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COMMUNICATION COMPLEXITY AND LOWER
BOUNDS ON MULTILECTIVE COMPUTATIONS* **

JURAJ H R O M K O V I C 1

Abst rac t . Communication complexity of two-party (multiparty)
protocols has established itself as a successful method for proving lower
bounds on the complexity of concrete problems for numerous comput-
ing models. While the relations between communication complexity
and oblivious, semilective computations are usually transparent and
the main difficulty is reduced to proving nontrivial lower bounds on
the communication complexity of given Computing problems, the situ-
ation essentially changes, if one considers non-oblivious or multilective
computations. The known lower bound proofs for such computations
are far from being transparent and the crucial ideas of these proofs
are often hidden behind some nontrivial combinatorial analysis. The
aim of this paper is to create a gênerai framework for the use of two-
party communication protocols for lower bound proofs on multilective
computations. The result of this création is not only a transparent pré-
sentation of some known lower bounds on the complexity of multilective
computations on distinct Computing models, but also the dérivation of
new nontrivial lower bounds on multilective VLSI circuits and multi-
lective planar Boolean circuits. In the case of VLSI circuits we obtain
a generalization of Thompson's lower bounds on AT2 complexity for
multilective circuits. The £l(n2) lower bound on the number of gates of
any &-multilective planar Boólean circuit Computing a spécifie Boolean
function of n variables is established for k < | log2 n. Another ad-
vantage of this framework is that it provides lower bounds for a lot
of concrete functions. This contrasts to the typical papers devoted to
lower bound proofs, where one establishes a lower bound for one or a
few spécifie functions.
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1. INTRODUCTION

The communication complexity of two-party protocols has been introduced by
Abelson [1] and Yao [32]. The initial goal was to develop a method for proving
lower bounds on the complexity of distributed and parallel computations.

Informally 1, let ƒ : {0, l } n —> {0,1}, n £ N, be a Boolean function over a set X
of n Boolean variables, and let TT = {Xi^X^) be a partition2 of X. A two-party
(communication) protocol D computing ƒ according to n consists of two
computers Cj and Cu with unbounded computational power. At the beginning
Ci obtains an input x : X\ —> {0,1} and Cu obtains an input y : X2 -> {0,1}.
Then Ci and CJJ communicate according to the protocol by exchanging binary
messages until one of them knows the result f(x,y). The cost of the protocol
computation on the input (x, y) is the sum of the lengths of messages exchanged.
The cost of the protocol £>, cc(JO), is the maximum of the costs over all inputs
from z : X —> {0, l } 3 . The communication complexity of ƒ according to TT,
CC( / , TT), is the cost of the best protocol computing ƒ according to 7i\

There are several ways how to define the communication complexity of a Boolean
function ƒ. The choice dépends on the application considered. The most common
définition used in many applications is to consider the communication com-
plexity of ƒ, cc(f), as the minimum of cc(f, n) over all "almost balanced" 4

partitions of input variables.
In the almost 20 years of its existence communication complexity has

established itself as a method for proving lower bounds on several fundamental
complexity measures of sequential and parallel computations. To list at least some
of them we mention area complexity and area-time tradeoffs of VLSI circuits, area
and depth of Boolean circuits, combinational complexity of unbounded fan-in and
planar circuits, length of Boolean Forrnulae, size of finite automata and branching
programs, and time and space complexities of Turing machines. lts success in the
applications is comparable with that of Kolmogorov complexity in computability
and complexity theory [14].

The simpliest standard application of communication complexity is based on the
division of the hardware of the computing model considered (circuit, input tape,
etc.) int o two parts, in such a way, that each part contains approximately half the
inputs. Obviously, such a eut corresponds to an almost balanced partition of the
set of input variables. So, cc( f ) gives a lower bound on the amount of information
that must be exchanged between these two parts of hardware. Lower bounds on the
size of the hardware or on some tradeoffs between hardware size and time follow.
Another standard possibility is to eut time in some discrete moment t in such
way that the number of input bits read before t is approximately the same as the
number of input values read after t. Again this corresponds to an almost balanced

1For a formai définition see [14] or [17],
2J*Ci U X2 - X and Xi n X2 = -0.
3We consider an input as an assignment of values to the input variables.
4Usually almost balanced means that at least one third of the input is assigned to each of the

two computers of a protocol.
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partition of the set of input variables. Then cc(f) is a lower bound on the amount
of information transferred between two time units of the computation. To realize
this transfer the size of the hardware (memory, circuit) has to be large enough. The
standard applications mentioned above are elegant and transparent and the main
technical difficulty lies in proving nontrivial lower bounds on cc(f) of a function
ƒ of interest. But these cuts with required properties can be found only if the
computing model is oblivious5 and semilective6. If the model is 2-rnultilective (each
variable rnay enter at most twice) the ideas for the above standard applications do
not work anymore, because there are no cuts corresponding to partitions of the set
of input variables as defined above. This should be not surprising because usually
multilective computing models are much more powerful than their semilective
counterparts. To see this, consider for instance branching programs [31], VLSI
circuits [22], space bounded Turing machines [14], finite automata, etc. So the
known lower bound proofs for multilective computations are f ar from being obvious
and transparent (see, for instance, [6,8,11,12,16,19,21,22,26,28,33]) and the
crucial ideas of these proofs are often hidden behind some nontrivial combinatorial
analysis.

The main aim of this paper is to create a genera! framework enabling to present
some lower bound proofs on multilectivity as a well-structured transparent method
based on two-party communication protocols. Another conséquence of our effort
are some new applications for proving lower bounds for multilective VLSI circuits
and multilective planar Boolean circuits. Moreover, using our approach one can
get lower bounds for numerous concrete functions and not only for one (or a few)
function as it is usual for lower bound proofs.

The paper is organized according to three steps in which we consecutively
present our method for proving lower bounds on multilective computations.
Section 2 introduces the définition of a so called "overlapping" communication
complexity. This captures the fact, that for multilective devices we are unable to
eut them in such way, that the eut corresponds to a partition of the set of input
variables X into two disjoint subsets. But what is possible to frnd, is a eut cor-
responding to a partition of X into X\ and X^ in such a way that X\ — X2 and
X2 — Xi are "large enough". Because we have methods to prove nontrivial lower
bounds on communication complexity according to such "overlapping" partitions
this concept has good chances to be applied.

Section 3 is devoted to the problem how to search for a eut of a multilective
device (computation). The cuts cannot be found so easily as in the semilective case.
Usually we need to partition the device (computation) considered into small pièces
and then to build the eut by "sticking" some small pièces together. The method
explaining how to partition and how to stick together is based on a Rarnsey-
like combinatorial lemma. We present this lemma having broad applications in

5 Obliviousness means that the position (time), where (when) an input enter our computing
device is fixed for every input variable, i.e. independent of the values of spécifie inputs.

6Semilectivity means that each variable enters the computing device exactly once, i.e. is read
exactly once.
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Section 3 and explain there its relation to overlapping communication complexity
introduced in Section 2,

In Section 4 we illustrate the applications of the concept developed in
Sections 2 and 3 for proving lower bounds on multilective computations. In [8,12]
the lower bound proofs on the area complexity of multilective VLSI circuits are
presented. Our first resuit provides a transparent présentation of these resuit s in
terms of overlapping communication complexity. Our second resuit generalizes the
Thompson's [25] lower bound method on the AT2 complexity tradeoff for VLSI
circuits to the multilective case. In both results mentioned above overlapping
communication complexity is applied for multilective VLSI circuits in exactly the
same way as communication complexity was applied for semilective VLSI circuits
(see, e.g. [14,25,29]).

The second model considered in Section 4 is the branching program model
introduced in [20]. Again we show the transparency of the application of over-
lapping communication complexity for proving exponential lower bounds on the
size of oblivious fc-times-only branching programs [15,16] for fc < ~ log2 n (n is
the size of the input). Moreover we show that our method also works for prov-
ing exponential lower bounds on the size of oblivious branching programs with
unbounded multilectivity and depth bounded by ^nlog 2n. Such a lower bound
has been established in [2] for a spécifie Boolean fonction. Our method enables
to prove lower bounds of this kind for several Boolean fonctions. To prove lower
bounds for the gênerai non-oblivious fc-times-only branching programs seems to
be an essentially harder task than proving lower bounds for the oblivious ones.
In fact we can still show how overlapping communication complexity can be used
to get the exponential lower bounds established in [6,19], but in this case we do
not see any possibility to essentially simplify the proofs from [6,19]. Generally it
seems that if one adds non-obliviousness to multilectivity the transparency of our
lower bound proof method essentially decreases.

The last model we consider are multilective planar Boolean circuits. The Çl(n2)
lower bound on the number of gates of any fc-multilective planar Boolean circuit
Computing a spécifie Boolean function of n variables is achieved for k being a
constant independent on n. This is a generalization of the Q(n2) lower bounds
established in [13, 27] for (semilective) planar Boolean circuits. In fact we prove
a more genera! lower bound in terms of overlapping communication complexity
for fc < | log2 n and we extend this result to some improved lower bounds on
the layout-area complexity of fc-multilective planar Boolean circuits. The highest
known lower bound Q(nlog2 n) [11,28] on the combinatorial complexity of multi-
lective planar Boolean circuits Computing a one-output function with unbounded
multilectivity can be also proved due to overlapping communication complexity.
One more advantage over [11,28] is that we do not need to use expanders in order
to get this lower bound, and that we can prove this lower bound for a large class
of Boolean functions.



COMMUNICATION COMPLEXITY AND LOWER 197

2. OVERLAPPING COMMUNICATION COMPLEXITY

Prom the reasons explained in the introduction we give the formai définition of
overlapping communication complexity hère. After that we shortly discuss why
we have defined it as follows.

Définition 2.1. Let ƒ:{(), l}n —> {0,1} be a Boolean fonction defined over a set
of variables X = {xiix2,...ixn}, n £ N. Let Uo C X, Vo C I , \UQ\ = \V0\ be two
disjoint subsets of X. Let k be a positive integer. A pair TT = (TTJ^TTR) is called a
(Uo, Vo, fc)-overlapping partition of X, if:

1. TTIUTTR — X, and

2. there exist U Ç Uo H TTL and V C Vo H nR such that U DTTR = V HTTL = 0
and\U\>\Uo\/32k,\V\>\Vo\/3

2k.

Par(X, UQ, Vb, k) dénotes the set of ail (C/Q, VO, &)-overlapping partitions of X.

The reason to consider such partitions is the following one. May be, one knows
that if Ci knows values of variables from Uo but no variable from Vo and Cn
knows ail from Vo but none of Uo then the communication complexity must be
large. But one is unable7 to find a eut separating Uo from Vo- The idea is to
find a eut where at least some parts of input variables U Ç Uo and V Ç Vo are
separated. To have a chance to prove the necessity of a long communication the
sizes of U and V may not be too small in the comparison to the size of Uo and Vo
respectively8. The constant 32fc estimating the size of U and V dépends on some
combinatorial considérations given later in Lemma 3.1.

Définition 2.2. Let & be a positive integer. Let ƒ, X, C/o, Vb have the same
meaning as in Définition 2.1. For every n G Par(X, [/Q, Vb, k) we define the
fc-overlapping communication complexity of ƒ according to TT, occk(f, TT),
as the complexity of the best protocol Computing ƒ according to n.

For ail disjoint subsets C/o, Vo Ç X we define the fc-overlapping communica-
tion complexity of ƒ according to Uo and Vo as

occk(f, t/0, Vo) := min{occfc(/,7r) | TT € Par(X, UQj Vo, fc)}-

Finally, the fe-overlapping communication complexity of ƒ is

occh(f) := max{occfc(/, UOy VQ) \UoÇX,VoÇ X,Uon Vo = 0}-

In what follows we also want to apply a restricted version of overlapping
communication complexity. For every r G N — {0}, we say that a communica-
tion between Cj and Cu has r rounds if exactly r messages have been exchanged.
A protocol is called a r-rounds9 protocol if for every input the communication of
the protocol consists of at most r rounds. Let occj?( ƒ, TT) be the complexity of the

7Usually, such eut even does not exist s.
8Obviously, the communication complexity cannot be higher than the number of important,

values that could be exchanged in the communication.
9 For formai définition and the study of r-rounds protocol see [9].
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best r-rounds protocol computing ƒ according to ir for any TT G Par(X, Uo, VQ, k).
Then

occ*(f, C/o, Vo) := min{occ*(/, TT) | TT E Par(X, Uo, Vo, k)}

for any disjoint subsets [/o, Vb Ç X. The fc-over lapping r-rounds communi-
cation complexity of ƒ is

occï(f) := max{oa£(/, C/b, Vb) | Uo,Vo ÇX,U0D Vo = 0}-

The ^-overlapping communication complexity has been introduced in order to
be applied for lower bounds on fc-multilective computations where each variable
can be read at most k times. We see that k is strongly related to the size of
the input variable subsets U and V (see Def. 2.1(2)), that are separated by a
eut. With the growth of the multilectivity the sizes of subsets, one is able to
separate, decrease. Why the speed-up of the decrease of \U\ is related to \Uo\ /32k

we shall see in the next section. The reason to consider r-rounds protocols is that
sometimes one is able to find such cuts of &-multilective devices (computations)
that the information flow crossing these cuts can be described by the exchange
of r = 2/c binary messages between the two parts given by the cuts. From [9] we
know that there are Boolean functions whose r-rounds communication complexity
is exponential in the (r + l)-rounds communication complexity. So, occk(f) may
be essentially larger than occk(f) for some functions ƒ.

Before using occk (ƒ) or occk
k ( ƒ ) to get lower bounds on /c-multilective

computations we should mention, that one is able to prove high lower bounds
on occk(f). This seems to be hard because following Définition 2.2, occh(f) is the
minimum over all TT G Par(X, Uo, Vb, k) and over the communication complexities
of all protocols computing ƒ according to TT. Despite of this we have standard
methods (in communication complexity theory) that can be used to prove non-
trivial (even linear10) lower bounds on the communication complexity of concrete
computing problems. In what follows we prefer to present some ideas of such
methods rather than to present a detailed technical proof for one special function
only.

Let ƒ be defined over a set of input variables X — X± U X2 U X3, where Xi H Xj
= 0 for i ^ j and \XX\ > \X\ /4, \X2\ > \X\ /4, |X| = n. Let the values of variables
in Xz détermine which pairs (u, v) G X\ x X2 are in some relation (for instance
have to have the same value), and so they must be somehow "compared". To prove
occk(f) > n/(4 • 32fe) one may choose UQ = X± and Vb — ^2 ll> Now we have to
prove occk(f,TT) > n/(4-32/c) for every n € Par(Xy X\^X2^ fc). Let ?r = (TTLJITR) be
anarbitrary {X\,X2, A;)-overlappingpartition of X. Then, there exist U Ç XIHTTL
and V Ç X2 H ITR such that U O TTR = V f) nL = 0, and \U\ and |V| are at least
n/(4 • 32fc). Now, one can choose the set of input assignments by fixing the values
of variables in X3 in such a way that n/(4 - 32k) different pairs from U x V have
to be compared. The standard methods like the fooling set method and the rank

10Note that the communication complexity is at most linear.
11 Note that occk(f) is defined as the maximum over the choices of Uo and VQ.
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method (see for instance [4,10,14,17]) are able to establish occk(f^ir) > n/(4-32fc).
If k is a constant independent of n, we have occk(f) = fi(n).

In what follows we present a possible formalization of this approach. Let, for
every a G {0, l } m , m G N, and every 5 G {0,1}, #§{cx) dénote the number of
occurrences of 5 in a. Let ƒ : {0, l}2n —» {0,1} be a Boolean function, and let
7T = ([ƒ, V) be a balanced partion of the set 17 U V" of the input of ƒ. For every
positive integer k, we defîne F^ : {0, i}2n-32lB-2 _^ {0,1} on the set X = Uo U Vo U
Z \J Q oï Boolean variables as follows. Let d — n • 32fc, [/Q = {iti , . . . , w^}, Vo =
{ v i , . - . , ^ } , ^ = {«i,...,2fd}, aaidQ = {ci, ••-,&*}• For every input (a,/3,7,<5) G
{0,l}4d (a : t/0 ^ {0,1},J9 : V& -> {0 , l} , 7 : Z -» {0,1},5 : Q - • {0,1}),
F(ai, . . . ,a r f , /3i , . . . , /3d , 7 i , . . . , 7d ,5 i , . . . ,^ ) =.1 if and only if #1(71, • • • >7d) =
#i (£ i , . . . , öd) = n and if 1 < h < i2 < • • • < in < d, 1 < h < h < - • • < j« < d
are positive integers such that 7^ = ji2 = • • • = 7in = Jj! = ^ 2 = • • • = öjn — 1,
then f(ail,ai2i...,ainyl3jl,l3j2,...,0jn) = 1.

Lemma 2.1. For every Boolean function ƒ : {0, l } 2 n —̂  {0,1}, n G N, and ev-
ery balanced partition ir of the set of input variables of f, and for every positive
integer h,

oœk(Fk)>cc(f,7r).

Proof of Lemma 2.1. It is sufficient to prove that, for every irk G Par(X, Uo7Vo,k),
occk(Fk,7Tk) > cc(/,7r). Without loss of generality we assume that TT divides the
set of input variables of ƒ into the first half and the second half. Let irk = {^L^R)

be a partition from Par(X,UorVo,k). Following Définition 2.1 there exist U Ç
UQri7rL a n d F Ç Von<KR such that UnirR = Vr\irL = 0 and |17[ > |Uo|/32fc = n,
1̂ 1 > |ï7oi/32fc = n. Let ii < i2 < • • • < in < d, jx < j2 < • • • < j n < d be positive
integers such that {u^, ui2,..., w^ } Ç U and {i^, vi2,..., vin } Ç V. Now we fîx
the values of variables in Z and Q as follows:

7n = 7*2 = ' ' • = 7i« = 1 = &ji = &j2 = ' * ' = *j« a n d Js = 0 = ôr for ail
s G { l , . . . , d } - {îi, . . . ,2n} and ail r G {l , . . . ,d} - { j i , . . . , j n } -

Now, for every input a i , . . . , ad,fii,.. - ,A*,7i> • • • »7d»<ïi» • • • ̂ d, ^ , f t G {0,1}
for every î = 1,... ,d,

F^(ai , . . . , adï Pu - • • J Pd,7i» • • • 17dA, • • - ,*d)
= ƒ (aix, a i 2 , . . . , ain, (3h, / 3 J 2 , . . . , pjn ).

So, the communication complexity of any protocol Computing F^ according to
nk is at least the communication complexity of the best protocol for ƒ according
tO 7T. •

In fact Lemma 2.1 claims that occk(Fk) > max{cc(/ , 7r)|7r is a balanced
partition}. This is very convenient because to start to apply this approach it

is sufficient to take a Boolean function that is hard for at least one parti t ion of
its set of input variables. Usually, to prove a nontrivial lower bound on cc(f, n)
for a choosen partition is a task, whose difficulty is very far from the difficulty
of proving a lower bound on cc(f) as the minimum over all balanced partition.
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Thus, the approach described above provides linear lower bounds on overlapping
communication complexity of numerous spécifie functions. For instance, for the
balanced partition TT that divides the set of input variables into the first half and
the second half, the functions Equality, Inequality, Disjointness, Convolution, sum
of two binary integers, etc. [14,17] have linear communication complexity.

We call attention to the fact that one can extend the concept of overlapping
communication complexity to the nondeterministic and randomized (bounded-
error) ones. In the same way as in the deterministic case the lower bounds on the
nondeterministic (randomized) communication complexity of a function ƒ accord-
ing to a partition TT' can be used as lower bounds on the overlapping nondeter-
ministic (randomized) communication complexity of a spécifie function Ff. So, all
following applications can be extended to the nondeterministic and randomized
models without any essential change in the proofs. Because these extensions are
straightforward we omit their exact formulation hère.

Now, the only remaining problem is how to find cuts of multilective
computations corresponding to overlapping partitions. The solution is given in
the following two sections.

3. A COMBINATORIAL LEMMA

In what follows we present a Ramsey-like lemma giving a very gênerai concept
for searching for cuts of multilective computations. This lemma has been proved
in several versions in the literature (see for instance [8,14]) and so we omit the
presentatioon of its proof.

Lemma 3-1. Let m,n and k be positive integers, m < n/32fc, k < | log2n. Let
UQ, VQ be two disjoint subsets of a set X, \UQ\ > n, |Vb| > n. Let W = WQ, WI ,
• • . , Wd be a séquence of subsets of X with the properties \Wi\ < m for every
i = 1 , . . . , d and for every x G X, x belongs to at most k sets of W. Then there
exist U C I/o and V C Vb and integers to = —l,ti, ...,£&,& G N, such that the
following five conditions hold:

1. \U\ > n/32fc, \V\ > n/32k,
2.b<2k,ta&{ï,...,d}fora=l,2,...,b and t0 < h < • • • < tb,

y Wj\^î for some i = {0,. . . , b - 1} then
j=ti+i J

Vnl U Wj)=<D,
\3=U + 1 J

( u+1 \
4. ifVnl U Wj ) ^<è for some i = {0,...,b-1} then

\j=u+i J
( u+1 \

Uni U Wj = 0, and
\j=ti+i I
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/
5. (UuV)n

Now we explain the relation of Lemma 3.1 to our lower bound proof concept by
describing the interprétation of symbols (objects) appearing in Lemma 3.1. As
before X dénotes the set of input variables of a Computing problem that has to
be solved in a &-multilective computation of a Computing device. The sets Uo and
Vo have the same meaning as in Définition 2.1 of an overlapping partition of X.
These two subsets of X one may choose arbitrarily. Obviously, the quality of the
resulting lower bound essentially dépends on the appropriate choice of Uo and Vo-
The fact that one may choose Uo and Vo is the conséquence of the fact that occk(f)
is defined as the maximum over all choices of Uo and Vb-

The idea to apply Lemma 3.1 in the search for a eut of the hardware or of
the computation of a &-multilective Computing device corresponding to an over-
lapping partition from Par(X, t/o, Vb, k) is as follows. Partition the hardware (or
the computation) into d "very small" pièces (or time intervals), where d may be
arbitrarily large. The pièces have to be such small, that the number of variables
entering one pièce (the number of variables read in one interval) is bounded by
m < n/32fc. Obviously each variable enters (is read in) at most k different pièces
(intervais). Then Lemma 3.1 says that one can stick the pièces corresponding to
Wo, Wi, . . . , Wd together into at most b + 1 < 2k + 1 larger pièces12

ti+i d

w* ~ U W3 ' W ~ U W3
j=U+l

for i — 0 ,1 , . . . , b — 1 in such a way that there exist U Ç UQ and V Ç Vb with the
properties W*n U = 0 or W*n V = 0 for alH = 0 , 1 , . . . , b - l13 and (17 U V) H W
- 0 1 4 .

The final product is a eut of the hardware (time) into only two parts L and
R, where L is the union of ail parts of corresponding Wi$ containing no variable
from V, and R is the union of the rest (ie. the complement). The eut (L,R)
corresponds to a partition TT = {-KL^R) € Par(X, Uo, Vb, k). Thus we have the
lower bound striven for, because occk(f> TT) > occk(f, C70, Vb) bits must flow via the
boundary between the parts L and R.

So, Lemma 3.1 provides a gênerai strategy for proving lower bounds on mul-
tilective computations by communication complexity. But there are a few free
parameters in this strategy and these parameters décide about the success of this
method. The first free parameter is the choice of Uo and Vb- A deep analysis of
the inner structure of the Computing problem is necessary to find the best pos-
sibility. The second free parameter is the manner in which the hardware (time)
is partitioned into small pièces corresponding to WQ, Wi , . . . , Wd- The partition

12See (2) of Lemma 3.1.
13See (3) and (4) of Lemma 3.1.
14See (5) of Lemma 3.1.
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should be done in such a way that after sticking the pièces together15 the resulting
border between L and R is as small as possible. The second free parameter does
not depend on the computing problem considered, but on the multilective com-
puting model. In the next section we illustrate the choice of thîs second parameter
for multilective versions of VLSI circuits, planar Boolean circuits and branching
programs.We do not give any example of the choice of UQ and VQ for a computing
problem ƒ because we rather focus on the application of the known occk(f) for
proving lower bounds on multilective computation and not on techniques proving
lower bounds on occk(f). For a careful présentation of methods for proving lower
bounds on communication complexity see [4,10,14,17].

4. APPLICATIONS OF OVERLAPPING
COMMUNICATION COMPLEXITY

AND LEMMA 3.1 FOR PROVING LOWER BOUNDS

We start to illustrate the applications on VLSI circuits. The formai définition
of fc-multilective VLSI circuits may be found in [14,22], The only important points
for us are the following ones:

• the circuit is laid out in a grid and the area complexity of the circuit is
considered to be the size of a minimal rectangular grid in that the circuit
can be laid out.

• Every input processor of the circuit may read at most one value of an input
variable in one time unit.

• Every variable may enter the circuit at most k times (this means, that to
every input variable x there are assigned at most k pairs from time x set of
processors, where a pair (t,p) for x means that the actual value of x is read
by the processor p during the t-th synchronization clock).

• Every processor computes a Boolean value in every synchronized time in-
terval between two clocks and this value is distributed to all edges (wires)
outgoing from this processor.

First we give a transparent présentation of the method introduced by Duris and
Galil [8] and Hromkovic et al [12] for proving lower bounds on the area of
k-multilective VLSI circuits. Let for a given circuit S, A(S) dénote the area
complexity of S, T(S) dénote the time complexity of 5, and P(S) dénote the
number of processors of 5. Obviously P(S) < A(S) for every S.

Theorem 4.1. Let ƒ be a Boolean function of nf variables, for a positive integer
nf. Let k < \ log2 n

1 — 2 be a positive integer. Then, for every k-multilective VLSI
circuit computing f,

MS) > P(S) > occk
2k(f)/2k.

Proof of Theorem 4-1- Let X be the set of input variables of ƒ. Let C/o»
VQ Ç X be such that occ2k(f) = occ*^/, £/o, Vb). So it is sufficient to prove

15First to Wi's and W and then to L and R.
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P(S) > occ$k(f,Uo,V0). Let \U0\ = |F0 | = n and X - Uo U V&. The main
point is that we eut the time of the computation into the smallest possible parts
by setting

Wi = {x G X | x is read by 5 in the z-th time unit}

for i = 0,1,2,.. .,T(S). Now we distinguish two possibilities according to the
cardinalities of W '̂s:

1. there exists j € {0,1, . . . ,T(S)} such that \Wj\ > m = n/32fc. Then 5
must have at least IW}) > n/32h input processors, ie . P(5) > n/32fc. This
complètes the proof because occ^k{f) < n/(2 • 32fc) for every fc, n and ƒ.

2. For every j € {0,1,. . . ^ ( S ) } , \Wj] < m = n/32fe. This means, that X,
WQ, TVI, . . . , Wr(5), /e, 7n and n satisfy all the assumptions of Lemma 3.1.
The existence of U C Uo, V Ç Vb, b e N, t0 = - l , t i , . . . , t f e G { 1 , . . . ,T(5)}
with the properties (1),(2),(3),{4) and (5) of Lemma 3.1 follows.
Since an internai configuration of a circuit S (state of the circuit in a moment)
can be coded as a binary word of length P(5)16, the computing step from
a configuration to its successor (the next configuration) can be seen as a
transfer (communication) of at most P(S) bits. Considering TT = {ÏÏL^R)
with -KL — X — U and KR = X — V17 one can construct a 2&-rounds protocol
D according to n computing ƒ within communication complexity b • P{S) <
2k • P(S). This is because Cj knows inputs from TTL, CJJ knows inputs from
TT/?, and each of them alternatively simulate the work of the circuit S in
the corresponding time interval. Cj begins the simulation of S for the time
interval in which no variable from U is read. Then Cu sends the code of
the configuration of S to Cu and Cu continues in the simulation. Since
the number of message exchanges in the simulation between Cj and Cji is
at most b < 2/c, and the communication complexity of the protocol D is at
least occ2k(f) we obtain:

2k • P(S) > b - P(S) > occ%k(f).

D

We observe that Theorem 4.1 is exactly the generalization of the known lower
bound method for (semilective) VLSI circuits, where one-way communication
complexity provides lower bounds on the area complexity (see, e.g. [14]). Now,
we present a new result by showing that overlapping communication complex-
ity may be even used to prove lower bounds on ^4T2-tradeoff of &-multilective
VLSI-circuits. This generalizes a similar result [25] for the relation between com-
munication complexity and (semilective) VLSI circuits. In this case we eut the
circuit (hardware) instead of the time.

16That contains the Boolean values computed by all processors in the last time interval.
17Obviously n corresponds to the eut (L,H) provided by Lemma 3.1.
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Theorem 4.2. Let k and nf be positive integer s> k < | log27i ' — 2. Let f be a
Boolean function depending on all its n' variables. Then, for every k-multilective
VLSI program S Computing f}

A(S) • (T(5))2 > (occ*(/)/4fc)2.

Proof of Theorem 4-%- Let X,X,UQ,VO have the same meaning as in the proof
of Theorem 4.1. Without loss of generality we assume the optimal layout of S
has a size u x v with u < v. Let po? • • • >PP(S)-I be the processors of ƒ ordered
lexicographically according to the layout position18. We choose Wi as the set of all
variables read by the processor pi in the whole computation. Again, we distinguish
two possibilities according to the cardinalities of WVs.

1. There exists a j € {0 ,1 , . . . , P(S) - 1} such that \Wj\ > m = n/32*\ Then
T(S) > n/32k because pj can read at most one variable in one time unit.
Similarly as in the previous proof the result follows.

2. For every j e {0 ,1 , . . . , P(S) - 1}, \Wj\ <m = n/32k. Then all assumptions
of Lemma 3.1 are fulfilled and we get a partition of the layout of S into b + 1
parts corresponding to Wjys and W. Because the border between two such
circuit parts is perpendicular to the shortest size of the layout19, its length
is at most u-hl. So, the final eut20 of the layout into L and R has a border
of length at most b(u + 1) < 2k(u + 1), Le. at most 2k(u + 1) edges crosses
the eut. It means that at most 2k(u + 1) bits can be exchanged between L
and R in one time unit. Since the number of time units is T(S),

2k{u + l)-T{S)>occk{f)

and so

2 . A(S) - (T(S))2 > ((u + 1) • T(S))2 > (occk(f))2/4k2.

D

Now, we consider branching programs introduced in [20]. A branching program
A on a variable set X = {xi, #2, . . . , £n} is a labelled directed acyclic graph with
one source and two sinks. The sinks are labelled by Boolean constants 0 and 1.
Each non-sink node is labelled by a variable x G X and has two outgoing edges
labelled by 0 or 1. A computes a Boolean function f A * {0, l } n —> {0,1} as follows.
For every input a = aio.2 • * - <^n E {0, l } n , A starts at the source node. If A is in
a non-sink node labelled by Xi, i G {1, 2 , . . . , n}, then it moves via the edge that
outgoes Xi and that is labelled by a .̂ The computation ends if A reaches a sink
and /A (a) is the label of this sink. The size of A is the number of non-sink nodes
of A and is denoted by size (A). The depth of A is the length of the longest
directed path in A. For every j E {0,1,. . .,depth(A)}, the j-th levei of A is

18The position (ii, j i ) is before (Î2,32) if h < «2 or (*i — 2̂ and j \ < J2).
19This follows from the ordering of processors.
20This eut corresponds to the partition ir — (X — V,X — U).
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the set of ail nodes having the distance j from the source. The width of A is
the maximum of the cardinalities of its levels. A branching program A is called
levelled if every edge of A leads from the i-th level to the (i + l)-th level for some
i E {0,1,...., depth(^4) - 1}. The main problem hère is to prove exponential lower
bounds on the size of branching programs Computing a spécifie function. Since
the gênerai problem is very hard, the effort focuses on proving high lower bounds
on restricted versions of branching programs.

The simpliest versions of branching programs are ordered binary décision dia-
grams that are in f act oblivious semilective branching programs. To prove lower
bounds for them is not very hard because one-way communication complexity
provides a lower bound on the size of this restricted version of branching pro-
grams. Non-oblivious semilective branching programs are called read-once-only
branching programs and we have several exponential lower bounds for them (see,
e.g. [7,23,24,31,34,35]). In [15,16] an exponential lower bound on the size of
/c-times-only oblivious branching programs has been proved. The proof does not
explicitely use the method based on communication complexity. We show that by
using overlapping communication complexity we will get a transparent proof of
this fact, even in a more powerful forai. A fc-time-only oblivious branching pro-
gram A is a levelled branching program, where, for every i = 0 , 1 , . . . , depth(A),
ail nodes of the i-th level read the same variable, and every variable is read at
at most k different levels of A. Using overlapping communication complexity we
can partially remove obliviousness and allow several variables to be read in one
leveL And even for this generalized model we can simply establish exponential
lower bounds21.

Theorem 4.3. Let f be a Boolean function of n variables, n G N. Let fc,m be
positive integers such that k < \ log2 n - 2 and m < n/(8 • 32k). The width of every
branching program reading at most m different variables on every level, asking for
every variable on at most k distinct levels, and Computing ƒ is at least:

Proof of Theorem 4.3. The sets Wo, Wu..., Wd, d < n • k - 1, are the sets of
variables read on the corresponding levels. Using Lemma 3.1 we find a eut of
the branching programs consisting of at most b < 2k levels. Each level can be
"communicated" in the logarithrn of its size. •

So Theorem 4.3 enables to prove 2n^ lower bounds on the size of fc-time-
only branching programs (with the above restriction) Computing spécifie functions.
Since every level can be split into a constant number of levels with a reduced
number of variables read (by insert ing some dummy nodes) the assumption on the
number of variables read in one level can be removed from Theorem 4.3.

21Note that the resuit of Theorem 4.3 is considered to be simple from the point of view of
current development in this area. But it nicely présents the transparency of our approach and
we shall use it to prove a deeper resuit later.
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The most powerful oblivious model of branching programs considered are so
called (multilective) oblivious branching programs, where there is no restriction
on the number of occurences of any variable in the paths of the branching pro-
gram. The best lower bounds for this gênerai model have been established in [2,5].
Alon and Maas [2] proved an exponential lower bound on the size (width) of obliv-
ious branching programs of depth bounded by \n • log2 n for Computing a spécifie
Boolean function. For another Boolean function Babai et al [5] proved an expo-
nential lower bound on the size of oblivious branching programs with the depth
restricted by o(n(log2n)2). In what follows we show that the concept of overlap-
ping communication complexity can provide lower bounds of the first type [2] for
various Boolean functions. We are not able to use our concept for proving the
strong lower bounds of [5]. This should be not surprising because Babai et al [5]
used multiparty protocols to achieve this lower bound and multiparty protocols
may be considered as a generalization of overlapping communication complexity
rather than as a (usually considered) generalization of standard communication
complexity.

Let, for every a:f3 G {0,1}, code(a(3) = 0 if a = (3 = 0, code(a/3) = 1 if
a = (3 = 1 and code(a/3) = e if a ^ 0.

Let, for every Boolean function ƒ : {0, l } n -> {0,1}, n G N, ƒ* : {0, l } 4 n

-> {0,1} be defined as follows. For every a = ai^ai^ot2,iOt2i2
a^,i°L^a • - - ̂ 2n,i^2n,2

G {0, l } 4 n , f*(a) = 0 if the length of code(a;) = code(aiji,aiï2) code(a2n,i>
<̂ 2n,2) differs from n and f*(cv) — /(code(a)) if |code(a)| = n.

Without loss of generality we consider that each oblivious branching program
is levelled and the nodes of any level are labelled by the same input variable.

Theorem 4.4. Let f be a Boolean function of n variables, n G M. Let k <
| log2 n — 2 be a positive integer. Then, for every oblivious branching program A
that computes ƒ * within a depth at most k • n

width(A) > 2 o c c ^) / 2 f c .

Proof o f Theorem 4-4- Let A be an oblivious branching program of k - n levels
Computing ƒ*. Let X ~ {x^ijXi^i = 1, . . . , 2n} be the set of the input variables
of ƒ*. Let, for i = 1, . . . , 2n, k be the number of levels of A labelled by x^i or
by xii2- Since at most one half of l^s may be larger than twice the average, there
exist j i , . . . , j n G { 1 , . . . , 2n} such that ljd < 2 • —^ = k for d = 1,...,n. For
every c £ { j i , . . . , j n } , we set xC)i = 1 and xC)2 = 0. Using this choice we get a
&-multilective branching program Computing the function ƒ. Applying Theorem
4.3 the lower bound follows. D

Corollary 4.5. Every branching program (or formula) Computing a Boolean
function f* satisfying the assumptions of Theorem 4-4 h>as s^ze a^ ^ast f2(n-logn).

Note, that there are already known exponential lower bounds on syntactic
k-times-only branching programs [BRS93, Ok93, Sue97] that are a more pow-
erful model of branching programs than those considered in Theorem 4.3. As
already mentioned above we have several exponential lower bounds for k = 1 (for



COMMUNICATION COMPLEXITY AND LOWER 207

an overview see [7]). A syntactic &-times-only branching program is a branching
program with the property that no input variable x G X appears more than k
times on any directed path.

The next application we consider is to prove lower bounds on multilective pla-
nar Boolean circuits. The first superlinear lower bounds on the combinational
complexity of semilective planar Boolean circuits have been independently estab-
lished by Turân [27] and Hromkovic [13]. Using the Planar Separator theorem of
Lipton and Tarjan [18] and our concept of overlapping communication complex-
ity we can obtain transparent proofs of lower bounds on the complexity of k-
multilective Boolean circuits for several other spécifie Boolean fonctions and for
k < | log2 n. This is a direct generalization of the results in [13,27].

Let, for every Boolean circuit 5, the combinational complexity of S, CC(S),
be the number of nodes of (i.e. the number of gâtes + the number of input ver-
tices) of 5. In what follows we consider that both the indegree and the outdegree
of any circuit are bounded by 2. Note, that this is no restriction because the upper
bound 2 on the indegree of gâtes is the standard assumption for the Boolean circuit
model [31], and every planar circuit S with unbounded outdegree and bounded
indegree can be transformed int o an equivalent planar circuit S" with bounded
both indegree and outdegree and CC(Sf) < 3 • CC(S)22. The standard planar
Boolean circuit model is semilective, which means that the input nodes are in
one-to-one correspondence with the input variables. For any positive integer A;,
a &-multilective planar Boolean circuit [22] has for each input variable at most k
distinct input nodes.

To use overlapping communication complexity for proving lower bounds on
combinational complexity of multilective planar Boolean circuits we need the fol-
lowing version of the Planar Separator Theorem [18]. Let c — 2 • A/2/(1 — V^2/3)
in what follows.

Lemma 4.6. Let G = (V, E) be a planar graph of m nodes. Let Vf <ZV be a set
of special nodes, Then, by removing at most c - y/m nodes of G, one can partition
G into Gx = (Vi,J5i), G2 = (V2}E2) such that

- 1 < IVxHF'l- l ^ n F ' l < î.

Proof of Lemma 4-6. The proof is a direct conséquence of the Planar Separator
Theorem [18] and Corollary 3.4.2.10 in [14]. D

Now, we are ready to formulate our lower bound. Let, for every positive integer
h, dk = 4c • V2k • 3fc+1 • J_1- Note that the following resuit is a generalization
of proving quadratic lower bounds on (semilective) planar circuits by standard
communication complexity [13,14,27].

Theorem 4.7. Let f be a positive integer such that k < | log2 n — 2. Then, for
every k-multilective planar Boolean circuit B Computing f,

CC{B) > (occk(f)/dk)
2.

22 See, for instance, Observation 3.2.3.2 in [14].
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Proof of Lemma 4-7. Let B be a fc-multilective planar circuit computing ƒ. The
structure of B is a planar graph GB — (V,E) of a degree bounded by 4. Let
|y | = ra. Let V' CV be the set of input notes of B (the nodes with the indegree
0). Using Lemma 4.6 we can partition GB into two subgraphs with approximately
|F' | /2 input vertices of B in each by removing at most c • ̂ /\V~\ nodes. Because
both graphs are again planar we can continue in partitioning in order to get four
subgraphs, each having approximately |V'|/4 of input vertices. The number of
removed nodes in this second partitioning step is at most

c • ̂ Jm~[ -f c • yfrai = c • (y/rn[ + ^/mj)

2
< max{c • y/m{ + c • ̂ /m~2 | ^i\ + ^2 < ^ } < c =̂

V2
Generally, in the ft-th partitioning step we divide ft, graphs into 2h subgraphs with
at most | V;| + 1 input vertices each. The number of removed nodes in this step is
at most c • (v^)'1"1 • s/m. We stop this procedure if

2h ^ - g . 32fc

Since |V'| < fc • n, we stop after at most r — Iog2(k - 32fc+2) steps. The number of
nodes removed in these r steps is at most

< c • - ^ ^ • Vk • 3fc+1 V ^ = * •

So, one can reach this partition into 2r subgraphs by removing at most dk • \ftn
edges of B. Now, one can apply our combinatorial lemma. We have Wi, W2, ...W^ ĵ
where Wi contains the input variables assigned to the input vertices in the i-th
subgraph of our partition of G (B). Since \Wi\ < n/S - 32fc, the assumptions of the
combinatorial lemma are fulfilled. Thus, putting some W '̂s together one obtains
a partition of B into two parts corresponding to an overlapping partition of the
variables of ƒ. Moreover, the number of edges between these two parts of B is at
most dk • \prn. Since every edge of B transforms exactly one Boolean value during
the whole computation of B on an input, the theorem follows. D

Observe that in the previous theorem we cannot use occ^(f) instead of occk(f)
for any r. The reason is that any protocol simulating the communication between
two Boolean circuit parts may need twice as many rounds as the depth of the
circuit23.

2 3 For the technical details of the construction of a protocol simulating the information transfer
between two parts of a Boolean circuit see Section 3.3.3 of [14].
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Next we show that if one considers the area layout complexity of Boolean
circuits instead of the combinatorial complexity of Boolean circuits, then the over-
lapping communication complexity may even provide higher lower bounds than
those derivable from Theorem 4.6. In what follows we consider the layout of
Boolean circuits into a chip (lattice rectangle) as described in [14]24. For any
Boolean circuit B, A(B) dénotes the area complexity of a Boolean circuit
B. In the gênerai layout considered above we do not give any restriction on the
layout of the input nodes. If one additionally requires that all input nodes of the
given Boolean circuit lay on the border of the chip (rectangle), then we use the
notation bA(S) instead of A(S) for every Boolean circuit S. The next theorem
generalizes the lower bound methods for the area of planar Boolean circuits estab-
lished in [14] by using the standard two-party communication protocols (z.eM for
fc = i).

Theorem 4.8. Let ƒ be a Boolean function essentially depending on ail of its n
variables, n € N. Let k be a positive integer such that k < -| log2 n — 2. Then, for
every k~multilective Boolean circuit B Computing ƒ ;

(i) A(B) > {occk{f)/2kf,
(ii) bA(B) >n-occk(f)/8k.

Proof of Theorem 4>8> (i) Let B be a fc-multilective Boolean circuit Computing ƒ.
Let there be a layout of B into a lattice rectangle CB of a size a x 6, a > b,
We distinguish two possibilities according to the size of b. If b > n/32k then (i)
follows because occk(f) cannot be larger than n/32/c. Let b < n/32k. One can
consider CB as a collection of a columns of b lattice squares. This means that
every column can involve at most b input nodes. So, dividing CB into columns we
obtain Wi, W2) . . . , Wa with \Wi\ < b < n/32k for every i G {1, 2 , . . . , a}. Since
ail assumptions of our Combinatorial Lemma are satisfied we get a partition of
CB that corresponds to a fc-overlapping partition of the input variables of ƒ. The
partition of CB consists of at most 2k Unes perpendicular to the side of the length
b. So, the corresponding partition of B can be achieved by removing at most b • 2k
edges of B. Thus,

b-2k>occk(f),

Finally,

a-b>b2 >(occk(f)/2k)2.

(ii) Let SB be such a layout of 5 , that all input nodes of B lay on the border of
the lattice rectangle SB of a size a x 6, a > b. Again, we may assume b < n/32k.
Using the same argument as in (i) we get25

b>occk

24The layout rules are the same as the rules used for the VLSI circuit layout.
25Observe, that in this case \Wi\ < 2 for every z G {2, 3 , . . . , a — 1},
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Since ƒ essentially dépends on n variables, there are at least n input nodes in B.
So, the border of SB has the lengt h at least n. This implies a > n/4. Putting the
lower bounds on a and b together we obtain

a • b > j • occk(f)/2k = n • occh{f)/8k.

D

In [28] Turân proved Q(nlog2n) lower bound on multilective planar Boolean
circuits computing a spécifie Boolean function. The previous highest known lower
bound fi(nlogn/loglogn) on these planar Boolean circuits with unbounded mul-
tilectivity was established by Savage [22]. The Boolean function used in [28] is not
a "natural" one because its définition uses expander graphs and superconcentra-
tors. In what follows we show that overlapping communication complexity can be
used to prove fl(nlogn) lower bounds on multilective planar Boolean circuits for
many Boolean functions.

Theorem 4.9. Let {/n}^Li be a séquence of Boolean functions where fn : {0, l}n

—> {0,1}. Let k = |_ï^°£2nJ> and ^ occk(f) > 4.32*̂  • Let, for every n G
N — {0}, Dn be a multilective planar Boolean circuit computing ƒ£. Then, for
every sufficiently large integer n

CC(Dn) > —-nlog2n.

Proof of Theorem 4-9. We prove Theorem 4.9 by contradiction. Let CC(Dn)
< y^nlog2n for infinitely many n's. Let X = {x^i^Xi^i = ly...,2n} be the
set of the input variables of ƒ *, and U be the number of input nodes of Dn labelled
by Xiti or Xit2 for i = 1, . . . , 2n. Since CC(Dn) < ^nlog2 n, the number of input
nodes of Dn is bounded by ^nlog 2 n. So, there exist j i , . . . , j n E {1,2,.. . , 2n}
such that ljd < j ^ log2 n for d — 1 , . . . , n.

By setting xC)i = 1 and xCj2 = 0 for every c ^ {jij • • • )t?n} ° n e obtains a
/c-multilective planar Boolean circuit Df

n computing ƒ. Applying Theorem 4.7 we
obtain

CC(Dn) > CC(Df
n) > (occk(f)/dk)

2

k2 n2

42b2fc

,n | log23 S . log2n

for some constants b and s independent on n and k. Since \ • log2 3 < 1 there may
exist at most finitely many n's such that

n2-i-log23 X

= < — n - log2 n.
s * log2 n 12
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This contradicts to our assumption that CC(Dn) < ~n • log2 n for infinitely many
n's. D
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