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APPROXIMATION ALGORITHMS FOR THE TRAVELING
SALESMAN PROBLEM WITH RANGE CONDITION *

D. ArRuN KuMar!? AND C. PANDU RANGAN?

Abstract. We prove that the Christofides algorithm gives a % approx-
imation ratio for the special case of traveling salesman problem (TSP)
in which the maximum weight in the given graph is at most twice the
minimum weight for the odd degree restricted graphs. A graph is odd
degree restricted if the number of odd degree vertices in any minimum
spanning tree of the given graph is less than ; times the number of ver-
tices in the graph. We prove that the Christofides algorithm is more
efficient (in terms of runtime) than the previous existing algorithms for
this special case of the traveling salesman problem. Secondly, we apply
the concept of stability of approximation to this special case of traveling
salesman problem in order to partition the set of all instances of TSP
into an infinite spectrum of classes according to their approximability.

AMS Subject Classification. 68W25, 05C85, 68W40.

1. INTRODUCTION

In the Traveling Salesman Problem (“TSP”), we are given n vertices and for
each pair {i,j} of distinct vertices a weight w(z, j). We desire a closed path that
visits each vertex exactly once and incurs a least weight (which is the sum of the
weights along the path).

In the metric TSP the vertices lie in a metric space (i.e. the distances satisfy the
triangle inequality). In the Fuclidean TSP the vertices lie in R? (or more generally
in R? for some d). Note that the Euclidean TSP is a subclass of the metric TSP.
Unfortunately, even the Euclidean TSP is NP-hard [7,11] and the metric TSP
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is APX-hard [12]. Christofides [5] designed an approzimation algorithm that on
every instance of the metric TSP computes a tour of cost at most 1.5 times the
optimum. Improving this performance has been a major open problem for more
than two decades.

Many special cases of the traveling salesman problem appear in the literature.
In [12], the traveling salesman problem in which the distances are either one or two
was considered. There, a polynomial-time approximation algorithm with worst-
case approximation ratio of % was presented. In [3], the authors considered the
TSP with sharpened triangle inequality. The sharpened triangle inequality is
defined as the following condition on the weights of the edges,

w{u,v}) < 8- (w{u,z}) + w({z,v}))
for all vertices u,v,z and £ <3 < 1.

The authors presented different algorithms, where the approximation ratio lies
between 1 and % depending on 3. If 8 > 1 then the resulting problem is called
the TSP with relaxed triangle inequality which has been considered in [1,2,4].
It has been proved that the relaxed triangle inequality can be approximated in
polynomial time with approximation ratio min{44, % B%}.

In this paper we study an interesting case of the traveling salesman problem, in
which the distances satisfy the following range condition. Throughout this paper
let Wmax and wmin denote the maximum and minimum weight respectively of a
given complete graph G. Then the range condition is defined as

Wmax < 2 Wnin-
We denote by range-TSP, the TSP whose weights satisfy the range condition. The
following observation shows that the range-TSP is a special case of metric TSP.

Observation 1.1. Let G be a weighted complete graph. If G satisfies the range
condition, then G satisfies the triangle inequality.

Proof. Let Wwyayx, Wnin denote the maximum and minimum weight of the edges in
G. G satisfies the range condition, so,

Wmax < 2 - Wrin-
Let z,y, z denote the weights of the sides of a triangle. Then,

T < Wmax < 2 Wnin < (Y + 2).

Thus the range condition implies the triangle inequality condition. O

We say that a graph is odd degree restricted, if the number of odd -degree vertices
in any minimum spanning tree of the graph is less than or equal to % times the
number of vertices in the given graph.

In this paper, we prove that the classical Christofides algorithm gives %—appro—
ximation for the range-TSP for odd degree restricted class of graphs. Note that
Papadimitriou and Yannakakis [12] derived also a polynomial-time %-approxima—
tion algorithm for input instances of TSP taking values 1 and 2 and this algorithm
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works for range condition, too. But the complexity of this algorithm has not been
exactly analyzed up till now and we know only that it is in O(n¢) for some large c.
On the other hand Christofides algorithm is efficient and so very practical.

We also study the e—extended range condition where the weights satisfy the

following condition
Wmax S (2 + 5) * Wmin,
where € > 0.

We denote by range-TSP., the TSP whose weights satisfy the e—extended range
condition for any € > 0.

We prove that the cycle cover algorithm presented in [3] gives a 4? approx-
imation for the range-TSP., i.e. the algorithm is stable according to the range
condition (see [9] for the definition of stability of approximation).

This paper is organized as follows. In Section 2 we prove the upper bound on
the approximation ratio of the Christofides algorithm for the range-TSP and in
Section 3 the cycle cover approach for range-TSP. and its stability is presented.

2. CHRISTOFIDES ALGORITHM FOR THE range-TSP

In this section we analyze the approximation ratio of the Christofides algorithm
for the range-TSP. We prove that we can improve the 3-approximation ratio to §
for the odd degree restricted class of graphs which satisfy the range condition.

First we present the classical Christofides algorithm.

Input: A complete graph G = (V, E) with a weight function weight: E — R>°
satisfying the range condition and G is a odd degree restricted graph.
1. Construct a minimal spanning tree T' of G and find a matching M with the
minimal weight on the vertices of 7" with odd degree.
2. Construct a Eulerian tour D on G' = T'U M.
3. Construct a Hamiltonian tour H from D by avoiding the repetition of vertices

in the Eulerian tour.
4. Output H.

Theorem 2.1. The Christofides algorithm is a %~approximation algorithm for the
range-TSP for odd degree restricted graphs.

Proof. Let H be the Hamiltonian tour computed by Christofides algorithm for an
input (G,weight). Let Hopr be the optimal Hamiltonian tour for (G,weight). Let
for any set of edges E C E,w(El) = > .cp w(e). Let Wmax, Wnin denote the
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maximum and minimum weights in the given graph G. First we will prove that

w(H) £ 5 w(Hopr) ~ & - e o)
where n is the number of vertices of G.

Let T be the minimum spanning tree of G produced in the first step of the
Christofides algorithm. Let vy, vs,vs, ... ,vx be the vertices of odd degree in T in
the order as they appear in Hopr.

Consider the sets My = {{v1,v2}, {vs,va}, ..., {vg—1,vk}} and Ms = {{vs,vs},
{vg,vs},...,{vk,v1}}. Obviously, M; and M, are matchings on the vertices
V1, V2,03, ...,V Of T

Let x1,22,23,... ,Zm denote the vertices of even degree in T in the order as
they appear in Hopr. Clearly, & + m = n. Denote, Voaq = {v1,v2,...,vr} and
Veven = {xla Z2,--- ,xm}'

Let A be the set of all edges in Hopr with at least one end vertex an odd
degree vertex in T, i.e.,

A= {{wp,wq} I Wp € Vodd Or Wq € Vodd and {wp,'wq} S HopT}-
Obviously, A will have at most 2k edges.
We will show that
’LU(A) > w(Ml) +w(M2). (2)
Set, A = {{z1,22} € A | 21,20 € Voaa} and A" = {{z1,} € A | 1 €
%dd and 22 € ‘/even}-

We see that, A NA” =0 and A=A"UA", ie (A, A")is a partition of A.

Set M = {{z1,23} | {#1,%} € Hopr and {z1,22} € M UMz} and M" =
{{21,22} l {21,2:2’} ¢ I{”OPT and {21,22} € My Ul/\/[2}. .

Obviously, M "M =0.and M\yUMy=M UM .

It is clear that A" = M'. So, w(A") = w(M").

It remains to prove w(A") > w(M").

Let J = {i € {1,...,k} | {vi,vit1} € M"}, where vgy; = v;. For alli € J
there exist {z;,,... ,Zj,41,} € Veven, such that v;,x;,, ..., Zj41,, Vit1 is a part of
Hopr and {vi, 7, }, {%j,4+1,, vis1} € A"

Due to the range condition,

w({vi, 25 }) + w({Zji4r,vin}) 2 w{vi, v })-

Furthermore, we know, | {{vi,vi41}} = M and U {{vs, 25}, {Zjiats,vi1}}
icJ i€J

= A" and {{vp, 2, }, {25, 41,5 vp+1}} 0 {00, @5, }, {5,415 vp41}} = 0 for pg € J,
pPFq
It follows that, w(A ) > w(M ) and thus we have,

w(A) = w(A) +w(A") > wM') + wM") > w(M;) + w(Ms).
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Thus we have proved the relation (2).

Let B be the set of edges which are complementary to the edges of A in Hopr,
i.e. B= Hopt — A. A has at most 2k edges. So B will have at least n — 2k edges.
Therefore we can write,

w(B) > (n—2k): Wnin- (3)

We know that w(Hopt) = w(A) + w(B). Substituting for w(A) and w(B) from
(2) and (3) we can write,

’LU(HOPT) > w(Ml) + U)(MQ) + (n — 2k) * Wmin - (4)

Let M be the minimum weight matching on the odd vertices in T. Obviously,

wM) < 5 (w(M) +w(Mz)).

DO =

Using (4) we can write,

w(M) < % (w(Hopt) — (n — 2k) - Wrin)
< % -w(Hopt) — ([gw — k) - Wnin- (5)

T is the minimum weight spanning tree. We know w(T") < w(Hopt)—w(e), where
e € Hopr. This implies,

w(T) < w(HopT) — Wnin. (6)

Now, by the algorithm D =T U M. So, w(D) = w(T) + w(M).
Substituting for w(T") and w(M) from (5) and (6) we have,

w(D) < g ~w(Hopr) — ([g] - k) * Wmin — Wmin-
¢ 3 ttors)~ [3] s~ ([5] ~8) v
Note that, k < [%], therefore,
w(D) < g'w(HOPT) - [E‘I " Wmin- (M

Since the weights satisfy the triangle inequality condition, we have,

w(H) < w(D)< % ~w(HopT) — [g-‘ * Wnin

g . ’LU(HOPT) — lr-g‘l * Wmax-

IA
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Thus we have proved the relation (1).
Let ' ={y>1|w(H) <v w(Hopr) <7 Wmax}-
Then, w(H) < (%) . ’w(HopT) — (%) . ’w(HopT).

Thus,
. . 3 o'
w(H) < min,ermin { v - w(Hopr), 3~ (5) -w(Hopr) ¢ -
The minimum occurs when, v = (%) —(3)- This leads to v = %.
Thus the algorithm has §-approximation. O

The following assertion claims that the Christofides algorithm is efficient. So,
the Christofides algorithm is the most efficient approximation algorithm among
known algorithms for the range-TSP for the given condition.

Theorem 2.2. [8] The Christofides algorithm for the traveling salesman problem
on n vertices, where weights obey the triangle inequality, can be implemented in
O(n?3(logn)'8) time and O(n?) space.

3. USING THE CYCLE COVER ALGORITHM FOR range-TSP,

In [3,4,9] the notion of stability of approximation was introduced and investi-
gated. The idea of the concept of stability of approximation is similar to that of
stability of numerical algorithms. But instead of observing the size of the change
of the output value according to a small change of the input values, one looks for
the size of the change of the approximation ratio according to a small change in
the specification (some parameters, characteristics) of the input instances of the
problem considered. If the change of the approximation ratio of an algorithm A
is small for every small change of the considered input characteristic, then A is
(approximation) stable with respect to this characteristic.

We omit the formal definitions of the stability of approximations here (one can
consult [9] for it) and give a specific definition connected with TSP and the range
property. Let (G,weight) be an arbitrary input instance of the general TSP. We
call the input instances of range-TSP the kernel of the TSP. We say that the
(G, weight) has a distance at most ¢ from the kernel, & > 0, when the weight
satisfies the e—extended range condition,

Wmax S (2 + 6) * Wmin

where € > 0.

Due to this distance measure on the input instances of the TSP we get a parti-
tion of the class of all TSP input instances into an infinite spectrum of classes range-
TSP,, where range-TSP. contains all input instances satisfying the e—eztended
range condition. Let A be a d-approximation algorithm for the range-TSP (the
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kernel of the general TSP), that is consistent for the general TSP in the sense
that it outputs a Hamiltonian tour for any input instance of TSP. We say that A
is stable according to the extended range condition, if A is a 4 .-approximation
algorithm for the range-TSP,. for every € > 0, where 04, is a constant depending
on d and € only (i.e., 64, is independent on the size of the input instances).
In this section we show that the Cycle cover algorithm presented in [3] is
4+te

stable according to the range condition by showing that it provides a 5= approx-

imation for the range-TSP.. First, we present the cycle cover algorithm.

Cycle cover algorithm

Input: A complete graph G = (V, E) with weight function weight: E — R>0
satisfying the extended range condition.

1. Construct a minimum cost cycle cover C = {C1,C3,Cs,... ,Cx} of G, i.e. a
covering of all vertices in G by cycles of length > 3.
. For 1 <1 <k, find the cheapest edge {a;,b;} in every cycle C; of C.
3. Obtain a Hamiltonian cycle H of G from C by replacing the edges {{a;, b;} |
1 < ¢ < k} by the edges {{bi,a;4+1} |1 <i<k—1}} U {{bx,a1}}.

A minimum cycle cover can be found in polynomial time [6].

[\

Theorem 3.1. The Cycle Cover algorithm is a 4%-app7‘ogm'mation algorithm
for the range-TSPe, for any e > 0.

Proof. Let C = {C1,C5,C3,...,Ck} be the minimum cycle cover where C1, Ca,
Cs,...,Cy are cycles of length greater than or equal to 3. Let Hopt denote the
optimal Hamiltonian tour in G. The minimum cycle cover is a lower bound on the
Hamiltonian tour. Hence w(C) < w(HopT).

Let the cycles be,

Cizxi,l,xi,g,...,a:i,ri foriE {1, ,k}

Without loss of generality assume {z;1,z:2}, 7 € {1,...,k} are the cheapest
edges in the respective cycles. The algorithm removes these k edges and adds the
following k edges, {z; 2,241, fori e {1,... k. —1}.

{2;,1,2,2} is the cheapest edge in the cycle C; with the length r;. So, 7; -
w({Zi1,%i2}) < w(C;), and we can write, w({zs1,:,2}) < § - w(C;) since ry > 3.

Now, w({Zs,2,Zi41,1}) < Wmax-

By the extended range condition,

w({zi2, iy1,1}) < (24+€)  Wmin < 2+¢€) - w{Zi2, Tit1,1})
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From this we can conclude,

w({Ze,2, Tiz1,1}) +w({zi2, zi3}) + ... s w{@ir, s })
< (2+e) w({zi2, zir1,1}) +w({zi2, zi3}) + - wl{zir, zia})
< (A +ew{mi2, ziy1,1}) +w(Cy)

< (1+ 5)% w(Cy)] +w(C) < dte

. w(C’i).

Adding the k equations on the left hand side we have the output of the algo-
rithm, H. So,

w(H) < [4“] (@(Ch) + w(Ca) + w(Cs)... + w(Ch))
S B

Thus we have a [i‘é‘—":]—approximation algorithm for this range-TSP,, for any ¢ > 0
using the cycle cover algorithm. O

We are very grateful to Juraj Hromkovi¢ for his help. We thank R. Klasing for useful
conversations. Thanks to J. Hromkovi¢ and H.-J. Béckenhauer for pointing out various
bugs/omissions in earlier drafts of this paper.
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