l_Jm (UOvl"'Un—lvaUl"'vn—lv R U v )_

n—1
0,,1 m—1,0,1 0 1 m—1 Jod J
VoUg ** Vg VIVL Vp_1VUp_qt Upoy |20, vhuy v

€Lfor0<j<m-1}.
Proposition 9. If L is recognizable by a finite automaton, so is L*“™.
Proof. Let A= (Q,A, E,I,T) be a finite automaton recognizing L, and let B =
(S,A,F,J,U) as follows: § =Q*™, J=TI"", U =T, and there is an edge

Wim (P05 -+, Pm—1) 5, (1) -+ s Pm—1,9) € F < po s q€E. (6)

So there exist a path in B
1y Yo _ v _
Liim (qga e ’qu 1) —OH—UM (qé: e ,q('r)n 15Q?) —l)u—lm (an ’qz)'n l’q(l)’q})

3
j m—1 0 j—1y Yk=1 J+1 m—1 0 j
AR =T (qk_la cee Q1 4k 7Qi ) ?LLm (qk_la cee s Qr_1 9k aqi)

- o\ Uny -
cim (@ dns < dn 2 T wm (g, <)

if and only if for each 0 < 7 < m — 1 there is a path in A
UL RN R S
Q=@ =G 4
Hence L™ is recognized by B. O

Recall the notations: let £ = Zpm—1 - 2o be a B-representation on X of Z =
Zogkgnm—l ziB*, and let, for 0 < j < m — 1, z() = (Zmk+j)o<k<n—1. Let
Y = Ynm—1-- Yo be a (-representation on Y of Z, and let, for 0 < j < m — 1,
y9) = (Ymk+5)o<k<n—1-

Theorem 1. Let X andY be two finite alphabets of digits. Let p: X* — Y™ be
a digit set conversion in base B and let ¥: X* — Y™ be a digit set conversion in
base v = 8™ such that

y =) == y@ =), for0<j<m-1.

— If ¢ is p-local then ¢ is (p — 1)m + 1-local.

— If ¢ is computable by a letter-to-letter finite automaton, so is .

— If 2 is computable by an on-line finite automaton with delay &, then ¢ is
computable by an on-line finite automaton with delay md.

-— If ¢ is letter-to-letter right subsequential, so is .
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Proof. 1) Suppose that 9 is p-local: there exist [ and r such that p =1+ 7+ 1
and ¥: X? Y such that foreach 0 < j<m~1and 0 <k <n—1, ymit; =
U(Z (k1) 45 Tm(k+i41)47 " Tm(k—r)4j)- Hence Ymiy; is determined through a
window containing %, (x4i)+; *** Tm(k—r)+; Of length (»p — 1)m + 1, and ¢ is a
(p — 1)m + 1-local function.

2) Suppose that ¥ is computable by a letter-to-letter finite automaton A = (Q, X x
Y, E,I,T). By the same construction as in the proof of Proposition 9, we define a
letter-to-letter finite automaton B = (S, X xY, F, J,U), with § = Q-*™, J = I'"*'m,
U =T, and edges are defined as in equation (6).

Let £ = Zpm-1--"20 € X* and ¥y = ¢(T) = Ynm-1"--Yo € Y*. Since
y9) = ) for 0 < j < m—1, (z9,y) is the label of a path recognized
by A. That B recognizes @ is proved as in Proposition 9.

3) Suppose that 1 is computable by an on-line finite automaton A = (Q,X x
(Y Ue), E,qo,w) with delay §, where w: Q — Y* is a partial terminal func-
tion. By the same construction as above, we define a letter-to-letter finite au-
tomaton B = (S, X x (Y Ue), F,sg,0), with S = Q"™ so =im (g0, --- ,40),
o(wim (Poy -+, Pm—1)) =m (W(Do), - .. ,w(Pm—1)) for states p; € Q such that
w(p;) is defined. Edges are defined as in equation (6). Clearly, B is left subse-
quential. Moreover, if A has delay §, every path of length md in B is labelled by
couples belonging to X X g, so B is on-line with delay mé.

4) Suppose now that 4 is recognized by a letter-to-letter right subsequential au-
tomaton A. The same construction as in 3) can be used, with the only change on
the definition of edges, that is, equation (6) is replaced by

Wiy (Do, - -+ sPm—1) —Hlim (§,P1, -« sPm—2) EF <= pm_1 —> g€ E. (7)

O

One can ask about the converse problem: are properties satisfied by base
transferable to base v = (™7 The answer is well-known for standard num-
ber systems: digits are to be grouped by blocks of length m. More generally,
let £ = Zpm_1Tnm—2---To & word of length nm in X*. It can be written as
z =zl 20 where, for 0 <k <n—1, 28 = 2 1) 1Bkt 1)m—2 * * Thom 18
the k-th block of length m of z (from the right). Denote by m(z!*!) the value in base
B of this word, i.e. m(z*) = Tkt 1)m—18" "1+ - -+ Zpm, and put £ = 7(z¥). Let
Xm = {m(dm-1---do) | d; € X for 0 < j <m —1}. Then & € X,,. Analogously,
put xx = 7(y¥) € V..

Proposition 10. Let X and Y be two finite alphabets of digits, and let p: X* —
Y™ be a digit set conversion in base 3. Let : X}, — Y. be a digit set conversion
in base vy = B™ defined by

Xn—1"""X0 = d)(gn—l o EO) < Ynm—1"""Yo = (p(xnm——l Tt :Bo).

— If ¢ is g-local with ¢ = (p — 1)m + 1 then ¥ is p-local.
— If ¢ is computable by a letter-to-letter finite automaton, so is 1.
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Proof. 1) Let y = ¢(x), and suppose that ¢ is g-local: then ¥y is determined by a
window of length ¢. Hence a factor of length m, vy - - - Yx—m+1, is determined by
a window of length ¢ +m — 1. It is necessary that ¢ + m — 1 be a multiple of m to
have 1 a p-local function for some p, so g+ m —1=pm, and g=m(p— 1)+ 1.
2) Suppose that @ is computable by a letter-to-letter finite automaton B = (@, X x
Y, F,I,T) We define a letter-to-letter finite automaton A = (Q, X, X Y, E, I, T):
let £ = m(zm-1-"-20) € X and x = 7(Ym—1--Y0) € Yrn. Then

q X qJ € E «— qmm_—l/—yf"-l g R g X ¢ e B.

O

Corollary 3. If ¢ is computable by an on-line finite automaton with delay mé
(resp. is letter-to-letter right subsequential) and if every element of X, has a
unique 3-representation on X, then ¢ is computable by an on-line finite automaton
with delay § (resp. is letter-to-letter right subsequential).

In general, the representation on X is ambiguous. However, suppose that on Y
every element has a unique (-representation, and that ¢ is a letter-to-letter right
subsequential function satisfying a relation like equation (1), then % is also letter-
to-letter right subsequential: suppose that, in B there are two paths of length
m ,

gL g Y gy T g
and
Wi wfus e

such that m(Zm-1 -+ To) = T(Um—1---vo) = €. By equation (1), we get that

Etg=zmaf" '+ 20+ q=B"¢ +ym-18"""+ -+ 10

§+g=vma1f" T+ v+ =0T + w17+ wo.

Since the S-representation on Y is unique, p’ = ¢', and yg = wo, --. , Ym-1 =
Wm—1, hence, letting x = w(ym—1---yo), there is a unique edge in A with input
label & ’ .

g

and A is right subsequential.
6. APPLICATIONS
Results on base 8 = iv/b presented in Section 4 are of course a corollary of

Theorem 1 with m = 2 and v = —b. The same results hold true for base —iv/b.
Here we consider other roots than square ones.
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6.1. BASE f=—-1+1

Let us first recall some results on base 8 = —b + 4, where b is an integer > 1.
It is known [19,28] that any complex number is representable in base 8 = —b=x 1
with A = {0, ... ,b?} for canonical digit set. Every Gaussian integer has a unique
representation of the form ag, - - - ag, with a; € A. We recall the following result [31]:
Addition in base § = —b + i, with digits in A = {0, ... ,b?}, is a letter-to-letter
right subsequential function.

Remark that (—1 £ i)* = —4, but that for any b > 2, there is no integer k # 0
such that (—b £ i)* is an integer.

Proposition 11. 1) On digit set D = {3, ... ,3}, addition in base § = —1%1i is
a 5-local function, and it is computable by an on-line finite automaton with delay
4

2) On digit set D' = {2, ... ,2}, addition in base 3 = —1 %1 is a 9-local function,
and it is computable by an on-line finite automaton with delay 8.

Proof. 1) It is a consequence of Proposition 3 and of Theorem 1 with v = —4 and
m = 4.
2) It is a consequence of Proposition 4 and of Theorem 1. O

Note that, since in Theorem 1 digit sets in base 8 and in base v must be the
same, we cannot say anything about addition in base 8 = —1 £ 17 on the minimally
redundant digit set {1,0,1}.

Remark 4. Conversion in base —1 + ¢ between digit set D = {3, ...,3} or
D'=1{2, ...,2} and A = {0,1} is not on-line computable, but is computable by
a right subsequential automaton.

In reference [1] it is shown how to obtain the (—1 + ¢)-representation of a
Gaussian integer from the 2-representation of its real and imaginary part by means
of a right subsequential automaton.

6.2. BASE 8= /b

Number representation in base 2 = /2 has been studied by Kérmendi in [22].

More generally, let b be an integer, |b] > 2, and let m be a positive integer.
Then, regardless of the problem of which sets can be represented in base 3, the
following result is a simple corollary of Propositions 1-4 and Theorem 1.

Proposition 12. Let b in Z such that |b| > 2, and let 8 = ¥/b.

1) Addition in base B on {0, ...,|b] — 1} is a letter-to-letter right subsequential
function.
2) If |b| > 3, let D = {a, ...,a} where a = [|b|/2] + 1. Then addition in base

B on D is a (m + 1)-local function. Addition is computable by an on-line finite
automaton with delay m.

3) If |b] > 2 is even, let a = |b|/2 and D = {a, ... ,a}. Then addition in base
B on D is a (2m + 1)-local function. Addition is computable by an on-line finite
automaton with delay 2m.
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7. GOLDEN RATIO BASE

This section presents results on numeration systems which are of a different
kind: there is no power of the base which is an integer. Nevertheless, we think they
might be of interest, because they give an example where addition is computable
by an on-line finite automaton, but is not local.

Let 3 > 1 be a real number. Any real number z € [0, 1] can be represented in

base B by the following greedy algorithm [29]:
Let 1 = |Bz) and let 7y = {Bz} be the fractional part. Then iterate for k > 2,
zk = |Bri—1] and 1y = {Brir—1}. Thus z = Y, zxB~F, where the digits z) are
elements of the canonical alphabet A = {0, ... ,|3]}if B¢ N, A={0, ...,8-1}
otherwisé. The sequence (zx)r>1 is called the (-ezpansion of z. When § ¢ N,
a number x may have several different (-representations on A: this system is
naturally redundant. The B-expansion obtained by the greedy algorithm is the
greatest one in the lexicographic ordering.

Here we focus on numbers 8 which are defined as follows: § is the dominant
root of an equation of the form

Xm—gX™ 1l _gX™ 2 ...—aX—-b

where a > b > 1 are integers, and m > 2. Such a root is a real number > 1. The
numeration systems defined by bases of that kind are called confluent numeration

systems. The canonical alphabet is then equal to A = {0, ...,a}. The most
studied case is the golden ratio 7 = (1 +v5)/2, withm =2, a =b=1.
We have proved in [13] that addition on A = {0, ... ,a} in a confluent numer-

ation system is left sequential®. Moreover it has a bounded delay — it is realized
by an automaton having all its loops letter-to-letter [14] — so by the result of [16]
quoted in the introduction, it is then computable by an on-line finite automaton.
We present here a direct construction of the on-line automaton for base 7.

Proposition 13. In base 7 = (1+v/5)/2, addition on {0,1} is computable by an
on-line finite automaton with delay 3.

Proof. Input words start with 00. We define an on-line finite automaton £ =

(@,{0,1,2} x ({0,1} Ue), E, {e}). The transient part of £ is of the form

e Y5 0 25 00 and 00 25 000; 00 /5 001; 00 2/5 002.

In the synchronous part of £ edges must satisfy the property

d
518983 —/—e> titots € E <= 17 L 4+ 897 2+ 537 2 +dr?

=er Tt ter tgr ! (8)

and for any state s;8953 € Q, 5171 4 so772 + 53773 € [0,1[. Edges are the
following ones:

3The result of addition belongs to the alphabet A, but is not the greedy 3-expansion.
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— for d € {0,1,2}, 000 ¥/ 00d

— 001 %% 010, o001 2% 100, o001 2% 101

— 002 28 111; 002 243 0oo; 002 275 001

— for d € {0,1,2}, 100 %3 00d

— 101 Y2 010, 101 24 100; 101 23 101
0/0 1/0 2/1 =
— 010 %% 100; 010 2% 101; 010 2% 012
— o012 %% 011, o012 2% 010, 01223 100
12 112 24 010, 112 25 100
— 011 %% 001; 011 2% 002; 017 23 172
- 0/1 - 1/1 —2/1 -
— 1l o001, 111 4 002, 117 24 112 0

The on-line automaton £ is not a local automaton, since it has two loops with
same input label

010 2% 101 *4 010
1/1 0/0

111 - 002 — 111.
In fact, we can prove the following.

Proposition 14. Addition in base T on alphabet {0,1} is not a local function.

Proof. Let us suppose that addition ¢: {0,1,2}N — {0,1}" in base 7 is a p-local
function for some p. Thus there exists a function @ : {0,1,2}? — {0, 1} such that
if £ = (2:)i>1 € {0,1,2}N and y = (y:)i>1 € {0,1}", then y = o(z) if and only if
for every k > 0, y = ®(zk - - - Thyp—1)- Since ®(1?) can take only value 0 or 1, for
n large enough, the image of a factor containing only n ones is in {0,1}*0!{0,1}*
or in {0,1}*140,1}*, for some large I. Since the word 0001™0“ has no equivalent
T-representation containing a large factor of zeroes, ®(1?) must be equal to 1. On
the other hand, the word 0021"20“ has no equivalent T-representation on {0,1}
with a large factor entirely composed of ones. Therefore addition in base T is not
local on {0,1}. O

Actually, it is possible to show that addition in base 7 is 12-local on the alphabet
{0,1, ... ,12} (see [7]).

These results are also valid for linear numeration systems defined by a linearly
recurrent sequence U = (u,)n>o of the form

Un+m = QUn4m—1 + AQUn4m-—-2 +--- 4+ AQUn41 + bun, n > 0

=1 u=(a+1) 1<i<m-1
where a > b > 1 are integers, and m > 2. Every positive integer N has a
representation in this system on the alphabet A = {0, ... ,a}, meaning that one
can write N as N = d,un+- - -+doug, with digits di, € A, using a greedy algorithm:
Let n such that u, < N < up41; let d, be the quotient of the division of N by
Uy, and let 7, be the remainder: d, = ¢(N,u,) and r, = r(N,u,). Then iterate
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di = q(rk+1,uk) and rg = r(req1,uk) for n —1 < k <0. The word dy, - - - dp € A*
is the normal U-representation of N. As above addition is left subsequential [13]
and has a bounded delay, so is computable by an on-line finite automaton.

For m =2, a = b =1, we get the Fibonacci numeration system.

Corollary 4. Addition on {0,1} in the Fibonacci numeration system is com-
putable by an on-line finite automaton with delay 3, but is not parallelizable.

Proof. It is the same automaton as in Proposition 13 with a terminal function w
defined by: if s1s283 € @, w(s15283) is equal to the Fibonacci representation of
the integer sjug + squ1 + s3uog. 0
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