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LOWER SPACE BOUNDS FOR ACCEPTING SHUFFLE
LANGUAGES

ANDRZEJ SZEPIETOWSKI1

Abstract. In [6] it was shown that shuffle languages are contained
in one-way-NSPACE(log n) and in P. In this paper we show that
nondeterministic one-way logarithmic space is in some sense the lower
bound for accepting shuffle languages. Namely, we show that there
exists a shuffle language which is not accepted by any deterministic
one-way Turing machine with space bounded by a sublinear function,
and that there exists a shuffle language which is not accepted with
less than logarithmic space even if we allow two-way nondeterministic
Turing machines.

AMS Subject Classification. 68Q15, 68Q45.

1. INTRODUCTION

The opérations shuffle and shuffle closure have been introduced to describe
sequentialized exécution histories of concurrent processes [7,8]. Together with
other opérations they describe various classes of languages which have been ex-
tensively studied (see [1,3-5,10]). Here, we consider the class of shuffle languages
which émerges from the class of finite languages through regular opérations (union,
concaténation, Kleene star) and shuffle opérations (shuffle and shuffle closure).
In [6] it was shown that shuffle languages are contained in the class one-way-
NSPACE(log n) and thus in the class P {Le. they are accepted in polynomial
time by deterministic Turing machines). For every shuffle expression E, a shuf-
fle automaton was constructed which accepts the language generated by E and it
was shown that the computations of the automaton can be simulated by a one-way
nondeterministic Turing machine in logarithmic space.

In this paper we show that nondeterministic one-way logarithmic space is in
some sense the lower bound for accepting shuffle languages. Namely, we show that
there exists a shuffle language which is not accepted by any deterministic one-way
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Turing machine with space bounded by a sublinear function, and that there exists
a shufïle language which is not accepted with less than logarithmic space even if
we allow two-way nondeterministic Turing machines.

2. SHUFFLE LANGUAGES

Let S be any fixed alphabet and À the empty word. The shuffle opération 0 is
defined inductively as follows:

• u<3 \ = \®u = {u}, for u, G H* and
• auQbv = a(u 0 bv) U b(au 0 v)} for uyv eE* and a, b e S.

For any languages L\,L2 c S* the shuffle L\ 0 L2 is defined as

L1QL2= (J

For any language L, the shuffle closure operator is defined by:

oo

L® - ( J L0 i , where L 0 0 = {A} and L 0 i - L0*"1 0 L.
2=0

Définition 1. Each a GS, À and 0 are shuffle expressions, Besides, if Si, S2 are
shuffle expressions, then (Si • S2), Si*, (5i + S2), (5i 0 ^2) and Si® are shuffle
expressions, and nothing els e is a shuffle expression.

The language L(S) generated by a shuffle expression S is defined as follows.
L(a) = {a}, L(X) = {A}; L(0) - 0. If L(Si) = L± and L(S2) = L2, then
L((S1'S2))=L1-L2, L((S1 + S2)) = L1UL2, L(5i*) = L\, L((S1OS2)) =

® f

A language L is a shuffle language if there exists a shuffle expression E such
that L = L(E). We shall also use the following notation, for arbitrary string z:
\z\ dénotes the length of zt \z\e the number of occurrences of a symbol e in z, zi
the ï-th symbol of z, and zR the reverse of z (z written backwards).

3. TURING MACHINES

We consider the Turing machine model with a read-only input tape and a
separate two-way, read-write work tape. The number of tape cells used on the
work tape, called space, is our measure of computational complexity. A Turing
machine is called one-way if its input head cannot move to the left.

We use so called weak mode of space complexity. Let L(n) be a function on
natural numbers. A Turing machine is said to be weakly L(n) space-bounded if
for every accepted input of length n, at least one accepting computation uses no
more than L(n) space. But our results are also valid for strong mode of space
complexity, which requires that for every input of length n, ail computations
are L(n) space bounded. We shall use the following notation: DSPACE[L(n)]
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or NSPACE[L(n)] dénotes the class of languages accepted by deterministic or
nondeterministic L(n) space-bounded Turing machines, respectively. We add the
prefix one-way if we consider classes of languages accepted by one-way Turing
machines.

By a configuration of a Turing machine M we shall mean a tuple (</, 7, j) , where
q is the current state of M, 7 are the contents of the non-blank sector of the work
tape, and j is the position of the work head, 1 < j < I7] -f 1 (we assume that
M cannot write the blank symbol on its work tape). The space used by the
configuration (g, 7, j) is equal to I7] -the number of non-blank cells on the work
tape. It is easy to see that the number of all configurations with space bounded
by k is less than rk, for some constant r > 1 (for more details see [9] or [2]).

4. LOWER BOUND FOR ONE-WAY TURING MACHINES

In this section we show that there exists a shufHe language which is not accepted
by any deterministic one-way Turing machine in space bounded by a sublinear
function.

Theorem 2. There exists a shuffle language L such that L £ one-way-
DSPACE[S{n)), for any S(n) = o(n).

Proof. Consider the shufïïe language

L = (a + b)*a(ac + bd)®d(c + d)* + (a + b)*b(ac + bd)®c{c + d)*

and let h : {a, 5}* —> {c, <i}* be the isomorphism described by h(a) = c and
h(b) = d. First we shall prove the following.

Lemma 3. Let k be a positive number. For every u, v : u G (a + b)k and v G
(c + d)k, the concaténation uv belongs to L if and only if h(u) ^ vR (vR dénotes
the reverse of v).

Proof. If uv G L then uv can be decomposed into

uv = ufaunvffdvf or uv = vlbvl'v" cv1

with u', u" e (a -h 6)*, u', v" G {c+d)*, and u"v" G (ac + 6d)®. We shall only
deal with the first case. Note that in this case u = ufaun and v = vffdvf.

Since unvn G (ac + 6d)®, we have

\u"v"\a - j ^ ' ^ l e and \u"v"\b = \u"v"\d

(where \z\e dénotes the number of occurrences of a symbol e in a string z).
And because

u"v" u"v"\b = \u"\ and \u"v"\c + \u"v"\d = \v
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we have

and hence
\u"\ =

Let % — \v!\ +1 = \v'\ +1 . Then the words h(u) and vR disagree on the i-th symbol,
(h(u))i = h(ui) = h(a) — c and (vR)i — d (where Zi dénotes the i-ih symbol of a
word z). Thus h(u) ^ vR.

Suppose now that h(u) ^ vR and that i is the last index, where h(u) and vR

disagree. We can assume that Ui = a and (vR)i = d. Then u and v can be
decomposed in the following way: u ~ ufauf\ v = v'fdv\ and h(u") = (vf/)R. (It is
possible that u" = v" = À.) In this situation unvn G (ac + bd)® and thus uv e L.
This ends the proof of the lemma. •

Suppose now, for a contradiction, that L is accepted by a one-way deterministic
Turing machine M with space weakly bounded by S(n).

Let & be a positive number. For every u E (a + ö)fc, let conf(u) be the config-
uration reached by M after reading u. Because there exists v G {c, d}k such that
the word uv G L, then conf(u) uses at most S(2k) cells on the work tape. There
are 2k different words in (a + b)k, and at most rs^2k^ configurations with space
bounded by S(2k)y for some constant r > 1. Since lim ^ ^ = 0, there exists k
such that rs(2k} < 2k, and there exist two different words x, y e (a + b)k, such
that conf(x) — conf(y) = a.

Consider now the accept ing computation of M on the word x(h(y))R. By
Lemma 3, x(h(y))R G L, because h(x) ^ (h(y)R)R = h(y). In this computation
M reaches the configuration a just after reading x. This means that M also
accepts the word y(h(y))R because M reaches a after reading y and afterwards
it proceeds exactly like for x(h(y))R and accepts at the end. But, by Lemma 3,
y(h(y))R does not belong to L, a contradiction. D

5. LOWER BOUND FOR TWO-WAY TURING MACHINES

In this section we show that there exists a shufile language which is not ac-
cepted by any nondeterministic two-way Turing machine in space bounded by a
sublogarithmic function.

Theorem 4. There exists a shuffte language L\ such that L\ fi NSPACE[S(n)}
for any S(n) = o(logn).

Proof. Consider the shufile language

L, = (abf.

The theorem follows from the fact that the class NSPACE[S(n)] is closed under
intersections with regular languages, and that the language

Lx H a*ö* = {anbn \ n > 0}
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is not accepted by any nondeterministic Turing machine with space bounded by
S(n) = o(logn) (see [9]). D
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