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ON CODES WITH FINITE INTERPRETING DELAY:
A DEFECT THEOREM

YANNICK GUESNET1

Abstract. We introducé two new classes of codes, namely adjacent
codes and codes with finite interpreting delay. For each class, we es-
tablish an extension of the defect theorem.

AMS Subject Classification. 94A45.

INTRODUCTION

In theoretical computer science, the questions connected to coding play a promi-
nent part, by their mathematical specificity as well as their potentiality of practical
applications. Prom this point of view, the aim of the theory of codes consists in
studying the properties concerning factorization of words. Remarkable results il-
lustrât e the relevance and the difficulty of this issue. S ome famous special classes
of codes, like bifix codes [2] and codes with finite deciphering delay [4], are directly
concerned. In fact, when reading sequentially a word, these types of sets allow an
efficient deciphering of the corresponding message.

A generalization of the notion of factorization of a word is the concept of in-
terprétation. An interprétation of a word w with respect to a code X is a tripiet
(s, d,p) such that s.d.p = w where d E X* and 5 (resp. p) is a proper suffix (resp.
proper prefix) of a word in X. This notion is natural when considering the different
configurations linked to the factors of w in X*. Clearly a word may have several
interprétations, but of course, in view of an easy deciphering, a minimal number of
interprétations is required. From this point of view, some famous classes of codes
have been introduced, namely codes with finite synchronization delay [5, 7] and
circular codes [2]. However, the unicity of interprétation is not reached.

In this paper, we introducé a new class of codes, namely codes with finite inter-
preting delay (f.i.d. codes for short), of which main specificity consists in avoiding
several interprétations. Unformally, if X is a code with finite interpreting delay,
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then any "long enough" word w in X* has a unique interprétation. In fact, we de-
fine the interpreting delay of X as the smallest integer n such that f3X*anXn = 0,
for ail pair of words (a, /?), with a prefix of a word of X, f3 suffix of a word of X
and such that at least a <£ X* or fi £ X*. In the point of view of the deciphering
of a message WiXW2 G X*, when an error of transmission occurs in x € X, the
f.i.d. codes allows the word VÜ2 to be recognized. Note that with uniformly syn-
chronous codes with delay n only the word ws, where u>2 = wfws with wf E Xn

and u>3 (E Xn.X*, can be recognized: we lose the information included in u/.
Clearly, apart form its powerful applications connected to deciphering, this class

of codes must satisfied strict theoretical criteria: investigating these properties is
the aim of our paper. In this matter, we prove a first remarkable resuit: any finit e
intersection of submonoids generated by f.i.d. codes is itself generated by a f.i.d.
code.

Moreover, it is well-known that each.of the preceding classes of codes, namely
prefix codes, codes with finite deciphering delay, circular codes, satisfi.es an exten-
sion of the defect theorem [2,3,6]. In our paper, we establish that f.i.d. codes also
satisfy a version of this theorem:

Theorem 1. For any finite subset X C E*, there exists a smallest code Y with
finite interpreting delay satisfying I c T and \Y\ ^\X\.

The proof relies on the characterization of the class of codes with finite inter-
preting delay as the intersection of the classical class of circular codes with the
"adjacent codes" which we define as follow: a non-empty set X is an adjacent
code iffjfn (S{X) \ {e}).X+ = 0 and X D X+.(P(X) \ {e}) = 0. Where S{X)
(P(X)) stands for the suffixes (préfixes) of the words of X. In fact we establish
an another extension of the defect theorem for these codes. Our method leads to
an algorithm for Computing the preceding code Y itself [9].

We now describe the contents of our paper. First section deals with classical
elementary notions from the free monoid theory.

In Section 2, we introducé codes with finite interpreting delay. Some basic
results are established. In particular we show that any code with finite interpreting
delay is circular [2].

In the last section, we show that codes with finite interpreting delay admit an
extension of the defect theorem.

1. PRELIMINARIES

1.1. DÉFINITIONS AND NOTATIONS

In all this paper, we dénote by E a finite alphabet, by E* the free monoid it
générâtes and by e the empty word.

For all subsets X and Y of E*, we dénote by X " ^ (XY'1) the set {v e
E*/3u e X,uv e Y} ({u e T,*/3v eY,uv £ X}) and by X.Y their concaténation
product.
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For any subset X of £*, we dénote by X* the submonoid generated by X and
byX+ t h e s e t X * \ { £ } .

Given a word W G E * , the set of all factors (préfixes, suffixes) of w is denoted
by F(w) (P(w)i S(w)). A set X is prefix (suffix) if no element of X is prefix
(suffix) of another one. If w G X+, we say that u G F(X) is an X-factor of w iff
tu G X*uX*. For any subset X, we dénote by P(X) (S(X)) the set P(X) \ {e}
(S(X)\{e}).

Two words w and wf are conjugated if there exist two words u and v such that
w = uv and w' = mt; if u, v G X* we say that w and it/ are X-conjugated.

Given a word w G £*, we dénote by \w\ the length of the word.
Let X C E* and let w G E*. An interprétation of w with respect to X is a

tripiet (s,d:p) such that s.d.p = w where d G X*,p G F ( X ) \ X a n d s G 5 ( X ) \ X .
Two X-interpretations (5,d,p) and (5'\d\p') of the word w are adjacent if there
exist di, ̂ 2 î d'i ) ^2 ^ ^ * s u c n that

d = dic?2, d = did2-) sd\ = s d^ and c?2p = ^2^ •

The interprétation (eyw,e) is the trivial interprétation oî w and an interprétation
of tu is proper if it is not adjacent to the trivial one.

Let w G E* and X be a code, we dénote by öxi'w) the maximal number of
pairwise disjoint X-interpretations of w.

1.2. SOME DEFINITIONS ON CODES

(i) A code X has a finite deciphering delay if there exists d ̂  0 such that

Vrr, s' eX, Vy<E Xd, Vu G E*, xyu G z'X* => x = a/.

(iz) A code X is circular if for ail n,m ̂  1, x i , . . . , xn G X, j / i , . . . , t/m G X,
p G S* and s G E + the equalities

sx2 • • • £nP = 2/i... ym, xi = ps

imply

n — m, p = e and x̂  = y* for i = 1 , . . . , n.

(ui) Let p, g ^ 0. A submonoid M of E* satisfies condition C(p,q) if for any
séquence ÎZO,IAI, . . •, Wp+g of words of E*, the condition ui-\Ui G M (1 ̂  i ^
p + g) implies up G M (Fig. 1). A code X is (p,q)-limited iî X* satisfies

A code X is limited if there exist p,q ̂  0 such that X is (p, g)-limited.

Proposition 1.1 ([2], p. 330). Any limited code is a circular code.
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FIGURE 1. Condition C(p, q).

1.3. THE DEFECT THEOREM AND AN EXTENSION TO CIRCULAR CODES

In this section, we are interested by the following problem. Let X be a subset
of S*. Assume that X is not a code. How can we compute a "convenient" code
generating the éléments of X.

One way to answer this question consists in constructing the smallest free sub-
monoid containing X. This is justified by the fact that the intersection of all free
submonoids containing X is still a free submonoid. In fact, we say that thîs free
submonoid is the free hull of X, whose main property is the famous defect theorem
(see e.g. [3], pp. 48-50):

Theorem 1.2 (Defect theorem). Let X C S*
hull of X. If X is not a code, then

and let Y be the base of the free

Several extensions of this resuit have been established for special well-known classes
of codes, due to the fact that the corresponding submonoids are closed under
finite intersections. Let's mention prefix codes, bifix codes and codes with finite
deciphering delay [3].

Actually, we are interested by the class of circular codes:
The circular hull of a set I c E* is the smallest submonoid generated by a

circular code containing X. We have the following resuit:

Theorem 1.3 (see e.g. [6]). Let X C £*
hull Then

and let Y be the base o f its circular

\Y\ < \X\.

Note that in this case we have not a strict inequality between the cardinality of Y
and the cardinality of X,

2. CODES WITH FINITE INTERPRETING DELAY

In this section, we introducé the notion of codes with finite interpreting delay
(f.i.d. codes for short) and we compare these codes with the preceding circular
codes.
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2.1. THE BASIC PROPERTIES

Définition 2.1. Let X be a code. X has a finite interpreting delay if there exists
m ^ 1 such that for ail a G P(X), (3 G S(X), {a, fi) £ X* x X*, we have:

/ 3 X * a H X m - 0 . (1)

The interpreting delay is the smallest integer m satisfying condition (1). In other
words, if m is the interpreting delay of a code X, for any X-interpretation (s, d,p)
of a word w G X171 we have s,p G X*; thus there exists no proper interprétation
of lu, £.e.

Although our notion of interpreting delay seems close to the concept of deciphering
delay (cf. e.g. [4]), it is different, as attested by the following example. The regular
code a + b + ab+c has an interpreting delay 1 but has no finite deciphering delay.
Other examples will be presented in Section 2.2.

Lemma 2.2. If a code has an interpreting delay n, it satisfies the condition (1)
of Définition 2.1 for ail m ^ n.

Proof Given a code X with interpreting delay n, assume that there exist an integer
m > n and (a,/?) G P(X) x S(X), (a, /?) ^ T x T such that /3X*a n X m ^ 0.
More precisely, let k G N and x\, X2, - • •, %k G X, yi,y2, • • • > 2/m G X such that

Without loss of gênerality, we assume that ƒ? ̂  X* (the case a ^ X* being exam-
ined in a symmetrical way). Let i be the smallest integer such that Y^=i \lfh+i\ >
|yö|, let (3f = (yi.. .yi)~xP and let j be the greatest integer which satisfies
\0xiX2 •.. XJ\ < \y!y2-..yn+i\-

If j = fc, then we set

otherwise we set

We hold (a',/3') G P(X) x S(X) and /3' ^ X* (indeed we have 0 = yi.. .yi/?' ^
X*). Moreover we have /?'xi... Xjoi = yi+\... 2/i+n (Fig. 2). This contradicts the
fact that X has finite interpreting delay n.

As a conséquence, X satisfies the condition (1) of Définition 2.1 for ail
m ^ n. D

We say that a submonoid M C S* generated by a f.i.d. code is a f.i.d. sub-
monoid.
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FIGURE 2. m greater than the interpreting delay (here 2).

First, we shall establish basic properties of f.i.d. codes.

Proposition 2.3. Given a f.i.d. code X, any non-empty subset of X is a f.i.d.
code. Moreover if X has interpreting delay n, then these subsets have an inter-
preting delay lower than or equal to n.

Proof. Let Xf be a non-empty subset of X. Trivially, Xf is a code. We shall prove
that Xf has a finite interpreting delay.

We dénote by n the interpreting delay of X. Let a G P(X'), f3 G S(Xf).
Assume that

(3Xf*anX'n ï®.

We shall establish that (a,/?) G X'* x X'*. Indeed, since X' c X, there exist
a G P(X), j3 G S(X) and a word w such that w € pX*a n Xn. But X has delay
n hence, by définition, we have (a, ƒ?) G X* x X*. This implies that the word w
may be factorized upon X* (as ft.w'.a with w' G X*) and X'* (w G X/n). Since
Xr c X, these factorizations must correspond. Thus we obtain /3, a E X'*.

We have proved that X1 has an interpreting delay lower than or equal to n. D

Remark 2.4. The classical algorithm of Sardinas and Patterson [8] can be modi-
fied in order to décide whether a finite code has a finite interpreting delay. Indeed,
let (Un), (Vn) be the séquences defined as indicated in the following:

- i .X\{e},

V1=X.P(X) \{e},

X has a finite interpreting delay iff there exists n
e ^ Ui<i<n(^ U ̂ ) - Indeed the condition e G L̂
the existence of an interprétation of type (a, u, e)

J U~lX for n > 1,

VnX~x for n ^ 1.

; 1 such that [/„ = Vn = 0 and
i > 0 (e € Vi) corresponds to



ON F.I.D. CODES: A DEFECT THEOREM 53

FIGURE 3. Some words in Un.

2.2. COMPARISON WITH CLASSICAL CLASSES OF CODES

In fact, as established by the following proposition, any f.i.d. code is circular.
More precisely, we establish that f.i.d. codes are limited.

Proposition 2.5. Any f.i.d: code is circular.

Proof. Let X be a code with interpreting delay n. We shall prove that the code
X is (1, 2n)-limited and (2n, l)-limited.

Let uo.ui,... ^ n + i be words of E* such that Ui-iUi G X*, 1 ^ i ^ 2n + 1.

• First, we assume that it0, u i , . . . , w2n+i £ S + . With such a condition, there
exists m ^ n such that m .. .u^n G X171 (indeed, we have ^1^2,^3^/4,...,
u2n-i^2n € X+). Since we have uoui G X*, we obtain u\ G S{X).X*. In a
similar way, we have u2n £ X*.P(X). But the code X has an interpreting
delay n, therefore, by Lemma 2.2 it satisfies condition (1) of Définition 2.1
for m ^ n, thus we have Ui,u2n £ X*.

• Now, we assume that there exists a smallest integer i G [0, 2n + 1] such that
Ui — £.

- If i = 0, since we have lio^i G X*, we have in fact u± G X*.
- If i = 1, we have u\ = e thus ui G X*.
- Assume that we have i > 1.

In fact, we have Ui-i G X+\ ui-2ui-1.X
l¥ G X + and m-2 G 5(X*). But

Ui-i.X* G X + , therefore Ui_2 G X + (indeed X has a finite interpreting
delay). By decreasing induction we obtain u\ G X + .

A similar argument with the greater j such that u3 = e, leads to the conclusion
u2n e X*.

We have established that the code X is (l,2n) and (2n, l)-limited. According
to Proposition 1.1, X is a circular code. •
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Remark 2.6. Let u;,^' G X*, as a direct conséquence of Proposition 2.5, if ta
and wf are conjugated, then they are in fact X-conjugated.

We have seen that the two notions of f.i.d. codes and codes with finite decipher-
ing delay are different. However, in the case of finite sets, we have the following
inclusion:

Corollary 2.7. Any finite f.i.d. code has a finite deciphering delay.

Proof. The proof is trivial: any finite circular code has a finite deciphering delay
(e.g. see [2]). D

If no restriction is imposed, the following examples show that the deciphering
delay and the interpreting delay are non-equivalent notions:

Example 2.8. The code {a,abc,b} has an interpreting delay 1 and has a deci-
phering delay 2.

Example 2.9. The prefix code {abcd^bc^dc^ba} (deciphering delay 0) has inter-
preting delay 2.

Remark 2.10. The converse of Proposition 2.5 does not hold in gênerai. In fact,
the class of f.i.d. codes is strictly included in the class of limited codes, as shown
by the following example:

Example 2.11. The code X — {ba^bad^db} is limited, since it is circular and
finite ([2], p. 333), but any word belonging to X*.{bad} has an X-interpretation
of the form (e, w.6a, d) with w G X*.

2.3. A CHARACTERIZATION OF FINITE F.I.D. CODES

It is convenient to introducé the following notation: given a set X, we set

Following proposition gives a property that circular codes must satisfy to be
f.i.d. codes.

Proposition 2.12. Let X be a finite circular code. The two following conditions
are equivalent:

1. X is a f.i.d. code.

2. I ï j J

As we shall see below, condition 2 plays an important part in the proof of our main
resuit (Sect. 3). This resuit states that the class of f.i.d. codes is the intersection
between two suitable classes of codes. Before to prove Proposition 2.12, it is
convenient to introducé the following définition:

Définition 2.13. X c E* is an adjacent set if I n S(X).X+ = 0 and X n



ON F.I.D. CODES: A DEFECT THEOREM 55

a

a yn

FIGURE 4. Définition of a'.

Clearly, if e does not belong to X, the set X is a code. We say that X is an
adjacent code.

The proof of Proposition 2.12 applies the following proposition [6]:

Proposition 2.14. Let X be a finite circular code and w G X* a word such that
\w\x ^ ^K-̂ 0 • Then any X-interprétation of w is adjacent to (e,w,£).

Proof of Proposition 2.12.

• Assume that condition 1 holds. Since X is a f.i.d. code:
- If X H S(X).X+ ^ 0 then we have X n X.X+ / 0 (otherwise, we have

X n (S(X) \ X*).X+ ^ 0, which contradicts the fact that X is a f.i.d.
code).

- In a similar way, if X O X+.P{X) ^ 0 then we obtain I
Since X is a code, we have X n S(X).X+ = 0 and X n X+.P(X) = 0.

• We show that condition 2 implies condition 1.

Assume that X is a finite circular code satisfying condition 2. If X has no finite
interpreting delay, there exist n > lg(X), m > 0, x\,...,xm G X, y\,...,yn e X
and (a,/?) G P(X) x S'(X), with (a,/3) £ X* x X*, such that /3a;i...xma =

According to Proposition 2.14 (/?, xi .. .xm , a) is an X-interpretation of the
word î / i . . . yn which is adjacent to (e, 2/1 .. . 2/n, £)• Let /c, / be integers such that
0x1...xk=y1...yl (we have xfc+1 . . . zmce = y^+i ... yn).

If a ^ X* then there exists a unique word a' € X*P(X) such that x^'Ot' = 2///
or Xfc' = y//a' with k' > k and Z; > Z (see Fig. 4). Clearly this contradicts
XDX+.P(X) - 0 .

In a similar way, if f3 £ X* then we get a contradiction with X H S(X).X+ = 0.
As a conséquence, if X satisfies condition 2, it satisfies 1.
Consequently conditions 1 and 2 are equivalent. This complètes the proof of

Proposition 2.12. D

Example 2.15. In [1] the authors exhibit a circular code. This 20 éléments code
has been introduced for representing trinucleotids coding proteins:
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AAC
CAG
GAG
GTA

AAT
CTC
GAT
GTC

ACC
CTG
GCC
GTT

ATC
GAA
GGC
TAC

ATT
GAC
GGT
TTC

Since all the words of this code have a length 3, this code satisfies condition 2.
Hence it has a finite interpreting delay - in fact the interpreting delay is 4.

3. THE DEFECT THEOREM FOR F.I.D. CODES

3.1. ADJACENT CODES

Given w G £* and given a code X, if X is an adjacent code then all the
X-interpretations of w are pairwise disjoint.

According to Proposition 2.5 and Proposition 2.12, we obtain a characterization
of finite f.i.d. codes:

Theorem 3.1. Let X be a finite subset of £*. Then X is a f.i.d. code iffX is
both circular and adjacent.

The following example shows that the finiteness of the sets is required:

Example 3.2. The rational code a + bc + ce + da*b is circular and adjacent.
However it is not f.i.d. since for any n G N, (an6, e, c) is an interprétation of the
word anbc e Xn+1.

Remark 3.3. In fact we can prove that a rational code X is a f.i.d. code iff it is
a both circular and adjacent and if it exists an integer n such that for any (s,p) €
~S(X) x P p Ô satisfying sX*p n l ^ w e have Xns H S(X) = pXn n P(X) = 0.
The idea of the proof is that any X-interpretation of a long enough word w over
X induces a circular one for an X-factor of w,

Our main resuit consists in a defect theorem for f.i.d. monoids. Before to
proceed to its proof, we need to establish the following lemma, which will be of a
common use.

Lemma 3.4. Let X C S*. For alln,m ^ 1, #1 , . . . ,xn G X, 2/1,... ,y
{oL,f$) 6 P(X) x S{X)} the two following conditions hold:

(i) If Xn X+.P{X) = 0 then the equalüy

X

x1 ...xnot = .ym

implies

m n 1, Xi=yz (1 n), a = yn+i... yn



ON F.I.D. CODES: A DEFECT THEOREM 57

(n) If X H S{X).X+ = 0 then the equalüy

fixi .-.xn=yi...ym

implies

= yi (m - n + 1 < i ^ m), /3 =

Proof. By considering the reversed words, property (i) of Lemma 3.4 and property
(ii) of Lemma 3.4 are equivalent. We shall establish property (i) of Lemma 3.4.

Assume that there exists a (smallest) integer i such that Xi ̂  yi.
If \yi\ > \xi\j we have yi G Xi.P{X+) thus yi G X.P(X+)} which contradicts

X n X+.P(X) = 0. If \xi\ > \yi\, we have Xi G X.P(X+) and we hold a similar
contradiction. As a conséquence, we have Xi = yi for 1 ̂  i ^ n and m ^ n + 1 . It
follows that a = y n + i . . . ym. Thus we have proved property (i) of Lemma 3.4. •

In fact, we first establish the defect theorem for adjacent codes. In a classical
way, in order to prove that adjacent codes satisfy the defect theorem, we first prove
that they are stable by intersections:

Proposition 3.5. The intersection of an arbitrary family of submonoids gêner-
ated by adjacent codes is generated by an adjacent code.

Proof Let (Xi)iej be a family of adjacent codes. We dénote by Y the base of the
free submonoid (~}ieI X*. We shall prove that the code Y is adjacent.

Let us assume that Y n Y+.P(Y) / 0. Let y e Y such that y = y i . . . yn® with

Let i > 0. By définition of y, we have y,yi,.. . ,yn G X^~ and a G P(X*).
Hence:

y = a î i , i . . . X i , m i , y i - - - y n = Z i i i - - - x ' i t k i , a = a i A . . . a i i h i 0 L i ,

uki > 0, hi > 0, cc^i,... ,x i )mi ,x-}1 , . . . .x(
ik. € X ,̂ a i )1}... ,a^hi € Xi and

From y = y i . . . yna, it follows that

Since the code Xi is adjacent, it satisfies the condition (i) of Lemma 3.4 therefore
ai = e, consequently a € X*.

For ail z, we have a e X*, hence a e Y*. But y is a code, hence the équation
y = yi . . . yna implies n = 1 and a = 6, which contradicts a G P(Y)- We have

In a symmetrical way, we have Y D S(Y).Y+ = 0.
As a conséquence, the intersection of (X*)iej is generated by an adjacent code.

•
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We say that a submonoid generated by an adjacent code is an adjacent sub-
monoid. Proposition 3.5 leads to introducé the notion of adjacent huil:

Définition 3.6. The adjacent hull of a subset X G £* is the smallest adjacent
submonoid containing X.

We prove the defect theorem for adjacent codes:

Theorem 3.7. The base Y of the adjacent hull of a finite set X satisfies
\Y\^\X\.

Proof As in [2] (p. 49) we prove that each word in Y appears as a suffix of some
word in X.

Assume that there exists a word y G Y which is not in (A*)~ .X. Let Z =
V*(Y-y).

We shall prove that Z is an adjacent set.
Assume first that Z n Z+.P(Z) ^ 0. There exist n ^ 1, z,zi,...,zn € Z,

zf G P(Z) such that z = z± ... znz
f.

By définition of Z, there exist z, i i , . . . , ini if G N, y', y i , . . . , yn E Y — y, y" G
P(Y) such that z = y%y', Zj = yïjyj for 1 ^ j ^ n and z1 = yz'yn. Hence we hold

y^' = yilyi-..yinynyi'y". (2)

By Lemma 3.4, we hold i > i\ and y\ — y, which is in contradiction with the
définition of y1. Hence Z H Z+.P(Z) = 0.

In a similar way Z H S{Z).Z+ = 0.
Consequently Z is an adjacent set and we have X C Z* C Y* which yields a

contradiction.
Therefore each word in Y appears as the suffix of some word in Xy hence

\Y\ ^ \X\. D

Example 3.8. The base of the adjacent hull of the suffix code {abc, ab, cd}
is

3.2. DEFECT THEOREM AND F.I.D. CODES

We shall prove that Theorem 3.1 allows a version of the defect theorem for f.i.d.
codes to be established:

We prove first, as in [3], that for any finite subset X C S*, there exists a
smallest f.i.d. code whose star contains X.

Indeed, given X C S*, l e t î be the set of f.i.d. submonoids Y* C E* such that
X C Y* and Y C F(X). Clearly, X is non-empty (S* G X).

By Theorem 3.1, any Y G T is circular and adjacent. Let Z be the base of the
intersection of all these Y*. Then by Proposition 3.5, Z is adjacent. Moreover
since the intersection of an arbitrary family of submonoids generated by circular
codes is generated by a circular code ([6], p. 145), the set Z is circular. As Z is
included in F(X), Z is finite and thus f.i.d.
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As a conséquence, there exists a smallest element Y* in X. For ail f.i.d. sub-
monoid Q containing X, we have Q O F(X)* G J, hence Y* C Q. Thus, Y* is the
smallest f.i.d. monoid containing X.

Hence, we can define the f.i.d. huil of a set:

Définition 3.9. The f.i.d. hull of a subset X G E* is the smallest f.i.d. submonoid
containing X.

Theorem 3.10. The base Y of the f.i.d. hull of a finite set X satisfies \Y\ ^ \X\.

Proof. As in [3], we define the séquence (Zn) by:

{ the base of the circular hull of Zn if n is even,

the base of the adjacent hull of Zn if n is odd.

Since each Zi is included in F(X), the preceding séquence is stable from some
index. According to Proposition 2.12, if Zn = Zn+\, then Zn itself has a finite
interpreting delay (because it is a circular and adjacent finite code). Moreover Z^
is the smallest submonoid which contains X (indeed each Zi must be included in
Y*, which is circular and adjacent). D
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