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ASYNCHRONOUS SLIDING BLOCK MAPS

MARIE-PIERRE BÉAL1 AND OLIVIER CARTON1

Abstract. We define a notion of asynchronous sliding block map that
can be realized by transducers labeled in A* x B*. We show that, under
some conditions, it is possible to synchronize this transducer by state
splitting, in order to get a transducer which defines the same sliding
block map and which is labeled in A x Bfc, where k is a constant
integer. In the case of a transducer with a strongly connected graph,
the synchronization process can be considered as an implementation of
an algorithm of Frougny and Sakarovitch for synchronization of rational
relations of bounded delay. The algorithm can be applied in the case
where the transducer has a constant integer transmission rate on cycles
and has a strongly connected graph. It keeps the locality of the input
automaton of the transducer. We show that the size of the sliding
window of the synchronous local map grows linearly during the process,
but that the size of the transducer is intrinsically exponential. In the
case of non strongly connected graphs, the algorithm of Frougny and
Sakarovitch does not keep the locality of the input automaton of the
transducer. We give another algorithm to solve this case without losing
the good dynamic properties that guaranty the state splitting process.

AMS Subject Classification. 37B10, 68Q45.

1. INTRODUCTION

We define a notion of asynchronous sliding block map. The classical notion
of sliding block map is the class of maps from Az to I?z, where A and B are
finite alphabets, which are continuous and invariant by the shift transformation.
The image of a bi-infinite séquence can be obtained by shifting a window of fixed
length along the séquence. We extend this définition to asynchronous sliding block
maps. These maps still use a sliding window but may output a variable number of
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symbols for each input symboL These maps can be realized by automata labeled
in A x B*, called transducers. Furthermore, the input automaton can be chosen
local, that is, it admits at most one bi-infinite path labeled by a given bi-infinite
word.

We study here the problem of the synchronization of these transducers, that is,
the construction of a synchronous transducer defining the same map. A synchro-
nous transducer is a transducer labeled in A x Bk> where k is a positive integer.
A synchronization of an asynchronous sliding block map is a synchronous sliding
block map which defines the same map between orbits of bi-infinite séquences. The
goal of the paper is to synchronize transducers while keeping the local property of
their input automaton.

The question of the synchronization of transducers goes back to the paper of
Elgot and Mezei [12] about rational relations realized by finite automata, and to the
result of Eilenberg and Schützenberger [11] which states that a length preserving
rational relation of A* x B* is a rational subset of (A x £?)*, or, equivalently, is
realized by a synchronous automaton (labeled 'm AxB). The proof of Eilenberg is
effective but is done on regular expressions and not directly on automata. In [13],
Frougny and Sakarovitch give an algorithm for synchronization of relations with
bounded length différence, the relations being between finite words or between
one-sided infinité words. This constitutes another proof of the previous result.
Their algorithm opérâtes directly on the transducer that realizes the relation.

Here we consider bi-infinite séquences recognized by automata that are without
any initial or final states (or, more precisely, with all states both initial and final).
A transducer is synchronizable if it has a constant integer transmission rate on
cycles.

We show that the algorithm given in [13] for synchronization of transducers can
be implemented with state splitting if the underlying graph of the automaton is
strongly connected. It is moreover possible to use only output state splitting, or
to use only input state splitting. A state splitting is a transformation of a graph
which is a an automorphism between the symbolic dynamic subshifts defined by
the graph before and after the transformation. The notion of state splitting,
appeared early in information theory, has been introduced to symbolic dynamics
by Williams. It has been since widely used, for example to solve some coding
problems (see for instance [1,17] and [15]). A state splitting keeps good properties
of an automaton like the property of being local. Thus, if the synchronization
is performed with state splitting and shifting letters of the ouput, it keeps the
locality of the input automaton of the transducer. State splitting and shifting has
already been used in coding theory to transform a transducer which has an input
with finite anticipation into a transducer that realizes the same function on bi-
infinite words and which has a deterministic input (see for instance [18], p. 1720).
However, the two problems are different.

We give a detailed présentation of the synchronization algorithm. We use the
notion of balance of a state introduced in [13], which controls the lookahead, i.e.
the number of symbols read in output (up to a division by a constant k) minus
the number of symbols read in input. In [13], the positive balances of states are
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decremented and the same treatment is applied after reversing the roles of the input
and output automata. We describe an implementation of this algorithm which
décréments the positive balances, incréments the négative ones and simultaneously
removes the e- transit ions.

We show that the size of the sliding window grows linearly during the process.
This in one of the main interest of the algorithm. However, we give an example of
an asynchronous map realized by a transducer such that any synchronized trans-
ducer with a local input automaton that realizes it has an exponential number of
states. The synchronization is therefore intrinsically exponential in the number of
states.

In the last section, we extend the result to the more gênerai case of transducers
with non strongly connected graphs. The algorithm of Sakarovitch and Prougny
[13] is not adequate to our purpose since it does not guarantee the locality of
the input of the transducer. This makes the recovering of the synchronous map,
defined by the way of a sliding block window, much more difHcult. We present
another algorithm which keeps the locality of the input of the transducer but needs
a stronger synchronization hypothesis.

A short version of this paper has been published in [6].

2. ASYNCHRONOUS MAPS AND TRANSDUCERS

2.1. ASYNCHRONOUS AND SYNCHRONOUS SLIDING BLOCK MAPS

Let A be an alphabet. A bi-infinite word of Az is a bi-infinite séquence (di)iez
of letters of A. The space Az is endowed with the usual product topology. This
topology can be defined by the distance d given by

,, , N ƒ 0 if üi = h for any i G Z
, &)iez) = j 2 - m i n { K , , a i ^ } otherwise.

The shift a is the continuous bijection from Az to Az defined by

The orbit of a word x G Az is the set {an(x) \ n e Z}. Two words are in the same
orbit if they differ only in some shifting of the indices. Thus, an orbit may be seen
as a bi-infinite word without explicit indexing. The set of all orbits is denoted
by "Au. An element of UA^ is also called a word. In the sequel, we identify a word
with its orbit but in order to avoid ambiguity, we refer to a word of Az or to a
word of UAW.

We now come to the définition of sliding block maps also called local maps
in the literature. We first recall the classical définition of sliding block maps
from Az to Bz. Then we give the définition of asynchronous and synchronous
sliding block maps from ^Au to WBW. We finally explain the connections between
these définitions.
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A function ƒ from Az to Bz is a sliding block map if there are integers m, a,
(ra is the memory and a is the anticipation), and a function ƒ : Al —> 5 , where
l ~ m-\-a, such that for all x G As, the image y = ƒ(x) of x is the bi-infinité word
of Bz defined by yn = /(xn_(m_!) • - - xn+a) fór all n € Z. Thus the letter yn only
dépends on the finite block xn_(m_i) • • 'Xn+a of x. The integer Z = m-\-a is called
the size of the so called sliding window. A sliding block map ƒ commutes with the
shift, Le., satisfies ƒ o a — a o f. Actually, a function from Az to Bz is a sliding
block map if and only if it is continuous and commutes with the shift.

l

x

variable length

FIGURE 1. Asynchronous sliding block map.

x

\

length k

FIGURE 2. A &-synchronous sliding block map.

A function ƒ from "A^ to UBW is a asynchronous sliding block map if there are
an integer l and a function ƒ : Al —» B* such that the image of a word x of WA" is
the concaténation of the finite words /(xn_(j_i) * • -xn) for all n e Z (see Fig. 1).
The integer l is also called the size of the sliding window. The function ƒ is called
a k-synchronous sliding block map if the function ƒ is actually uniform, that is a
function from Al to Bk (see Fig. 2) for some fixed integer k. It is synchronous if
it is fc-synchronous for some integer k.

Both définitions are very similar but in the case of maps from Az to Bz, the
image of a block by ƒ is always a letter while it can be an arbitrary word in
the case of fonctions from UAW to WBU. If ƒ is a sliding block map from Az to
Bz where B = Ck for some integer k1 it naturally induces a synchronous sliding
block map from ^A" to ^C^. This function maps a word x to the word obtained
by concatenating the blocks of length k of the image of x by ƒ. This function,
which is also called ƒ, is a fc-synchronous sliding block map. Conversely, if ƒ is a
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/c-synchronous sliding block map from ^A^ to ^C", it also defines a sliding block
map from Az to * Bz where B = Ck. In the sequel, we only consider asynchronous
sliding block maps from WAW to WB" and we simply call them sliding block maps.

If ƒ is a sliding block map from ^A^ to W5W , there may exist two different
fonctions ƒ and ƒ' from Al and Al to B* such that the image of a word x of ^A™
is the concaténation of the finite words /(a:n_^_i) • • - xn) or / /(^n-(z /-i) " " '%n)-
In particular, one function, say ƒ', may be uniform from Al to Bk while the other,
ƒ, may not be uniform.

The purpose of this paper is to explain how to find a uniform function ƒ' which
yields the same function ƒ, when the asynchronous sliding block map ƒ has suitable
properties and is described by a function ƒ which is not uniform.

2.2. TRANSDUCERS

In this section we consider automata labeled in A* x B*. Automata considered
in the literature are often labeled in A x B* instead of A* x B* but most of the
results that we present here does not require this assumption. The empty word is
denoted by e.

A transducer T = (V, E) is a finite state machine with V as set of vertices, and
E as set of edges labeled in A* x B*. Each edge (p, (w, v), q) is labeled by a pair
of words {uyv) whose first component is the input while the second is the output.
The sum |u| + H is the size of the transition. The size \T\ of a transducer T is
the sum of the sizes of its transitions.

Such a transducer defines a relation from UAU to UBW made of all pairs (x,y)
such that (x, y) is the label of a bi-infinite path of the transducer.

We always assume that transducers are e-f ree, that is, have no (e,e)-labeled
edges. Classical algorithms from automata theory are known to remove the (e, e)-
labeled edges without changing the relation defined by the transducer [2].

An automaton without any ^-transition is said to be (m, a)-local, where m and a
are integers, iff two finite paths of length n = m + a and with the same label:
((Pi,ai,Pi+i))o<i<n-i and ((P',ai,p-+1))o<i<n-i satisfy pm = p'm. An automaton
is said to be local if it is (m, a)-local for some m and a. This property is equivalent
to the property of the existence of at most one bi-infinite path labeled by a given
bi-infinite word. J^n automaton with e-transitions is said to be local if there is at
most one bi-infinite path labeled by a given bi-infinite word.

The input automaton of the transducer is the automaton obtained by removing
the second component of the edge label. The relation defined by a transducer may
not be a function. This is however always true if the input automaton is a local
automaton.

Each asynchronous sliding block map from ^A" to W 5 U can be defined by a
transducer T labeled i n i x F . Let ƒ be an asynchronous sliding block defined
as above and let l be the size of its sliding window. Let m and a be non-négative
integers such that m + a = l — 1. We define V as the set Al~x. The edges of T are

. . . am+a) > (a 2 . . .
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The input automaton of this transducer is a De Bruin graph which is in genera! not
deterministic. It is deterministic whenever a = 0. It is an (m, a)-local automaton.
This transducer realizes the function ƒ.

For any asynchronous sliding block map, it is moreover possible to choose ra =
l — 1 and a = 0 in the définition of the transducer T. In this case, the input
automaton of T is a deterministic automaton.

Let k be a positive integer. A k-synchronous transducer is a transducer labeled
in A x Bk. On each edge, the number of output labels is k times the number of
input ones: it has a constant transmission rate on each edge equal to the integer k,
By the previous construction of the transducer T, a £-synchronous sliding block
map from "A" to W5W can be defined by a /c-synchronous transducer.

We have considered maps defined on "A". Sometimes, maps are defined on the
set of orbits of a subshift of finite type S of Az. A subshift of finite type is a subset
of Az which can be characterized by a finite number of forbidden finite blocks. It
is a closed subset of Az invariant by the shift a. A subshift of finite type can be
recognized by a local automaton. A canonical example of subshift of finite type is
the set of bi-infmite paths of a finite automaton. It is included in Ez, where the
alphabet E is the set of edges of the automaton. Equivalently, it is also the set of
labels of bi-infinite paths of a finite automaton in which edges have distinct labels.

If ƒ is an asynchronous sliding block map from 5 to UBU, it can be defined
by an asynchronous transducer whose input automaton is a local automaton
recognizing 5.

Conversely any asynchronous transducer labeled in A x B* with a local input
automaton defines an asynchronous sliding block map. If the input automaton is
(m, a)-local, one can define it with a sliding window of length m + a + 1. If the
transducer is fc-synchronous, it defines a fc-synchronous sliding block map from w i w

to W 5 W .

xx

FIGURE.3. Asynchronous transducer and map.

Example 1. Let A — {a, b} and B = {x,y>z,t}. An example of an asynchronous
sliding block map from Wi4w to ^B" realized by the asynchronous transducer of
Figure 3.

Example 2. Let A — {a, b} and B = {x, y, z, t}. An example of a 2-synchronous
sliding block map from w i w to ^B" realized by the 2-synchronous transducer of
Figure 4-
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FIGURE 4. Synchronous transducer and map.

3. SYNCHRONIZATION OF TRANSITIVE TRANSDUCERS

In this section, we consider transitive transducers^ that is transducers whose
graphs are strongly connected. If the input automaton of the transducer is a local
automaton, it recognizes a transitive shift of flnite type. We describe an algorithm
which synchronizes transducers with a constant transmission rate on cycles. The
property of having a constant transmission rate on cycles is hence a sufncient
condition. It is not always a necessary condition since any transducer labelled
in A* x b* can be synchronized. We conjecture that the condition is a necessary
condition if the function realized by the transducer is not constant.

This algorithm uses state splitting and thus keeps the local property of the
input automaton. Non-transitive transducers are considered in Section 4.

3.1. TRANSMISSION RATE

Let T be a transducer. We define the transmission rate of a path labeled by
(u,v) as the ratio |i?|/|it|. Recall that a cycle is a path beginning at and ending in
a same state. A transducer has a constant transmission rate on cycles if all cycles
have the same transmission rate. This property can be checked on simple cycles
only. A transducer has a constant transmission rate on confluent paths if for any
states p and q, ail paths beginning at p and ending in q have the same transmission
rate (depending on p and q). If the transducer is transitive, a constant transmission
rate on cycles is equivalent to a constant transmission rate on confluent paths.

We first give an algorithm to check if a transitive transducer has a constant
integer transmission rate on confluent paths (or on cycles). This can be done
by a depth first search. A first exploration can be done to find a cycle and get
then an integer k candidate to be the constant transmission rate. We begin the
exploration of the graph at some state i. We define a function balance from V to
Z. This function associâtes with any state q an integer balance(g) such that for
any states p and #, the différence balance(ç) — balance(p) is equal to \v\ — k\u\ for
any path from p to q labeled (u,v). Since the graph is strongly connected, this
property defines the function balance up to an additive constant. The balances
are completely defined if we fix balance(i) = 0.
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Dur ing the exploration of the graph, we can compute for each state q an integer
balance(g) as follows:

• balance(i) is equal to 0;
• balance(g) is equal to \v\ — k\u\ for any path from i to q labeled by (u,v).

Her e is the algorithm to compute the balances of the states. The main procedure
BALANCE sets the value of balance(i) and the recursive function VisiT performs
the depth first search. The boolean constant-rate initialized to TRUE indicates at
the end if the transducer has a constant rate on cycles.
BALANCE
begin

constant-rate:— TRUE;
for ail states q do visited[g]:= FALSE;
balance [i] := 0;
Visrr(i) ;

end

VISIT(P)
begin

visited[p] := TRUE;
for each edge (p, (u, v),q) do

if visited[ç] — FALSE then
begin
balance [g] := balance [p] + \v\ — k\u\ ;
ViSïT(g) ;
end

else if balance[#] ^ balance[p] + \v\ — k\u\ then
constant-rate := FALSE;

end

The value of the balance is not important. Only the différence of two values is
independent of the exploration order. If the transducer has n states and output
labels of edges of length at most L, the différence of balances of any two states is
bounded by Ln.

3.2. DESCRIPTION OF THE ALGORITHM

We now describe the algorithm which synchronizes transitive transducers with
a constant transmission rate on cycle. This algorithm uses state splitting that we
now define. We first defïne the opération of output state splitting in an automaton
T — [V, E). Let q be a vertex of T and let O (resp. /) be the set of edges going
out of q (resp. coming in q). Let O = Of + 0" be a partition of O. The opération
of output state splitting relative to the partition {O* ,ON) transforms T into the
graph T = (V, E') where V' = (V\{q})U{q\ q"} is obtained from V by splitting
state q into two states qf and q", and where Ef is defined as follows:
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all edges of E that are not incident to g are lëft unchanged;
we give to both q1 and qtf copies of the input edges of q;
we distribute the output edges of q between q' and qff according to the
partition of O into Of and O". We dénote U' and U" the sets of output
edges of qf and qff respectively: Ur = {(q\x,p) \ (q,x,p) G O'} and Uff =
{(<Az,p)|(ç,z,p)€O"}(seeFig. 5).

Uf

O"

Before After

U"

FIGURE 5. Output state splitting.

The opération of input state splitting is obtained by reversing the roles played
by input and output edges. It is well-known that if an automaton is (m,a)-local,
it is [va, a + l)-local after an output state splitting and (m + l,a)-local after an
input state splitting. A deterministic (resp. co determinist ie) automaton remains
deterministic (resp. co deterministic) after an output (resp. input) splitting. The
définitions can be generalized to define a multiple state splitting, when a state is
split into more than two states according to a partition which has more than two
parts.

We do input (resp. output) state splittings of states q of a transducer T only if
the input (resp. output) edges of q have a non empty output labeling. An input
state splitting of a state q is admissible if it is done according to a partition which is
finer than the partition of the input edges defined by the last letter of their output
label. An output state splitting of a state q is admissible if it is done according
to a partition which is finer than the partition of the output edges defined by the
first letter of their output label. Unless otherwise stated, we do admissible input
(resp. output) state splitting corresponding to the partition defined by the last
letter of the output label of input edges (resp. of the first letter of the output label
of the output edges).

Examples of these two opérations are described in Figure 6, where a, b and c are
letters of B and u, u', v, v\ wy w', r, r', t and tf are finite words of B*. The state
q is labeled by its balance p, which remains unchanged after the transformation.

We now define another opération on a transducer T. In order to synchronize
the transducer, we are going to décrément or incrément the balance of some states.

We first describe the opérations called incrémentation and décrémentation in
the case where all edges of the transducer are labeled by A+ x 5*. The gênerai case
is a bit more technical and it will be described just after. These two opérations
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u\u

v\v

v\vl -f v r w\cw'

Before After

FIGURE 6. An admissible output state splitting.

t\atf _ t t\tfa

v\v'a w\w'
Before After

FIGURE 7. Incrémentation of a state.

are local opérations leaving the graph and the input labels unchanged. An incré-
mentation of a state of balance p can be done if and only if all the output labels of
its output edges begin with the same first letter. This letter is removed and put
as last letter of the output label of the input edges. The balance is incremented
by 1. The décrémentation is defined similarly. The incrémentation is illustrated
in Figure 7. In the figure, the states are labeled with their balance.

u\ufa

Before After

FIGURE 8. An e-free incrémentation.

We now describe the incrémentation in the case where some edges may be input
labeled by e. We have supposed that the transducer is e-free but some (e, e)-labeled
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edges may appear in an incrémentation made as described above. This can happen
if an output edge is labeled by (e, a)- So, we describe a modified version which
keeps the £-free property of the transducer.

If an edge (#, (e,e),g') appears in the incrémentation of state g, it is removed
and replaced by edges (ç", (u, v), qf), for each input edge (qn, (u, v),q) of q. If the
input automaton is local before the incrémentation, it is still local after it. An
e-free incrémentation is illustrated in Figure 8, where a is a letter of B and u, u',
v, v', Wy vJ', t and tf are finite words of B*.

We now describe the synchronization algorithm by state splitting for a transitive
transducer labeled in 4̂* x B*, and with a constant integer transmission rate k on
cycles. A description of the input and output data is the following:

• INPUT:
A transitive asynchronous transducer T labeled in A* x B* with a constant
transmission rate k on cycles which defines an asynchronous sliding block
map ƒ ïromUJAÜJ to "B".

• OUTPUT:
A transitive synchronous transducer T'labeled in A x Bk. The transducer T'
defines the same fonction ƒ, which is /c-synchronous. If the input automaton
of T is local, the input automaton of T7 is also local.

The transducer T' is obtained by state splitting. Furthermore, it is possible to do
only output (resp. input) state splitting. Then, if the input automaton of T is
deterministic (resp. codeterministic) and local, the input automaton of T' is also
deterministic (resp. codeterministic) and local.

We dénote DECREMENT )̂ and INCREMENT(Q) the procedures corresponding
to the opérations described above, applied to state q. We dénote by INPUT-
SPLIT(Ç; <ji, <?2, • • • , qT) and OUTPUT-SPLlT(g; qi:q2,... , qr) the corresponding pro-
cedures applied to a state q, split into states q1,q2i... ,qr- The synchronization
algorithm is the following.

SYNCHRONIZE(T)
begin

for i := L downto 1 do
for each state q of balance i or - i do

if balance(ç) < 0 then
begin
OUTPUT-SPLlT(g;çi ,g2 î . . . , 2 r ) ;
for ail qj (1 < j < r) d o INCREMENT (ÇJ) ;
end

else if balance(ç) > 0 then
begin

for ail Qj (1 < j < r) do DECREMENT (
end

end
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The soundness of the algorithm is based on the following points:
• First, and this is the key point of the algorithm, a state with a négative

balance, to be split and incremented, does not have outgoing edges with an
empty output label. In fact, such an edge would arrive in a state with a
strictly lower balance. This is not possible since states with lower balance
are treated first. The same is true (mutatis mutandis) for states with positive
balances.

• Second, décrémentations (resp. incrémentations) of states q or q1, <?2, • • • , qr

are applied after an eventual admissible output (resp. input) state splitting,
and they can actually be done. The transducer is synchronized when all
balances are equal (to zero).

Remark 3. It is possible to synchronize the transducer by doing only output (or
only input) state splittings. To do only output state splittings for example, we begin
with a positive distribution of balances.

Remark 4. For each value of i of the outer loop} ail states with balances equal
to i (resp. —i) are split and decrernented (resp. incremented). Actually all the
splittings of these states are independent and can therefore be performed simulta-
neously. Such a step is called a round of state splitting (see [18], p. 1693). This
also holds for incrémentations and décrémentations. When incrémentations and
décrémentations are donc simultaneously, the beginning and the end of the output
labels can be modified in parallel since there is no concurrent write.

3.3. EVALUATION OF THE COMPLEXITY

In this section, we study the complexity of the procedure SYNCHRONIZE when
the input automaton of the transducer is local. We flrst show that the size of the
sliding window grows linearly. However, we exhibit examples showing that there
is an exponential growth of the number of states.

This result can be compared to that obtained by Ashley in [4] (see also [3])
where he introduces a new construction of finite-state encoders for input con-
strained channels that guarantees an encodér with a window length that is linear
in the number n of states of the smallest graph representing the constraint. His
construction gives a spécification of t rounds of state splitting to be performed
on the graph, where t is linear in n, even if the number of states of the encoder
is exponential. The same situation appears here: even if the number of states of
the transducer that we get has an exponential number of states, it is possible to
do a number of rounds of state splitting which is bounded by the maximal différ-
ence between the balances of the states. This result is interesting since the size
of the window of the synchronized map that we get dépends on the number of
rounds of state-splitting that are performed, and not on the number of states of
the transducer.

Let T be an asynchronous transducer whose input automaton is local. Recall
that \T\ is the sum of the sizes of the transitions of T. Let n be the number of
states of T. Let ƒ be the asynchronous map from ^A° to W5W defined by the



ASYNCHRONOUS SLIDING BLOCK MAPS 151

transducer and let l be the size of its sliding window. It is known that l = O(n2)
(see for example [5]). Let T' be the synchronized transducer. Let M be the
maximal différence between the balances of states.

Proposition 5. The size of the window of the synchronized map obtained is bounded
by M + 1

We point out that if the transducer T is labeled in A x B* and the lengths of
the output labels are bounded by K, the integer M is bounded by Kn. Indeed,
the rate k is less than K, and for each edge (p, (a,t?),ç), the différence between
the balances of p and q is less than \v\—k<K. In the case where the sizes of
the transitions are not bounded, the maximal différence between the balances of
any two states is bounded by the sum of the sizes of the transitions of a simple
path in T, which is himself upper bounded by \T\. This shows that the size of the
window grows linearly in \T\.

Proof. Let M + be the maximum of positive balances of T, and M the maximum
of the absolute values of négative balances. Thus, the integer M is equal to
M + -f M~. If the input automaton of T is (m,a)-local, the input automaton
of T' is (m + M + , a + M~)-local. Indeed, a single round of output state splitting
increases the anticipation of a local automaton by at most one and a single round
of input state splitting increases the memory of a local automaton by at most one.
The size of the window of the synchronized map is then bounded by M+-\-M~-\-l =
M + L D

The following example shows that the number of states of the transducer grows
exponentially when it is synchronized. It actually proves that this blow up is
intrinsic to the synchronization. This does not depend of the algorithm used to
construct the transducer.

Proposition 6. There are n-state synchronizable transducers with a local input
such that any synchronized transducer with a local input that defines the same map
from "A" to WBU has an exponential number of states.

f\ffw f\ff f\ff

FIGURE 9. Transducer T.

Proof. Let A be the alphabet {a, 6,.c, d, e, ƒ} and let us consider the transducer T
of Figure 9. This transducer has 2n states and is synchronizable with rate 1. Let T'
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be any synchronized (or letter-to-letter) transducer with a local input automaton
that defines the same map as T from WAW to UAW'.

We suppose that the input automaton of T' is (m, a)-local. We can assume
that m = a and that m is greater than n. For each state q of T', we define the set.
Ü7g as the set of pairs (ui,ur) or words of length m such that u\uT labels a path
going through state q after reading m. Since the input automaton is (m,m)-local
the sets Eq are pairwise disjoint. Furt hermore, if bot h pairs (ui,ür) and {uf

t1u
!
r)

belong to Eq, both pairs (ui,u'r) and {u[,ur) also belong to Eq.
Let wi and w[ be two different words of length n/4 over {a, 6} and let uv and

u£ be two different words of length n/4 over {d, e}. Let us define the words ui,
ur, u[ and v!r of length m by

m - 3 r i / 4 n / 2 ur = cn/2wrd
m

We suppose that both pairs (ui,ur) and (u^u^) belong to Eq for some state q.
There are four paths 7i, 72, 73 and 74 as shown in Figure 10 where vi,vr, v\ and vl

r

nft •

'\Vr
m-

»•

dw

•

\Xr

74

w'r\v'r

FIGURE 10. Paths 71, 72, 73 and 74.

are finite words of length n/4, £j, tr, t[ and t!
r are finite words of length n/2, x\

and x[ are left-infinite words and xr and x̂ , are right-infinite words. Paths 71
and 72 end in q while paths 73 and 74 start at q. Since the respective images
by ƒ oï^awid^Wrd", "awl^w^d", ÜJawicnw!rd

LÜ and ^aw^w^ are "awiWrd",
"awiwld™, uawiwf

rd
u and waw[wTdU), we get the following equalities by considering

the paths 7173, 7274, 7i74 and 7273

xiVititrvrxr =

It follows that we have either:

trVrXr = XWrd^

tf
rv

f
rx'r =xwf

rd
ÜJ,
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where x is a common suffix to wi and w[, or:

153

where y is a common prefix to wr and wf
r. Since wr and wf

r are different and
the words wi and w[ are also different, the words tr and tf

r must be different.
This implies that the states qf and qn are also different since the automaton is
unambiguous (or lossless).

We finish the proof with a variant of the pigeon hole principle. Let us now
choose N = 2n/4 distinct words u>z,i, v^2,... WI,N of length n/4 over {a, b} and let
iV distinct words wr,i,wr,2, • • • ,tUr,JV of length n/4 over {d, e}. Let 1 < À < 2.
Let us assume that we have always less than An^4 pairs {wi^,wr^) that belong
to a same set Eq. Then the number of states of T' is r > (2/A)(n/4\ which is
exponential. Otherwise, there is a state q such that Eq contains at least À71/4

pairs (w^i^Wr^i). We have proved that this implies that the Xn^4 states qVi are all
distinct. We find again an exponential number of states. D

3.4. EXAMPLE

b\uvw

e\txyz

e\txyz

FIGURE 11. Transducer T and the output state splitting.

We give an example of synchronization. We consider the transducer T pictured
in the left of Figure 11. In the figure, each symbol represents one letter and states
are labeled by their balance. This transducer is a candidate to be synchronized
with k = 2. The state with balance —1 is output-split into three states (see the
right of Fig. 11). Then, each of the three new states are incremented and their
balance becomes 0 (see left of Fig. 12). Finally, the last state with balance 1 does
not need to be split since it only has one incoming edge. It is just decremented. The
synchronized transducer is pictured in the right of Fig. 12). The input automaton
is (0, l)-local. The 2-synchronous sliding block map ƒ defined has a window of
length 2.
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b\vw b\vw

c\yx a\rt

e\xyz

FIGURE 12. Incrémentation and décrémentation.

4. SYNCHRONIZATION OF NON-TRANSITIVE TRANSDUCERS

We finally consider the case of transducers labeled in A* x B* with a not neces-
sarily strongly connected graph. An algorithm for synchronizing a non-transitive
transitive transducer has already been given in [13]. This algorithm uses a step of
duplication of states which is not a state splitting process and therefore does not
keep the important property of locality of the input automaton of the transducer.
We describe another algorithm that synchronizes a non-transitive transducer, This
algorithm keeps the local property of the input automaton but it needs a stronger
hypothesis on the transducer.

We give a new condition for a transducer to be synchronizable while keeping the
local property of the input automaton of the transducer. As in the case of transitive
transducer, we first suppose that the transducer has a constant transmission rate k
on cycles. However, this condition is not sufficient for non-transitive transducers.

An undirected cycle of a transducer T is a cycle in T viewed as an undirected
graph. In such a cycle, each edge may be used in its usual direction or in the other
direction.

Let T be a transducer which has a constant transmission rate k. With each
undirected cycle c in the graph, we associate an integer val(c) called the valuation
of the cycle and computed as follows. We fix some orientation for the cycle c and
the valuation of the cycle is equal to the sum of the valuations of all edges of the
cycle. The valuation of an edge (p, (u, v), q) is equal to \v\ — k\u\ if the orientation
of the cycle coincides with those of the edge, and is equal to its opposite otherwise.
The valuation of the cycle dépends on the orientation chosen for the cycle.

It is well-known that the set of all undirected cycles of a graphs forms a vector
space whose dimension is called the cyclomatic number of the graph [8]. Our
valuation is then a linear for m on this vector space.
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We suppose that the transducer T has a constant transmission rate k on cycles.
The transducer T is said to have a constant transmission rate on undirected cycle
if the following equality holds for any undirected cycle c

val(c) = 0.

We first make some comments about this property. We first point out that if the
transducer T is connected, it always has a constant transmission rate on undirected
cycles if it already has a constant transmission rate k on cycles. Indeed, if the
graph is strongly connected, each undirected cycle can be decomposed as a sum
of directed cycles. Second, it suffices to check this property on simple undirected
cycles since the valuation is a linear form. This can be done by a straightforward
adaptation of the algorithm BALANCE given in Section 3.1.

y\cc

x\ab ( 7 0 )T^_ SX^ 1 } J t\ef
z\d

FIGURE 13. Transducer T.

Let 7 and 7' are two paths from p to p' respectively labeled by u\v and v!\vf.
We can then consider the undirected cycle 77' where 7' is the path 7' in reverse
direction. If the transducer has a constant transmission rate on undirected cycles,
one has \v\ =-\v'\. However, the converse does not hold as shows the transducer
pictured in Figure 13. This transducer has a constant transmission rate of 2 on
cycles but it does not have a constant transmission rate on undirected cycles. It
can be proved that the function realized by this transducer cannot be realized by
a transducer which is local and synchronous.

We claim that any transducer which has a constant transmission rate on undi-
rected cycles can be synchronized using state splittings and incrémentations and
décrémentations. We just sketch the procedure. It should be noticed that a con-
stant transmission rate on undirected cycles is neither changed by a state splitting
or by an incrémentation. Thus, the property remains true along the procedure.
The procedure treats successively each connected component of the transducer.
A first connected component is synchronized using the algorithm SYNCHRONIZE
given in Section 3.2. Then, at each step, a new connected component is also
synchronized in the same way. However, it may happen that paths between the
newly synchronized connected component and the already synchronized connected
components do not have a transmission rate equal to k. In that case, all states
of the treated connected component are split and incremented as many times as
needed so that all paths have a transmission rate equal to k. The key point to
be noticed is that the property of having a constant transmission rate on undi-
rected cycles insures that all paths between the newly synchronized connected
component and the old ones need the same number of incrémentations. When ail



156 M.-P. BÉAL AND O. CARTON

connected components have been treated that way, the transducer is completely
synchronized.

We would like to thank the anonymous référées for very helpful comments and sugges-
tions.
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