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ON CODES WITH FINITE INTERPRETING DELAY:
A DEFECT THEOREM

YANNICK GUESNET!

Abstract. We introduce two new classes of codes, namely adjacent
codes and codes with finite interpreting delay. For each class, we es-
tablish an extension of the defect theorem.

AMS Subject Classification. 94A45.

INTRODUCTION

In theoretical computer science, the questions connected to coding play a promi-
nent part, by their mathematical specificity as well as their potentiality of practical
applications. From this point of view, the aim of the theory of codes consists in
studying the properties concerning factorization of words. Remarkable results il-
lustrate the relevance and the difficulty of this issue. Some famous special classes
of codes, like bifix codes [2] and codes with finite deciphering delay [4], are directly
concerned. In fact, when reading sequentially a word, these types of sets allow an
efficient deciphering of the corresponding message.

A generalization of the notion of factorization of a word is the concept of in-
terpretation. An interpretation of a word w with respect to a code X is a triplet
(s,d,p) such that s.d.p = w where d € X* and s (resp. p) is a proper suffix (resp.
proper prefix) of a word in X. This notion is natural when considering the different
configurations linked to the factors of w in X*. Clearly a word may have several
interpretations, but of course, in view of an easy deciphering, a minimal number of
interpretations is required. From this point of view, some famous classes of codes
have been introduced, namely codes with finite synchronization delay [5,7] and
circular codes [2]. However, the unicity of interpretation is not reached.

In this paper, we introduce a new class of codes, namely codes with finite inter-
preting delay (f.i.d. codes for short), of which main specificity consists in avoiding
several interpretations. Unformally, if X is a code with finite interpreting delay,
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then any “long enough” word w in X* has a unique interpretation. In fact, we de-
fine the interpreting delay of X as the smallest integer n such that BX*anX™ = §,
for all pair of words («, 8), with « prefix of a word of X, § suffix of a word of X
and such that at least @ ¢ X* or 8 ¢ X*. In the point of view of the deciphering
of a message wizwy € X*, when an error of transmission occurs in z € X, the
fi.d. codes allows the word wq to be recognized. Note that with uniformly syn-
chronous codes with delay n only the word ws, where we = w'ws with w' € X"
and w3z € X™.X*, can be recognized: we lose the information included in w’.

Clearly, apart form its powerful applications connected to deciphering, this class
of codes must satisfied strict theoretical criteria: investigating these properties is
the aim of our paper. In this matter, we prove a first remarkable result: any finite
intersection of submonoids generated by f.i.d. codes is itself generated by a f.i.d.
code.

Moreover, it is well-known that each of the preceding classes of codes, namely
prefix codes, codes with finite deciphering delay, circular codes, satisfies an exten-
sion of the defect theorem [2,3,6]. In our paper, we establish that f.i.d. codes also
satisfy a version of this theorem:

Theorem 1. For any finite subset X C X*, there exists a smallest code Y with
finite interpreting delay satisfying X C Y* and |Y| < |X|.

The proof relies on the characterization of the class of codes with finite inter-
preting delay as the intersection of the classical class of circular codes with the
“adjacent codes” which we define as follow: a non-empty set X is an adjacent
code iff X N (S(X)\{e}). Xt =0 and X N X+ .(P(X)\ {e}) = 0. Where S(X)
(P(X)) stands for the suffixes (prefixes) of the words of X. In fact we establish
an another extension of the defect theorem for these codes. Our method leads to
an algorithm for computing the preceding code Y itself [9].

We now describe the contents of our paper. First section deals with classical
elementary notions from the free monoid theory.

In Section 2, we introduce codes with finite interpreting delay. Some basic
results are established. In particular we show that any code with finite interpreting
delay is circular [2].

In the last section, we show that codes with finite interpreting delay admit an
extension of the defect theorem.

1. PRELIMINARIES
1.1. DEFINITIONS AND NOTATIONS

In all this paper, we denote by X a finite alphabet, by ¥* the free monoid it
generates and by € the empty word.

For all subsets X and Y of £*, we denote by XY (XY ~1) the set {v €
Y*/Fue X,uweY} ({ue X*/FveY,uv € X}) and by X.Y their concatenation
product.
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For any subset X of ¥*, we denote by X* the submonoid generated by X and
by Xt the set X*\ {e}.

Given a word w € X*, the set of all factors (prefixes, suffixes) of w is denoted
by F(w) (P(w), S(w)). A set X is prefiz (suffiz) if no element of X is prefix
(suffix) of another one. If w € X+, we say that u € F(X) is an X -factor of w iff
w € X*uX*. For any subset X, we denote by P(X) (S(X)) the set P(X)\ {¢}
(S(X)\ {e}):

Two words w and w' are conjugated if there exist two words u and v such that
w=wuv and W' = vu; if u,v € X* we say that w and w' are X -conjugated.

Given a word w € £*, we denote by |w| the length of the word.

Let X C ¥* and let w € ¥*. An interpretation of w with respect to X is a
triplet (s, d, p) such that s.d.p = w where d € X*, p € P(X)\ X and s € S(X)\ X.
Two X-interpretations (s,d, p) and (s’,d’,p’) of the word w are adjacent if there
exist dy,dy,d},d, € X* such that

d=dydy, d =did,, sdy=35d; and dop=dsyp.
The interpretation (g, w, ) is the trivial interpretation of w and an interpretation
of w is proper if it is not adjacent to the trivial one.

Let w € ¥* and X be a code, we denote by dx(w) the maximal number of
pairwise disjoint X -interpretations of w.

1.2. SOME DEFINITIONS ON CODES

(2) A code X has a finite deciphering delay if there exists d > 0 such that
Vz,z' € X, Yy € X9, Vu € %, puer’X* >z =12

(7) A code X is circular if for all n,m > 1, z1,...,20, € X, Y1,-.-,Ym € X,
p € ¥* and s € I the equalities

ST .. - TnP =Y1---Ym, X1 = pSs
imply
n=m, p=¢ and z;=y; for i=1,...,n.

(73i) Let p,q = 0. A submonoid M of ¥* satisfies condition C(p,q) if for any

sequence ug, U1, - - . , Up+q Of words of £*, the condition u;—1u; € M (1 <4 <
p + q) implies u, € M (Fig. 1). A code X is (p,q)-limited if X* satisfies
C(p,q)-

A code X is limited if there exist p,q > 0 such that X is (p, ¢)-limited.

Proposition 1.1 ([2], p. 330). Any limited code is a circular code.
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FIGURE 1. Condition C(p, q).

1.3. THE DEFECT THEOREM AND AN EXTENSION TO CIRCULAR CODES

In this section, we are interested by the following problem. Let X be a subset
of ¥*. Assume that X is not a code. How can we compute a “convenient” code
generating the elements of X.

One way to answer this question consists in constructing the smallest free sub-
monoid containing X. This is justified by the fact that the intersection of all free
submonoids containing X is still a free submonoid. In fact, we say that this free
submonoid is the free hull of X, whose main property is the famous defect theorem
(see e.g. [3], pp. 48-50):

Theorem 1.2 (Defect theorem). Let X C ¥* and let Y be the base of the free
hull of X. If X is not a code, then

Y] < 1X] - 1.

Several extensions of this result have been established for special well-known classes
of codes, due to the fact that the corresponding submonoids are closed under
finite intersections. Let’s mention prefix codes, bifix codes and codes with finite
deciphering delay {3].

Actually, we are interested by the class of circular codes:

The circular hull of a set X C ¥* is the smallest submonoid generated by a
circular code containing X. We have the following result:

Theorem 1.3 (see e.g. [6]). Let X C ¥* and let Y be the base of its circular
hull. Then

Y] < IX].
Note that in this case we have not a strict inequality between the cardinality of Y
and the cardinality of X.

2. CODES WITH FINITE INTERPRETING DELAY

In this section, we introduce the notion of codes with finite interpreting delay
(fi.d. codes for short) and we compare these codes with the preceding circular
codes.
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2.1. THE BASIC PROPERTIES

Definition 2.1. Let X be a code. X has a finite interpreting delay if there exists
m > 1 such that for all @ € P(X), 8 € S(X), (o, 8) ¢ X* x X*, we have:

BX*anX™ = 0. (1)

The interpreting delay is the smallest integer m satisfying condition (1). In other
words, if m is the interpreting delay of a code X, for any X-interpretation (s, d, p)
of a word w € X™ we have s,p € X™*; thus there exists no proper interpretation
of w, i.e.

Vwe X™,  bx(w) =1.

Although our notion of interpreting delay seems close to the concept of deciphering
delay (cf. e.g. [4]), it is different, as attested by the following example. The regular
code a + b + ab*c has an interpreting delay 1 but has no finite deciphering delay.
Other examples will be presented in Section 2.2.

Lemma 2.2. If a code has an interpreting delay n, it satisfies the condition (1)
of Definition 2.1 for all m > n.

Proof. Given a code X with interpreting delay n, assume that there exist an integer
m >n and (a,8) € P(X) x S(X), (a,8) ¢ X* x X* such that BX*a N X™ # 0.
More precisely, let £k € N and z1,22,...,2x € X, ¥1,92, - - -, Ym € X such that

BTi1To ... Tk = Y1Y2 - - - Y-

Without loss of generality, we assume that 8 ¢ X™* (the case o ¢ X* being exam-
ined in a symmetrical way). Let i be the smallest integer such that > y_, |ya+i| >
1B, let B = (y1...:)" B and let j be the greatest integer which satisfies
1Bz1z2 ... %] < [y1y2- - - Yntil-

If j = k, then we set

o = oYnyit1 - -Ym)

otherwise we set

o = (Bz1. . z5) T Y1 e Yna

We hold (¢/, ') € P(X) x S(X) and ' ¢ X* (indeed we have 8 =y ... 4.0’ ¢
X*). Moreover we have §'z1...2;& = yit1 ... Yitn (Fig. 2). This contradicts the
fact that X has finite interpreting delay n.

As a consequence, X satisfies the condition (1) of Definition 2.1 for all
m > n. O

We say that a submonoid M C ¥* generated by a f.i.d. code is'a fi.d. sub-
monoid.
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b3 Y2 = N+i Y3 = Yn4i Ym

FIGURE 2. m greater than the interpreting delay (here 2).

First, we shall establish basic properties of f.i.d. codes.

Proposition 2.3. Given a fi.d. code X, any non-empty subset of X is a f.i.d.
code. Moreover if X has interpreting delay n, then these subsets have an inter-
preting delay lower than or equal to n.

Proof. Let X’ be a non-empty subset of X. Trivially, X’ is a code. We shall prove
that X’ has a finite interpreting delay.

We denote by n the interpreting delay of X. Let a € P(X'), 8 € S(X').
Assume that

BX"anX'™ £ 0.

We shall establish that (a,3) € X'* x X'*. Indeed, since X’ C X, there exist
a € P(X), 8 € S(X) and a word w such that w € fX*anN X". But X has delay
n hence, by definition, we have (@, 3) € X* x X*. This implies that the word w
may be factorized upon X* (as S.w'.a with v’ € X*) and X'* (w € X'™). Since
X' C X, these factorizations must correspond. Thus we obtain 8, € X'".

We have proved that X' has an interpreting delay lower than or equal ton. [

Remark 2.4. The classical algorithm of Sardinas and Patterson [8] can be modi-
fied in order to decide whether a finite code has a finite interpreting delay. Indeed,
let (Uy), (V3,) be the sequences defined as indicated in the following:

Uy =5X) "X\ {e}), Uppi=X"W,0UIX forn>1,
Vi=XPX) \{e}, Vap1=XV'UVoX"' forn> L

X has a finite interpreting delay iff there exists n > 1 such that U, = V;, = 0 and

€ ¢ Ui¢icn (Ui UV;). Indeed the condition € € U;, @ > 0 (¢ € V;) corresponds to

the existence of an interpretation of type (o, u,€) ((g,u, 8)).
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2.2. COMPARISON WITH CLASSICAL CLASSES OF CODES

In fact, as established by the following proposition, any f.i.d. code is circular.
More precisely, we establish that f.i.d. codes are limited.

Proposition 2.5. Any f.i.d. code is circular.

Proof. Let X be a code with interpreting delay n. We shall prove that the code
X is (1, 2n)-limited and (2n, 1)-limited.
Let ug, U, ..., U2n+1 be words of ¥* such that u;—qu; € X*,1 <i<2n+ 1.

o First, we assume that ug, u1, ..., Uzne1 € L. With such a condition, there
exists m > n such that u;...us, € X™ (indeed, we have ujusa, usuy,. ..,
Ugn—1Uzn € XT). Since we have uou; € X*, we obtain u; € §(X).X*. In a
similar way, we have ug, € X*.P(X). But the code X has an interpreting
delay n, therefore, by Lemma 2.2 it satisfies condition (1) of Definition 2.1
for m > n, thus we have uy, us, € X*.

e Now, we assume that there exists a smallest integer ¢ € [0, 2n + 1] such that
U; = €.

— If i = 0, since we have ugu; € X*, we have in fact uy € X*.

— If i =1, we have u; = € thus u; € X*.

— Assume that we have i > 1.
In fact, we have u;—; € X1, u;_ou;—1.X* € Xt and u;_» € S(X*). But
u;—1.X* € X7, therefore u;_» € X* (indeed X has a finite interpreting
delay). By decreasing induction we obtain u; € X .

A similar argument with the greater j such that u; = ¢, leads to the conclusion
Uop € X*.

We have established that the code X is (1,2n) and (2n, 1)-limited. According
to Proposition 1.1, X is a circular code. O
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Remark 2.6. Let w,w’ € X*, as a direct consequence of Proposition 2.5, if w
and w’ are conjugated, then they are in fact X-conjugated.

We have seen that the two notions of f.i.d. codes and codes with finite decipher-
ing delay are different. However, in the case of finite sets, we have the following
inclusion:

Corollary 2.7. Any finite f.i.d. code has a finite deciphering delay.

Proof. The proof is trivial: any finite circular code has a finite deciphering delay
(e.g. see [2]). d

If no restriction is imposed, the following examples show that the deciphering
delay and the interpreting delay are non-equivalent notions:

Example 2.8. The code {a,abc,b} has an interpreting delay 1 and has a deci-
phering delay 2.

Example 2.9. The prefix code {abcd, be, de, ba} (deciphering delay 0) has inter-
preting delay 2.

Remark 2.10. The converse of Proposition 2.5 does not hold in general. In fact,
the class of f.i.d. codes is strictly included in the class of limited codes, as shown
by the following example:

Example 2.11. The code X = {ba,bad,db} is limited, since it is circular and
finite ([2], p. 333), but any word belonging to X*.{bad} has an X-interpretation
of the form (e, w.ba, d) with w € X*.

2.3. A CHARACTERIZATION OF FINITE F.I.D. CODES

It is convenient to introduce the following notation: given a set X, we set
19(X) = Xpex el — 1).

Following proposition gives a property that circular codes must satisfy to be
f.i.d. codes.

Proposition 2.12. Let X be a finite circular code. The two following conditions
are equivalent:

1. X ¢s a fi.d. code.

2. XNS(X).Xt=0and XN XT.P(X)=0.

As we shall see below, condition 2 plays an important part in the proof of our main
result (Sect. 3). This result states that the class of f.i.d. codes is the intersection
between two suitable classes of codes. Before to prove Proposition 2.12, it is
convenient to introduce the following definition:

Definition 2.13. X C X* is an adjacent set if X N §(X).X* = 0 and X N
X*T.P(X)=0.
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FIGURE 4. Definition of .

Clearly, if € does not belong to X, the set X is a code. We say that X is an
adjacent code.
The proof of Proposition 2.12 applies the following proposition [6]:

Proposition 2.14. Let X be a finite circular code and w € X* a word such that
|lw|x = 1g(X). Then any X -interpretation of w is adjacent to (g, w,€).

Proof of Proposition 2.12.

e Assume that condition 1 holds. Since X is a fi.d. code:

- XNS(X).Xt #( then we have X N X. Xt # 0 (otherwise, we have
XN(S(X)\ X*).X*T # 0, which contradicts the fact that X is a f.i.d.
code).

— In a similar way, if X N XT.P(X) # § then we obtain X N X+.X £ 0.

Since X is a code, we have X N §(X). X" =0and X N X+.P(X) = 0.

e We show that condition 2 implies condition 1.

Assume that X is a finite circular code satisfying condition 2. If X has no finite
interpreting delay, there exist n 2 lg(X), m 20, z1,.. ., Zm € X, ¥1,-..,Un € X
and (o, ) € P(X) x S(X), with (e, 8) ¢ X* X X*, such that fz;...zna =
Y1.--Yn.

According to Proposition 2.14 (8,21 ...%m,a) is an X-interpretation of the
word y1 ...Yn which is adjacent to (£,¥41...yn,€). Let k,l be integers such that
Bxi...xx=y1.. .y (Wwe have Tpy1 .. . Tm@ = Yig1... Yn)-

If o ¢ X* then there exists a unique word o/ € X*P(X) such that zx o/ = yr
or x = yra’ with & > k and I’ > [ (see Fig. 4). Clearly this contradicts
XNX*t.P(X)=0.

In a similar way, if 8 ¢ X* then we get a contradiction with X N.S(X). X+ = 0.

As a consequence, if X satisfies condition 2, it satisfies 1.

Consequently conditions 1 and 2 are equivalent. This completes the proof of
Proposition 2.12. O

Example 2.15. In [1] the authors exhibit a circular code. This 20 elements code
has been introduced for representing trinucleotids coding proteins:
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AAC | AAT | ACC | ATC | ATT
CAG | CTC | CTG | GAA | GAC
GAG | GAT | GCC | GGC | GGT
GTA | GTC | GTT | TAC | TTC

Since all the words of this code have a length 3, this code satisfies condition 2.
Hence it has a finite interpreting delay — in fact the interpreting delay is 4.

3. THE DEFECT THEOREM FOR F.I.D. CODES
3.1. ADJACENT CODES

Given w € X* and given a code X, if X is an adjacent code then all the
X-interpretations of w are pairwise disjoint.

According to Proposition 2.5 and Proposition 2.12, we obtain a characterization
of finite f.i.d. codes:

Theorem 3.1. Let X be a finite subset of *. Then X is a f.i.d. code iff X is
both circular and adjacent.

The following example shows that the finiteness of the sets is required:

Example 3.2. The rational code a + bc + ce + da*b is circular and adjacent.
However it is not f.i.d. since for any n € N, (a™b,¢,c) is an interpretation of the
word a™bc € X"H1,

Remark 3.3. In fact we can prove that a rational code X is a fi.d. code iff it is
a both circular and adjacent and if it exists an integer n such that for any (s,p) €
S(X) x P(X) satisfying sX*pN X # 0 we have X"sN S(X) = pX™ N P(X) = 0.
The idea of the proof is that any X-interpretation of a long enough word w over
X induces a circular one for an X-factor of w.

Our main result consists in a defect theorem for fi.d. monoids. Before to
proceed to its proof, we need to establish the following lemma, which will be of a
common use.

Lemma 3.4. Let X C X*. Forallnm=>21,21,...,2, € X, ¥1,---,Ym € X and
(o, 8) € P(X) x S(X), the two following conditions hold:

(3) If XN X+.P(X) =0 then the equality
1. - TpnX =Y1..-Ym
implies

mzn+1l, z;,=y, 1<i<n), ®=Ynt1.--Ym-
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(i7) If X N S(X). Xt =0 then the equality

ﬁ.’Bl....’L‘n =Y. -Ym
implies

m2n+1l, Timin=vi(mMm—n+1<i<m), B=vy1-- . Ym—n.

Proof. By considering the reversed words, property (i) of Lemma 3.4 and property
(ii) of Lemma 3.4 are equivalent. We shall establish property (i) of Lemma 3.4.
Assume that there exists a (smallest) integer ¢ such that z; # y;.

If |y;] > |zi], we have y; € x;.P(X+) thus y; € X.P(X*), which contradicts
XNX+tP(X)=0. If |z;| > |y|, we have z; € X.P(X+) and we hold a similar
contradiction. As a consequence, we have z; = y; for 1 <i<nandm >=2n+1. It

follows that & = Yn+1 .. - Ym. Thus we have proved property (i) of Lemma 3.4. O

In fact, we first establish the defect theorem for adjacent codes. In a classical
way, in order to prove that adjacent codes satisfy the defect theorem, we first prove
that they are stable by intersections:

Proposition 3.5. The intersection of an arbitrary family of submonoids gener-
ated by adjacent codes is generated by an adjacent code.

Proof. Let (X;);cr be a family of adjacent codes. We denote by Y the base of the
free submonoid (., X;. We shall prove that the code Y is adjacent.

Let us assume that Y NY+T.P(Y) # 0. Let y € Y such that y = 41 ... yna with
n>0,v1,...,Y%n EY,QEW.

Let i > 0. By definition of Y, we have y,y1,...,y,. € X;” and a € P(X}).
Hence:

7 7
Y=Ti1---Tim; Y1---Yn =Tp1 - Tyg,, O = Q31 ... 04 p; Qs

with mi, ki >0, hi 20, i,y Times Th 15 -+ - o g, € Xiy Q150+, Q4 n, € X5 and
o; € P(Xz)\X:_
From y =y ... ynq, it follows that

’ /
Zi1.-Tim; = xi’l .. ‘xi,kial}l BEERNC 7R Fe 7

)

Since the code X; is adjacent, it satisfies the condition (i) of Lemma 3.4 therefore
a; = g, consequently a € X.

For all 4, we have o € X, hence o € Y*. But Y is a code, hence the equation
Y = y1...Yne implies n = 1 and & = ¢, which contradicts a € P—(Y—)_ We have
YNY*T.PY)=0.

In a symmetrical way, we have Y N S(Y).Y+ = 0.

As a consequence, the intersection of (X7);c is generated by an adjacent code.

O
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We say that a submonoid generated by an adjacent code is an adjacent sub-
monoid. Proposition 3.5 leads to introduce the notion of adjacent hull:

Definition 3.6. The adjacent hull of a subset X € ¥* is the smallest adjacent
submonoid containing X.

We prove the defect theorem for adjacent codes:

Theorem 3.7. The base Y of the adjacent hull of a finite set X satisfies
Y] < IX].

Proof. As in [2] (p. 49) we prove that each word in Y appears as a suffix of some
word in X.

Assume that there exists a word y € Y which is not in (4*)™".X. Let Z =
y (Y —y).

We shall prove that Z is an adjacent set.

Assume first that Z N Z+.P(Z) # 0. There exist n > 1, z,21,...,20 € Z,
z' € P(Z) such that z = 21 ... 2,2".

By definition of Z, there exist ,41,...,%4,8 €N, ¥, y1,...,y9n €Y —y, ¥y’ €
P(Y) such that z = y*y/, z; = y¥y; for 1< j<nand 2 = y*'y". Hence we hold

yiyl _ yi1y1 o yznyny1 y//. (2)

By Lemma 3.4, we hold ¢ > ¢; and y; = y, which is in contradiction with the
definition of y;. Hence ZN Z+.P(Z) = 0.

In a similar way Z N §(Z).Z+ = 0.

Consequently Z is an adjacent set and we have X € Z* C Y™* which yields a
contradiction.

Therefore each word in Y appears as the suffix of some word in X, hence
Y] < [X]. O

Example 3.8. The base of the adjacent hull of the suffix code {abe,ab,cd}
is {ab, cd, c}.

3.2. DEFECT THEOREM AND F.I.D. CODES

We shall prove that Theorem 3.1 allows a version of the defect theorem for f.i.d.
codes to be established:

We prove first, as in [3], that for any finite subset X C T*, there exists a
smallest f.i.d. code whose star contains X.

Indeed, given X C X%, let 7 be the set of f.i.d. submonoids Y* C X* such that
X CY*andY C F(X). Clearly, 7 is non-empty (X* € 7).

By Theorem 3.1, any Y € 7 is circular and adjacent. Let Z be the base of the
intersection of all these Y*. Then by Proposition 3.5, Z is adjacent. Moreover
since the intersection of an arbitrary family of submonoids generated by circular
codes is generated by a circular code ([6], p. 145), the set Z is circular. As Z is
included in F(X), Z is finite and thus fi.d.
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As a consequence, there exists a smallest element Y* in Z. For all fi.d. sub-
monoid @ containing X, we have QN F(X)* € 7, hence Y* C Q. Thus, Y* is the
smallest f.i.d. monoid containing X.

Hence, we can define the f.i.d. hull of a set:

Definition 3.9. Thef.i.d. hull of a subset X € X* is the smallest f.i.d. submonoid
containing X .

Theorem 3.10. The base Y of the f.i.d. hull of a finite set X satisfies |Y| < | X]|.
Proof. As in (3], we define the sequence (Z,) by:

Zy =X,

the base of the circular hull of Z, if n is even,

Znp1 = . .
the base of the adjacent hull of Z, if n is odd.
Since each Z; is included in F(X), the preceding sequence is stable from some
index. According to Proposition 2.12, if Z, = Z,4;, then Z, itself has a finite
interpreting delay (because it is a circular and adjacent finite code). Moreover Z
is the smallest submonoid which contains X (indeed each Z; must be included in
Y™, which is circular and adjacent). O
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