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SEMI-COMMUTATIONS AND PARTIAL COMMUTATIONS

M. CLErRBOUT!, Y. Roos! anD I. Ryr!

Abstract. The aim of this paper is to show that a semi-commutation
function can be expressed as the compound of a sequential transforma-
tion, a partial commutation function, and the reverse transformation.
Moreover, we give a necessary and sufficient condition for the image of
a regular language to be computed by the compound of two sequential
functions and a partial commutation function.

AMS Subject Classification. 68Q45, 68Q85.

1. INTRODUCTION

Semi-commutations, introduced in [2], are natural extensions of partial
commutations, proposed by Mazurkiewicz [13] as formal tools for the modeling
of concurrent systems. The bases of the theory of partial commutations stand at
the meeting point of both Petri nets theory and formal languages and automata
theory. A relation of partial commutation, so called relation of independence, is
a symmetric and irreflexive binary relation defined on a finite alphabet. Letters
represent actions and two letters are independent if the actions they represent are
concurrent. This very simple definition has led to a very fruitful theory: the theory
of traces, these last ones being the equivalence classes of the congruence generated
on words by a relation of partial commutation. Among numerous and important
results having contributed to develop this theory, let us quote the first-rate the-
orem of Zielonka [17] which, by defining a particular type of automaton, allows
to define a strong notion of reconnaissability in traces; let us also quote the very
nice theorem of Ochmaniski [15], generalizing the Kleene’s theorem by introducing
rational operations adapted to traces. The reader can refer to the state of the art
of this theory in [7].
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e-mail:  {clerbout,yroos, ryl}elifl.fr
© EDP Sciences 2000
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The only difference between partial commutations and semi-commutations is
the relation of independence: it is not necessarily symmetric anymore. Therefore,
semi-commutations are well adapted to the expression of synchronization between
process like Producer /Consumer’s problems or Readers/Editors’ problems. For ex-
ample, let us consider the alphabet {c, p} where c represents the to consume action
and p represents the to produce action. Relation (or rule) of semi-commutation
cp — pc expresses the possibility to produce faster than to consume. So, the
Dyck’s language on the alphabet {c,p}, denoted by D}*(c, p), and representing all
the correct linkings of productions and consumptions in the case of a not bounded
memory, is closed by rewriting using this rule of semi-commutation. More pre-
cisely, D’l* (e,p) is the closure, under the semi-commutation function associated
with the rule ¢p — pc, of the language (pc)* which represents a correct link-
ing of productions and consumptions in the case of a buffer of size 1. As such,
a semi-commutation function can be seen as a concurrency operator working on
languages.

A natural question, when one introduces a new operation, is to try to express it
by using more simple or already known operations. From this viewpoint, a decom-
position theorem, expressed in [3], stipulates that any semi-commutation function
is equal to the compound of a certain number of elementary semi-commutation
functions named functions of atomic semi-commutations. Another result, ex-
pressed in [2] allows to express any commutation function as a composition of
morphisms, inverse morphisms and partial commutations functions. The num-
ber of partial commutations functions occurring in this result is however very
important.

In this article, we introduce, for any semi-commutation function f, a sequential
transformation 7¢ such that f can be expressed as the compound of 7¢, a function
of partial commutation, and 'rf—l. This allows us to enunciate the main results
of this work: we give a necessary and sufficient condition, concerning iterating
factors of a language, so that the image of this language by a semi-commutation
function can be expressed as the compound of two sequential rational functions
and a partial commutation function.

This theorem evokes the results expressed by Arnold in [1] on projective CCI
sets of P-traces, and also the type of constructions realized by Husson in [11]
concerning relévements towards the partially commutative monoids. It allows
to throw a new light on a certain number of previous results which underscore
differences between the partial commutations and the semi-commutations [6,16].

2. PRELIMINARIES
2.1. NOTATIONS

In the following; ¥ will denote a finite alphabet. We shall denote by alph(u)
the alphabet of a word v and by & the empty word.
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We shall denote by IIx the projection onto the alphabet X, i.e. the morphism
defined by:

IIx : ¥ — X*
. zifz e X,
z € otherwise.

A word u is a factor of a word v if there exist two words w; and ws such that
v = wiuwy. We denote by RF(w) (respectively LF(w)) the set of right factors
(respectively left factors) of the word w, that is:

RF(w)={ve X" |JueX*,w=uv},
LF(w)={ueX*|Fvesr, w=uv}-

The set of iterating factors of a language L over X is:
{ue|Jv,we X vu*w C L}-

A word u is said to be a subword of a word v if there exists words wp, W), w1, ..
wy,, Wn, such that v = wowjws ... wWiw; ... w,w, and u = wWiwh ... w,.

For each word v of £* and for each letter a of ¥, v/a = v if a ¢ LF(v) and
v/a = a~'v otherwise.

Let us consider a rewriting system R. We shall write w —p v if there are a
rule @ — B in R and two words w and w’ such that v = waw’ and v = wfhw’.

We say that there exists a derivation from w to v denoted by u —7} v if
there are words wg, w1, - .., Wn, (n > 0), such that wg = u,w, = v, and for each
1 < m,w; — g Wwi+1. Lhe integer n is called derivation length. When we have
u —% v with a known derivation of length n, we shall also write: © —% v.

Let E be a set of integers. Then, E denotes N\ E. The cardinality of the finite
set E is denoted by ||E||. For a word u, ||u||ss denotes the number of occurrences
of the factor ab in Il, 5y (u).

M)

2.2. PARTIAL COMMUTATIONS AND SEMI-COMMUTATIONS

Let us recall some definitions and some results about partial commutations and
semi-commutations (for more details see [7]).

Definition 2.1. A partial commutation relation over an alphabet T is an irreflez-
iwe and symmetrical relation included in X x X. A semi-commutation relation over
an alphabet ¥ is an irreflexive relation included in X x 2.

Definition 2.2. With a semi-commutation (or a partial commutation) 0, we
associate a rewriting system, defined as: {zy — yz | (z,y) € 8} (note that
all the rules of the system are symmetrical when 6 is a partial commutation). To
simplify the notations, we also denote the rewriting system by 6.
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Definition 2.3. For a semi-commutation (or a partial commutation) 6 defined
over an alphabet 3, we denote by fy the associated semi-commutation (or partial
commutation) function. This function is defined by:

Yu € X% fg(u) = {v|u%>v}-

This definition is extended to languages:

VL C 5%, fp(L) = | ) fo(w).
uel

Definition 2.4. The non-commutation relation associated with the commutation
(resp. semi-commutation) relation 6 is:

f=(ZxX)\6.

With each semi-commutation (or partial commutation) 8 defined over an alphabet
2 4s associated an oriented graph (or non-oriented): the non-commutation graph
(3,0) where ¥ is the node set and 0\ {(z,z) | z € X} the edge set.

We say that there exists a path from ag to a, in the non-commutation graph
(_Z, 0) if there exist aq, ..., an—1 such that for each 0 < i< n, (a;,a:41) belongs to
6. Then, apa; . ..an is a word labelling a path in (3, 9).

Definition 2.5. Let 8 be a semi-commutation (or a partial commutation) defined
over an alphabet ¥ and u be a word of ¥*. The word w is said to be strongly
connected (respectively connected) if the graph (alph(w), ), which is the restriction
of the non commutation graph of 0 to the alphabet of u, is strongly connected
(respectively connected).

Definition 2.6. Any mazimal connected subgraph (resp. strongly connected) of a
graph G is named a connected component (resp. strongly connected component)

of G.

In some proofs, we will use the notion of minimal derivation which is linked to
the notion of distance between words.

Definition 2.7. Let ¥ be an alphabet. We denote Lpym = X x N.
We define inductively the application num: * — X* _ by:

e num(e) =¢;

e Yy € ¥*, Va € ¥, num(ua) = num(u)(a, |ual,).
The morphism denum: X7 — 3* is defined by:

e Yz = (a,1) € Znum, denum(z) = a.
Let u,v € ¥* be two commutatively equivalent words. The distance from u to
v, denoted d(u,v) is equal to Card({(a,b) € Tpum X Lpum | num(u) = zaybz} \
{(a,b) € Tnum X Znum | num(v) = zaybz}).
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Let us remark that for each word wu, the word num(u) contains only one
occurrence of each letter. It is clear that if v € fy(u) for a semi-commutation
6, then d(u,v) is a bound for the lengths of derivations from u to v. Moreover, the
following lemma shows that each step decreasing the distance is a “good” step:

Lemma 2.8. (Distance lemma [7]) Let 6 be a semi-commutation over an
alphabet T, v a word of £* and v € fo(u). If u —y w with d(w,v) < d(u,v)
then, v € fp(w).

From this lemma follows the corollary saying that there always exists a minimal
derivation of length d(u,v) between two words u and v.

Corollary 2.9. Let 8 be a semi-commutation over an alphabet ¥, u a word of ¥*
and v € fg(u). There exists a derivation from u to v of length d{u,v).

3. IDEA OF THE CONSTRUCTION

Our aim is to show that it is possible to use a transformation, a partial
commutation and a strictly alphabetical morphism to compute the closure un-
der a semi-commutation of any language. In this section, we show on examples
that the function can consist on adding different marks (colors or subscripts) to
occurrences of letters. The marks distinguish occurences of a same letter in or-
der to allow them to commute — or not — depending on their position (relative to
occurrences of other letters) in the starting word.

Let us consider a finite alphabet ¥ = {a,b,¢} and a semi-commutation
6 = {(a,b)} defined over L. The non-commutation graph of 8 is

O e b

c

The idea is to “color” the letters of a word u in such a way that two occurrences
of letters a and b receive different colors when they commute in Ily, 33 and that
letters of the coloring of u having the same color are not allowed to commute.

To compute the closure under the semi-commutation 6 of a word u, we use a
partial commutation and the colors that bring out some dependences of letters.
As the only non-symmetrical rule is ab — ba, we only have to color occurrences
of letters @ and b. Let us consider z and y two consecutive occurrences of letters
in Iy, 53 (u). These z and y must receive distinct colors in the case when z = a
and y = b. In all the other cases,  and y must receive the same color. We give to
consecutive b and @ or consecutive a or consecutive b the same color and we give
to consecutive a and b distinct colors (when a b follows a a, we introduce a new
color). Using this method, for a word u = cabbabbaaabab we obtain for example
the colored word v = cagbibiaybabaazasasbsazby (where colors are marked by



312 M. CLERBOUT, Y. ROOS AND I. RYL

subscripts). We define now the partial commutation o by:

o={(a:,05) | i #7}U{(bi,a5) [ i # j}-

As ¢ does not belong to any couple of 8, it does not receive any color and it does
not belong to any couple of p. Now, we denote by ¢ the strictly alphabetical
morphism which removes colors and it is easy to see that fp(u) = p o f,(v).

Clearly, this method may lead to use an infinite number of colors to compute
the closure of an infinite language. We can notice that the number of colors may
be infinite even when the beginning language is a regular language closed under 0
(consider for example the language (acbc)*).

In order to solve this problem, we can remark that, in some cases, it is possible
to reuse several times a color in the same word. Consider for example the word
u = abcaabach. The first a receives the first color that is to say 0. The first b is
allowed to commute with a so it receives another color, for example 1. The second
and the third a receive the same color than the previous b: 1. For the moment we
have agbjcaiaibach. The following b may receive 2 but this b and the first a are
the first and the last letter of a subword of u which is a word labelling a path of
the non-commutation graph of 8 so, these two occurrences of letters will never be
consecutive in any word derived from u. Thus, we can reuse the same color and
mark this b with 0. For the same reason, the last b can also receive the color 0,
we obtain the word v = agbicaiaibgagchy. We have again fa(u) = ¢ o f,(v).

With a partial commutation, we loose the non-symmetry. The use of the
coloring makes up for this lost of power because the coloring contains some in-
formations about dependence of actions.

We define in Section 4, a coloring using the same idea than in the previous
example. We color words by adding to each letter a color for each sub-alphabet
of two letters it belongs to. If a couple (a,b) belongs to §N O~ or to §N G~ then
the colors of occurrences of letters a and b associated with {a, b} is always 0. We
color a word from left to right and, for each (a, b) belonging to # N @~ we color
letters a and b in the following way:

e we start with color 0;

e an occurrence of letter a . always receives the same color as the previous
occurrence of letter of {a,b};

e an occurrence of letter b receives the least possible color. It can be an
already used color if the occurrence of letter that has received this color
is “separated” from this b by a strongly connected word (i.e. is the first
letter of a factor whose last letter is this b and which contains as subword a
strongly connected word starting with a and finishing with this b). If it is
not possible, the b receives the least color that has not already been used.
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4. CONSTRUCTION

We have first to define the coloring we will use. We need a colored alphabet
(here colors are just represented by counters) which only depends on the beginning
alphabet.

Definition 4.1. Let ¥ be a finite alphabet. The colored alphabet corresponding to
Y is defined by:

Ye={(z,¢) |z € E,c: ¥ — N such that c(z) =0} -

The strictly alphabetical morphism used to remove colors only depends on the
beginning alphabet:
Definition 4.2. Let X be a finite alphabet. The strictly alphabetical morphism px
is defined by:

Yy X — B

(a,¢) — a.

Now, we can propose a coloring which uses the idea explained in the previous
section and which is, in general, defined as an infinite transducer. The definition

of the transducer needs two preliminary definitions of sets of words depending of
the non-commutation graph of the semi-commutation.

Definition 4.3. Let 6 be a semi-commutation defined over an alphabet 3. The

set Py s contains words labeling paths of the non-commutation graph of 8 and is
defined by:

Poy = {z1... %0 | (xl,xn)eeﬁé_l, _
Vi <j < n, (5 # 25 and (2, 200) € D)}
Note that the set Py g) is finite.
Definition 4.4. Let 0 be a semi-commutation defined over an alphabet 3. The

set Tz gy 1s defined by:

Tiso) = {zy | (z,9) €0N8 ", (Bu€ T zuy € Pos)} -

Definition 4.5. Let 0 be a semi-commutation defined over an alphabet 3. The
transducer 75 g) s defined by

T(s,0) = (£, 5, Q,9,40, Q)

where:

e X is the input alphabet and %, the output alphabet;
o Q = 2(ZXP(2,0) XRF(P(n,6))x2)U(ExTm,0)X2") s the state set;

o go = 0 is the initial state;
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e for each q of Q and each a of T, we have 6(q,a) = (¢', (a,c)). Let us set, for
each q of Q

Eq,wy = U E)
(z,zuy,v,E)€q,(2,2y,E)€Eq

then
— ¢’ 1is defined by:

q = {(a,auy,uy,0) | y€D,auy € Pz}
U {(z,zuy,v/a,E) | (z,zuy,v,E) € q,z,y € E,z # a,
y # a}
U {(a,auy,v, E) | (2,auy,v,E) € q,y € &}
U {(a,zua,v, F) | ((2,2ua,v,E) € q),z € L,v # aA

(A(z',zv/a,a,E') € q with E' C E),
F=Fifa=zand
F =FEU{min(E,,,)} otherwise}

U {(a’ ay, 0) I ay € 7'(2,9) and ﬂ(z’ a'yrE) € q}
U {(z 2y, E) | (2,2y,E) € ¢,z # a,y # a}

U {(a,ay, E) | (#,ay,E) € q}

U {(a,za,F) | (2,2q,E) €gq,

F=Fifa=2zand

F = EU{min(E; 4,)} otherwise},

— for each x of £, c(x) is defined by c(z) = min(Ey 2o N Ey az)-

Words of the set P(s ¢y are essential for the coloring, they are used to reduce the
number of colors used for a given word. The informations contained in the states
of the transducer are used to detect subwords of this set in words that have to be
colored. We will speak about “rigid words”:

Definition 4.6. Let u be a word of ¥*, a and b be two letters of ¥. The word aub
is rigid for ab if and only if there ezists a subword u' of u such that au’b belongs
to 7)972.

Definition 4.7. For a given letter (xz,c) of a colored alphabet, the color
associated with the sub-alphabet {z,y} is given by c(y). By extension, in a
word w = x1%2...ZTn, where each x; belongs to ¥ the color associated with the
sub-alphabet {z,y} of an occurrence x; of a letter x is c(y) where:

o 7(s9)(u) = 2175 ... 27, with for each 1 < j < n, z; € ¢

e .= (z,c).

Let us now present some terminologies and explain the way the transducer pro-
ceeds. For each (a,y) in #N @1, and as soon as the first occurrence of a in a word
is read, the transducer memorizes in its states the set of colors that cannot be the
color associated with {a,y} of the next occurrence of y. The way to keep these
informations in states varies from case to case:
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e if ay is a word of 7(5 gy, there does not exist any (2, auy,v, F) in any state
of the transducer. The state g reached after the read of first occurrence of
a of a word to be colored contains the tuple (a,ay, ). This tuple evolves in
each state accessible from ¢ to take into account the colors associated with
{a,y} of all occurrences of a and y that appear in the outputs on the path
from g to the current state, moreover there is exactly one tuple of the form
(2,ay, E) in each of these accessible states. So, for each state ¢’ containing
(z,ay, E), we have Ey o, = E;

e if ay is not a word of 7(5 ¢), each time an occurrence of the letter a is read,
we introduce, in the state reached with this reading, a tuple (a, auy, uy, 0)
for each word auy of P(5, g): these tuples take into account the fact that this
occurrence of a can be the first letter of a rigid factor of the word that is
being read. These tuples are going to evolve in the next states to take into
account the successive readings of letters of uy till they are removed during
a transition. Note that only the reading of an occurrence of y may remove
such a tuple from a state. A tuple (y, auy,v, E) is removed from a state g
when (z,au’y,y, E) is in the state just before ¢ with au’y a subword of auy:
the last y may receive a color already used in the past.

Whatever are the further values of a tuple, we shall always refer to the occurrence
of letter that initiates it. We also refer to the representations of a tuple. Let us
formalize these notions:

Definition 4.8. Let g be a state of the transducer (s 9y such that 6(qo,w) =
(¢, 7m0y (w)) with w a word of ¥* and t, = (x,auy,v, E) (resp. ty = (z,ay, E))
be a tuple belonging to q with x, a, y letters of ¥. Then, the last occurrence of
a in w such that the state reached after its reading contains (a, auy,uy,B) (resp.
(a,ay,D)) is said to be the occurrence that initiates tq.

Definition 4.9. Let q be a state of the transducer (s gy and ty = (z,aub,v, )
(resp. tq = (x,ab,E)) be a tuple belonging to q. Let q' be such that §(q,y)
= (¢, (y,c)). Then the representations of tq are defined as follow:

o if y is different from a and b, then (z,aub,v/y, E) of ¢’ is a representation
of tq;

o if y is equal to a and E is not empty, then (a,aub,v, E) of ¢’ is a represen-
tation of tq;

e if y is equal to b, v # b and if there exists no (z,au'b,b, E') in q such that
E' C E, then by definition of the transducer, there exists a tuple (b, aub, v, F')
in ¢' with F' equal to E when x = b and equal to EU{min(E, )} otherwise.
Then this tuple of ¢’ is a representation of tq;

o all the representations of a representation of t; are representations of tq.

Let us remark that, from the definition of the transducer, whenever (z, a) belongs
to #N 6~ or §N G, for each state g accessible from qq, the sets E, o and E, oz
are always empty, since neither za belongs to 7(s; gy nor there exists any word zua
or auz in P(sg). So, in this case, in any word produced by the tranducer, the
color associated with {z,a} of each the occurrences of = and a is 0.
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In the same way, if (z,a) belongs to #N#~1, for each state g accessible from go,
the set Ey oz is empty.

Conversely, if (z,a) belongs to § N§~1, (i.e. when the use of colors is essential)
the transducer assures that only the reading of an a may affect the set of colors
associated with {z,a} of following occurrences of z or a.

Lemma 4.10. Let 6 be a semi-commutation over ¥, (x,a) belong to 6 N O71,
d(qo, w) = (¢, 7(s,9)(w)) and 6(q,t) = (¢',(t,c)) be transitions of T(z 9y with w a
word of ¥* and t a letter of & different from a. Then, we have Eq zq = E,

q',za-

Proof. If za belongs to 7(x ), let us consider two cases. If ¢ is different from z,
then ¢ contains a tuple (z,za, E) if and only if ¢’ contains (z,za, E), s0 Eqzq =
E = Ey 44. If t is equal to = then either there exists a tuple (z,za, E) in ¢ so
(z,za,FE) is in ¢’ and Ey 3, = E = Eg 44, or there is no tuple (z,za, F) in ¢ so
(z,7a,0) isin ¢ and Eq 2o = Eq za =0

When za does not belong to 7(s gy, if ¢ is different from z, clearly there exists
(z,zua,v, E) in g if and only if ¢’ contains a (z,zua,v’, E) (with v" = v/t). So,
we have Eq,za = U(z,zua,v,E)eq E= U(z,xua,v’,E)eq’ E= EQ',?JG'

If ¢ is equal to z, then each tuple (z,zua,v, E) in q is represented in ¢’ by a
tuple (z, zua,v, E). Conversely, each tuple (z,zua,v, E) in ¢’ is such that

° 2z =g

e cither £ = () (z initiates the tuple (z,zua,v,0) in ¢');

e or E # (), then this tuple is a representation of a tuple of ¢ whose value is

(z,zua,v, E).
So, as previously, we have Eqza = U(; suav,5)eq £ = Uz zuav, Byeg £ = Bg' za-
|

We deduce directly from this lemma that when (z,a) belongs to § N0~ two
occurrences of z in a word w that are not separated by any occurrence of an a in
the projection of w on {z,a} will be colored in the same way relatively to {z,a}:

Property 4.11. Let (z,a) belong to 0N0~, w = wyzwazws be a word of * with
lw2la = 0, and 7(s 0y (w) = 7(5,0)(w1)(z, )wy(z, c")ws with s (wy) = wa. Then,
we have c(a) = (a).

The next unvarying property describes more formally the content of each state
of the transducer.

Lemma 4.12. Let w be a word of X* and (q,7(s,6)(w)) = 6(qo,w) be a calculus
of 7(s,0)- Then, the following properties hold.
I1. If (y,zuy,v, E) belongs to q then:
(a) the last occurrence of a letter of {x,y} in w is an y;
(b) the color for {z,y} of the last y in w is min(Ey zy);
(c) E is a set containing the colors associated with {z,y} of all occurrences
of ¢ in w since the one that initiates this tuple.
12. If (z,zuy, v, E) belongs to q then:
(a) the last occurrence of a letter of {z,y} in w is an x;
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(b) the color associated with {z,y} of the last  in w is min(Ey 4y );

(c) if E =0 then there is no occurrence of y in w after the occurrence of
that initiates this tuple;

(d) if E# O then:

(i) there is at least one occurrence of y in w after the occurrence of
that initiates the tuple;

(ii) E is a set containing the colors associated with {x,y} of all occur-
rences of © in w since the one that initiates this tuple, except the
color of the last x in w.

(z,zy, E) belongs to q then:
a) the last occurrence of a letter of {z,y} in w is an x;
b) the color associated with {z,y} of the last occurrence of x in the word w
is min(Ey z,,) = min(E);
(c) E is a set of containing the colors associated with {x,y} of all the
occurrences of x in w except the color of the last x of w.
I4. If (y,zy, E) belongs to q then:
(a) the last occurrence of a letter of {x,y} in w is an y;
(b) the color associated with {z,y} of the last occurrence of y in the word w
is min(Ey zy) = min(E);
(c) E is a set containing the colors associated with {x,y} of all the occur-
rences of x in w.

13. If
(
(

Proof. For each part of the invariant, properties (a) and (b) are directly deduced
from the definition of the transducer. So, we only prove the other properties by
induction on the length of w.

The empty word clearly verifies these properties.

Let w' = wa, 6(q0,w) = (¢,7(z,0)(w)) and §(¢g,a) = (¢',(a,c)). From the
definition of the transducer, ¢’ contains exactly the following tuples:

e (a,auy,uy,?) for each word auy in Pz ey with y a letter of . As the
occurrence of a read during the transition from ¢ to ¢’ initiates the tuple,
12.c is clearly true;

e (a,auy,v, E) for each tuple (z,auy,v, E) € ¢ with y a letter of £. If E is
empty, I2.c is true in g and since the last letter of wa is an a, it is also true in
q'. If E is not empty, by induction hypothesis, 12.d.7 is true in ¢. Since the
occurrence of a read between g and ¢’ do not initiate the tuple, 12.d.7 is still
true in ¢’. Now we still have to show that I2.d.i: holds. From Lemma 4.10,
we get min(Ey o) = min(Eyqy), there are two cases: _

— z=a, I2.d.4 holds in ¢ and as c(y) = min(Ey 4y) = min(Ey ay), 12.d.1
is also true-in ¢’; o

— z = y, by induction, Ii.c is true in ¢ and since c(y) ¢ E (we have
c(y) = min(Ey oy) = min(Ey 4,)), 12.d.3 holds in ¢;

e (z,zuy,v/a, E) for each (z,zuy,v, E) of ¢ with  and y letters of ¥ different
from a. As the read of the last a of wa may only modify the third component
of such tuples, each property true in ¢ for a tuple (z, zuy, v, E) is also true
in ¢ for (z,zuy,v/a, E) in ¢;
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e (a,zua,v, F) such that (z,zua,v, E') belongs to g and there does not exist

a tuple (2/,zvu'a,a, E') in ¢ with E' C E. If z is equal to a, as in this case
F = E and Il.cis true in g, I1.c is true in ¢'. If z is equal to = then, by
induction hypothesis, I2 is true in g. There are two cases:

— if E is empty, there is no occurrence of a in w after the occurrence of

that initiates the tuple (z, zua,v, E) of g. From Property 4.11, the color
associated with {z,a} of this occurrence is the same as the color of the
last 2 in w, that is min(FE, z). As F is equal to {min(Eqz4)}, I1.c is
true in ¢’;

if E is not empty, E is the set of the colors associated with {a, z} of all the
occurrences of z since the one that initiates the tuple (2, zua, v, E) ex-
cept the last one which is min(E, zo). As F is equal to BU{min(Eqz4)},
Il.cis truein ¢'.

(z,zy, E) for each tuple (z,zy, E) of ¢, with a different from z and from y.
In this case, since the read of a does not affect such tuples, if 18 (resp. I4)
is true in ¢, it is also true in ¢’;
(a,ay,B) for each word ay of 7(x ¢) such that there does not exist any tuple
(z,ay,E) in q. As a is the first occurrence of {a,y} in wa and since E is
empty, I3.c is clearly true in ¢’;
(a,ay, F) for each (z,ay, F) € q. There are two cases:

— if z is equal to a then 13 is true in ¢. So the the last occurrence of a letter

of {a,y} in w is an a. From Property 4.11, this occurrence receives the
same color than the last a of wa, that is to say min(E), so I5.c is true
in ¢;

if z is equal to y, I/ is true in g so E is the set of the colors associated
with {a,y} of all the occurrences of a in w. As c(y) = min(E) does not

belong to E, I3.c is true in ¢';

(a,za, F) for each (z,za, E) € q. There are two cases:
— if z is equal to a then F' is equal to E. Since I4.c is true in ¢ for w, I4.c

is also true in ¢’ for wa;

— if z is equal to z then I3is true in g so F is the set of the colors associated

with {x,a} of all the occurrences of z in w except the last one which is
min(E). As F is equal to E Umin(FE), I/.c is true in ¢’ for wa.

]

As last property of the transducer, we show that the form of the tuples present in
a state gives us some informations about the occurrences that initiates them.

Lemma 4.13. Let w be a word of * and (q,7(s6)(w)) = d(qo,w) be a calculus
of 7z,0y- If (a,zua,v, E) and (a,zu'a,v’, E') belong to g with E’' C E then the
occurrence of x that initiates (a,zua,v, F) precedes in w the one that initiates
(a,zv/a,v', E').
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Proof. From the previous lemma, E’ (resp. FE) contains exactly the colors
associated with {z,a} of all the occurrences of z in w since the one that initi-
ates (a,zv'a,v', E') (resp. (a,zua,v,E)). As E' C E, the occurrence of z in w
that initiates (a,zu’a,v’, E') is after the one that initiates (a,zua,v, F).

O

Now we give the definition of the partial commutation that we apply on colored
words to simulate the semi-commutation.

Definition 4.14. Let 8 be a semi-commutation over an alphabet ¥. The partial
commutation g is defined by:

00 = {((z,0), (y,¢)) € B2 | (x,y) €0NO7 or (z £y and c(y) # ' (z))} -
From this definition and remarks above straight follows the next property:

Property 4.15. Let 9 be a semi-commutation over an alphabet ¥, w be a word
over ¥ and (x,¢),(y,c) two occurrences of letters in 75 gy(w). Then, we have:

((z,0), (y,¢)) € 09) = ((z,y) €OUO7).

We now show two essential properties of the coloring. They assure that two letters
that should not commute in a word « but have different colors in the coloring of u
or two letters that should commute in » but have the same color in the coloring of u
cannot be neighbours in any word of the closure of v under the semi-commutation.

Lemma 4.16. Let 0 be a semi-commutation over an alphabet ¥. For each word
u of £* and for each (x,y) of 6N O~ 1, the following property holds:

(7(z,0)(w) = ul(y,C)M(wlid)U:a with c(z) # ¢'(y))
(ug = v1(y, c1)vs with ¢1(x) = ' (y)).

Proof. Let us suppose that 7(s g)(u) = u1(y, c)uz(z, ¢ )usz with c(z) # c'(y). Let
us denote by q1, g2, g3 and g4 the states of 7(s gy such that we have 6(qo, px:(u1)) =
(q1,w1), 8(q1,y) = (g2, (¥, ¢)), 6(a2, = (u2)) = (g3,u2), and d(q3,2) = (g4, (2, ')).
By definition, we have ¢(z) = min(Ey, 4y) and ¢ (y) = min(Fy, zy).

If x5 (u2) does not contain any y, we get from Lemma 4.10 the equality: Eg, oy =
Ey oy = Equ zy- But ¢(z) = min(Ey, ) is different from ¢(y) = min(Eqy, zy), s0
there is at least one occurrence of ¥ in ¢sx(uz). Let us consider the last one:
uz = vi(y,c1)vs with [es(vs)ly = 0, and d(ge, ps(v1)y) = (g3, v1(y, c1)). From
Lemma 4.10, we get immediately ¢1(z) = min(Ey; 2,) = min(Eg,,zy) = ¢'(y) (see
Fig. 1). |
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px(us)/u3

z(vl)y/vl(y,c@ o5 (v3)/vs (») z/(z,c) s
min(Eq, zy) min(Eq 2y) = min(Egay) =  min(Egay)

o) 10 ¢

FIGURE 1. Proof of Lemma 4.16.

Lemma 4.17. Let 0 be a semi-commutation over an alphabet .. For each word
u of * and for each (z,y) of 6N O, the following property holds:

(T(z,6)(w) = wa(z, Jua(y, ¢ Jus with c(y) = '(z)
4
(zpx(u2)y is rigid for zy).

Proof. Let us denote by q1, g2, g3 and g4 the states of 7(5 ) such that we have
3(q0, p=(u1)) = (q1,w1), 6(q1,2) = (g2, (2,¢)), 0(q2, ps(u2)) = (g3,u2), and also
(g3, y) = (qa, (y,¢)) (see Fig. 2).

.‘PZ(UI)/UI). z/(z,c) (qz‘/\m:(uz)/uz@ y/(y,c)@

FiGURE 2. Proof of Lemma 4.17.

Let us suppose that zy belongs to (5 ), there exists a tuple (y,zy, E) in
qs where E contains exactly the set of colors associated with {z,y} of all the
occurrences of z in uj 2uzy (Lem. 4.12 I4.c), so E contains c¢(y). Asc/(z) = min(E),
the equality c(y) = ¢/(x) is impossible, so zy does not belong to 7(x g)-
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By definition of the transducer, c(y) is equal to min(Eq, 4,) and ¢’(z) is equal to
min(E,, z,). So g4 does not contain any tuple (y, zvy,w, E) such that c(y) = ¢'(z)
belongs to E.

The z read between ¢; and go initiates tuples (x,zvy,vy,®) for each word
zvy of Pz ¢y. Let use denote by x; this occurrence of z. None of these tuples are
represented in g4: otherwise, there fourth components should contain c(y)
(Lem. 4.12 I1.c) and we just saw it is impossible. According to Definition 4.9,
there are two possibilities for such tuples to be in a state and not to have any
representation in the state reached after a transition.

In the first case, the representation of the tuple t we consider is (z, zvy, vy, #)
in a state and the input letter is . Then, this occurrence of z (denoted by
z7) initiates a new tuple (z,zvy,vy,0) and ¢ has no more representation. Then,
according to Lemma 4.12 I2.¢, there is no occurrence of y between the occurrences
z1 and zz of z. We can simply consider the last occurrence of z in zps(us) such
that there is no y between this occurrence and the first one and consider the tuple
(z, zvy, vy, D) initiated by this occurrence to come back to the second case.

In the second case, we have @sx(u2)y = viyvs such that 6{g,v1) = (g,v}),
5((], y) = (ql(y7 C”))’ 6(qla ’03)) = (Q4a ,013) and there exists in qa tuple (Z, vy, w, E)
initiated in g2 that is no more in ¢’. There are two cases:

e w =y, it means that v is a subword of vy, so zvy is a subword of zys(u2)y;

e there exists in ¢ a tuple (2, zv'y,y, E') with E/ C E. From Lemma 4.13, the

occurrence of z that initiates this tuple is after the z that permits to reach
g2. So v’ is a subword of v; and zv'y is a subword of zps(us)y.

O

Now, using the previous properties, we will show that the coloring we have defined
satisfy our requirements, that is to say can be used to compute the closure under
a semi-commutation.

Theorem 4.18. Let 8 be a semi-commutation defined over an alphabet 3. For
each word u of £*, we have:

fo(u) = s (fe (1(z,6) (1))
Proof. Let v be a word of fy(u). Let us show by induction on the length of a
minimal derivation from u to v that v belongs to ¢x(fy, (7(2,6)(v))). This clearly
holds when the length of the derivation is 0. Let us consider the derivation:
u % W= WITYWr — > WIYTW2 = V.
By induction hypothesis, we have

T(,6) (U) ﬁ) w/l (ZB, C) (ya cl)wé

with @z (w]) and @s(w)) respectively equal to wy and ws. If ((z,c)(y,c’)) does
not belong to gy then, due to the definition of gg, (z,v) does not belong to 6!
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and c(y) = ¢/(z). Since we consider a minimal derivation (according to Cor. 2.9),
the two occurrences of letters that we consider are in the same order in 75 g)(u),
we have 7(z 0y(u) = u1(z, c)ua(y, ' Jus. According to Lemma 4.17, zps (uz2)y is
rigid for zy so these occurrences of x and y cannot be side by side in any word of
fo(u). This lead to a contradiction. So, ((z,¢), (y,c’)) belongs to gg and

im0y (1) > wh(4, ) (&, h € 5 (v).

We have the first part of the equality: fa(u) C s (e (1(,0)(1)))-

Let v be a word of @x(fy(7(s,6)(x))). There exists a word v’ belonging to
£, (7(z,6) (1)) such that @x(v') = v. Let us show by induction on the length of a
minimal derivation from 7(x y(u) to v that v belongs to fg(u). This clearly holds
when the length of the derivation is 0. Let us consider the derivation:

(5,0 (W) = w' = w)(z,c)(y, ¢ Ywy — wi(y, )z, Jwy =v'.
Q6 )

By induction hypothesis, we have:
U —:—> w = wizyws with px(w)) = w1 et ps(wh) = we.
If (z,v) belongs to 6, we have immediately
* ’
U W= WY — v = o).

We will show that the other case can never happen. Let us suppose that (z,y) do
not belong to #. As we know that ((z,¢), (y,c')) belongs to gy, we deduce from
Property 4.15 that (y,z) belongs to 6 and from the definition of gy that c(y) #
c/(z). Since the derivation is minimal, the occurrences (z,c) and (y,c’) that we
consider are in the same order in 7(5,9)(u), we have 7(5 g)(v) = u1(z, c)ua(y, ' )us
so, according to Lemma 4.16, uz = v1(z,c1)v2 with ¢1(y) = /(z). Thus, in
each word of f, (7(5,6)(u)), the two occurrences (z,c) and (y,c’) that we consider
will ever be separated by a factor containing (z,c;) since neither ((z,c), (z,c1))
belongs to pg nor ((z,c1), (y,¢)). This leads to a contradiction, the couple (z,y)
must belong to 6. So, v belongs to fg(u) and as conclusion, @z (fe, (7(x,6)())) is
included in fg(u).

O

5. CASE OF REGULAR LANGUAGES

5.1. A SUFFICIENT CONDITION FOR THE TRANSDUCER TO BE FINITE

In this part, we give a sufficient condition for the image of a regular language
by the transduction to be computed by a rational function. For this purpose we
try to give a bound to values that can be contain by the sets “E” of the tuples of
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the transducer. In the following of this section, we consider a semi-commutation
0 over a finite alphabet 3 and 75 ¢) = (¥, %, @,9,0, Q). Let us first define the
property we use:

Definition 5.1. A language L over ¥ satisfies the (P) property if and only if for
each iterating factor u of L, each connected component in (alph(u),8) is strongly
connected.

Lemma 5.2. Let L be a regular language over ¥ verifying the (P) property. There
exists an integer N, > 0 such that for each factor aub of L with (a,b) a couple of
gNno-1:

(llaubl|ap = N1) = (aub is rigid for ab).
Proof. Let n be the state number of the deterministic complete finite automaton

of L. Let us set Ni, = n x ||X|| x 2IPIl. Tf ||aub||qp is greater or equal to N, there
exists a factorization:

aub = U 1u1,2 - - - u1,2||>:|\u2,1u2,2 N u2’2\|>::|| PN UHEHQ\@H
with [Ju; j||s greater or equal to n for each ¢ in {1,2,...,[|X|[} and each j in
{1,2,...,2lIF1}. So, at least one factor of each u;; is an iterating factor of L

and contains at least one occurrence of a and one occurrence of b. From the (P)
property of the language L, we deduce that each u;; has a strongly connected
subword whose a.lphabet contains a and b. In other words, for each u; ;, there
exists a word au; ;b of Pg 5 such that alph(au] ;b) is included in alph(au;,;b). Since
there exists at lea,st [|%]| pairwise distinct couples (i,7) such that the alphabets of
corresponding words u; ; are identical, aub is rigid for ab. |

Lemma 5.3. Let (a7 b) belong to eﬂé_l, Uy and us be words Of T WC have:
(6(g0,w2) = (a1, u4) and 8(qu,uz) = (2,3))
ll( N
(||Eq2,abl| S Hqu’abH + ||u2||ab + 1)

Proof. Let us show the lemma by induction on the length of uy. If ug = € then
|| Eqz,abl] = || Fq1,abl], s0 the relation is clearly satisfied.

Let us now suppose us = vex with z a letter of ¥. Let us set (s2,v5) = 6(q1, v2).
We have §(s2,2) = (g2,2’) and, by induction hypothesis, the following equation
holds:

HESZ,abH < “qu,ab” + [|valap + 1.

If z is different from b, then ||uz||qp is equal to ||vz]|q» and according to Lemma 4.10,
Eg,ab is equal to Ej, 43, so the relation is satisfied.

If z is equal to b and ||uz||ss to ||v2]las + 1, since || Eg,, ab|| is lower or equal to
|| Esy,abl] + 1, the relation is once again satxsﬁed
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If z is equal to b and ||uz||ab to [|ve||as, for each (y,aab, B, E) of sz, y is b and
for each (y, ab, F) of sz, y is b thus we have: ||Ey,; ab|| < ||Es, 05/ and the relation
is satisfied. O

Definition 5.4. Let q be a state of the transducer 7(s,0) and (a,b) a couple of
0N O~1. The set Sg,qp is defined by:

Sgab = {E CN|3(z,aub,v',E) € ¢y U{E CN| 3I(z,ab,E) € q} -

Lemma 5.5. Let u be a word of ¥* with 6(qo,u) = (g,u’). We have:

V(a,b) € 9N 6, VE,F € Sga4, F CE or ECF, (1)
1Bqnll = max (IIFI). (2)

Proof. Let us first show the first property by induction of the length of u. If u is
the empty word, then q = qo = { and the property is verified.

If u is equal to vz with z a letter of X, let us set (s,v') = d(qgo,v). If z is
different from b then each E belonging to Sy 44 belongs to Ss qp or is empty. Thus,
the property is satisfied. Now we have to consider the case when z is equal to b.
Let us consider E and F belonging to Sy o5 Then, there exists E’ and F'in S o
with E=F and F=F or E=FE'U mm(E's o) and F' = F' Umin(FE; 4p). Thus,
the first property is always true.

The second property is a direct consequence of the first one. O

Lemma 5.6. Let (a,b) belong to 6NA~' such that there exists a word acd in Py 5.
Let v and v be words of ¥* such that the word au does not contain any rigid left
factor for ab. If 6(qo,vau) = (q,v'a'v’) is a calculus of 7(x ) then there exists a
tuple (z,aab, o/, E) in g with o the shortest right factor of aab such that aab is
a subword of aud’ and ||E|| = ||au||ab-

Proof. Let us show the lemma by induction on the length of u. If u is empty, then
(a,aab,ab, E = () belongs to ¢ and o = ab is the shortest right factor of aab
such that aab is a subword of aa’ and ||E|| = 0 = ||al|qs. Let us set u = wz with
z a letter of ¥ and §(go, vaw) = (s,v'a’w’). By induction hypothesis, there exists
a tuple (y, aab, o, F) in s satisfying the lemma.

If z is different from b then (z,aab,d’/z, E) belongs to ¢ and the lemma is
satisfied.

If z is equal to b, let us suppose that: there exists a tuple (z,a08b,b, F) in s. As
awb has no left factor rigid for ab, we get E C F'. Consequently, we have the same
two cases, if there exists some (z,a08b,b, F) in s or not:

e when the last letter of Il,;(aw) is b then (b, aab, o', E) belongs to g;
e otherwise, (b, aab, o', E'Umin(FE; q)) belongs to g.

In each case, the lemma holds. O
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Lemma 5.7. Let aub be a rigid word for ab that does not have any proper left
factor rigid for ab. Then, considering the transducer 7(s; gy, we have:

Vv € %, (3(go, vaud) = (g, w)) = (I|Eq,abl| < |laud||ab)-

Proof. Let v be a word of £* and J(go,vaub) = (g, w) be a calculus of 7(s g).
Let us set 6(go,v) = (q1,7'), 6(q1,a) = (g2,a’), and §(g2,u) = (g3,%’). We have
0(g3,b) = (q,b'). Since aub is rigid for ab, there exists a subword « of u such that
aab belongs to Py x.

The tuple (a, aab, ab, 0) belongs to g2 and, since aub does not contain any proper
left factor rigid for ab, according to Lemma 5.6, there exists (z,aab,b, E) in g3
with [|E|| = ||au||ss. Moreover, according to Lemma 5.5, for each F of Sy, ap,
either F' is a subset or is equal to E, either F is strictly included in F. According
to the definition of 75 ¢, there does not exists any tuple (z, aca’b, o”’b, F') such that
E C F in q. Thus, S;,q only contains sets F” such that:

o ||[F'|| < ||E|| +1 = ||laul|las + 1 = ||aub||qp when the last letter of I, (u) is a;
o [|[F'|| < ||E|| = ||laullab = ||aub||q» otherwise.

Since ||Ey,q5|| is equal to maxpres, ., (||F’|]), according to Lemma 5.5, we have
1Eq.abll < |laubl|as-

|

Lemma 5.8. Let L be a regular language over ¥ satisfying the (P) property.
There exists an integer Ky such that for each word u of L and for each couple
(a,b) of 0, considering the transducer (s g):

(6(g0,u) = (g,u)) = (||Eq.anll < KL).

Proof. Let Np, be the integer given by Lemma 5.2. We show that N +1 is suitable
for K, by induction on the length of the word u. Let (a,b) belong to # N =1, If
u is empty then Egy, o5 is empty and the lemma holds.

Let us suppose that u = vz with = a letter of . Let us set §(go,v) = (5,7'). We
have 6(s,z) = (q,2’) and, by induction hypothesis, ||Es,a|| < Kr. If [|Es | <
Ky, we are done. Otherwise, we deduce from Lemma 5.3: ||v]|,p > K — 1= NL.
If z is different from b, || Eg ob|| is equal to || Es 45| and we are done. Let us consider
the case when u = vb and a factorization u;ausb of u such that ausb is rigid for
ab and has no proper left factor rigid for ab. Such a factorization exists according
to Lemma 5.2 since ||v||qp > Nr. Moreover, since ausb has no proper left factor
rigid for ab, we deduce from Lemma 5.2 that ||auzb||.s is lower or equal to Np.
Now, from Lemma 5.7, we have immediately:

|| Eq,ab|| < [lauzbllay < N < Kf.
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We are now able to enunciate the main result of this section.

Proposition 5.9. Let ¥ be an alphabet, 8 be a semi-commutation over X and L
be a regular language over 3. If L satisfies the (P) property then 7(s, gy(L) can be
computed by a rational transduction.

Proof. We have to show that a bounded number of states are reached in the
computation of (s gy(L). For this purpose, it suffices to show that there exists an
integer Ty, such that for each (a,b) of M @~! and for each word u of L:

(5(q05 U) = (Qa U'l)) = (ma‘X(Eq,ab) S TL)

Let us show that the integer K, given by Lemma 5.8 is suitable for T7,.

Let us suppose that there exists a word u = vz with x a letter of 3 such that
d(go,v) = (s,v"), 6(s,z) = (¢, 2"), max(Es,q) < Kr,, and max(FEq o) > K. From
definition of §, we deduce that F; . = {0,1,..., K} but, in this case we have
|Es,epi| = K1 + 1. This leads to a contradiction with Lemma 5.8. O

5.2. A NECESSARY CONDITION FOR THE TRANSDUCER TO BE FINITE

We now show that the condition of Proposition 5.9 is not only sufficient but
also necessary for any rational coloring. In this part, we use a few technical
intermediate lemmas that are proved using some formal languages notions which
are quite different from the ones seen in the beginning of the paper. Thus, we
need to introduce these notions.

Notation 5.10. We denote by Dll* the semi-dyck language over one letter.

Notation 5.11. Let 0 be a semi-commutation over ¥. For any subalphabet X
of ¥, we denote by (X,0) the restriction of the non commutation graph of this
semi-commutation to X.

Definition 5.12. A language L is bounded if there exist words wy,wa,. .., W,

such that L C wiws ... wy,.

Lemma 5.13. Let 0 be a semi-commutation over an alphabet ¥ and L C ¥* be

a language which does not satisfy the (P) property. Then there exists a bounded
language K included in L and a rational transduction T such that D3 = 7(fa(K)).

Proof. If the language L does not satisfy the (P) property then there exist three
words z,y,u € X* and a subalphabet o of ¥ such that K = zu*y C L and o is a
connected component of (alph(u),#) which is not strongly connected. Then, there
exist two letters o and b in « such that (b,a) € N 6~1 and there is no path from

b to a in (alph(u),8). Let us consider the two following alphabets:

e a; = {b} U {z € alph(u) | there exists a path from b to z in (alph(u),8)};

e a9 = alph(u) \ a1.
Note that for all (z,y) in a1 X ag, (z,y) belongs to # and oy is not empty since
a € .
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Let us now introduce a new alphabet ¥ = {@,b,Z, 7} such that ¥ N¥ = and
two morphisms ¢ and A defined from >* to X* by:

* g9(a) = a, g(b) = b and ¢(Z) = g(7) = &;

* (@) = Ila, (u), ~(b) = Ila, (u), h(Z) =  and h(7) = y.
Since the word I, (u)II,, (u) belongs to f5(u) and the word I, (u)I1,, (u) belongs
to fo(Ily, (w)ly, (1)) but I, (u),,(u) do not belong to fo(I,, (u)Il,, (u)), we
obtain

Dy = g(h ™ (f(K)) N %(@ + b)*7).
O

Definition 5.14. A family of languages is a rational cone if it is closed under
rational transduction.

Lemma 5.15. Let 0 be a partial commutation over ¥ and K be a bounded
language. Then f3(K) belongs to Cn(B), the least rational cone closed under
intersection containing all the bounded languages.

Proof. Tt is sufficient to prove the lemma when 0 is a partitioned commutation. A
partial commutation 6 over ¥ is a (k—)partitioned commutation if there exists a
partition of the alphabet ¥ :{Xq,..., Xk} such that

Indeed, if K is a bounded language and h a morphism, h(K) is a bounded language
and it is shown in [4] the following result: for any partial commutation function
f, there exist a morphism h and a partitioned commutation function f’ such that
f=h1lof oh. _

Let {¥1,...,2;} be the corresponding partition of ¥ and let us defined k
copies of the alphabet 3 : X;,...,X,. Let h;,i € {1,...,k} be the corresponding
bijections from ¥ to X;,¢ € {1,...,k}. Then we clearly have

fo(K) =Tln( W {Hg(whi(u) |ue K} () E*(xgzhl(x)...hk(x))* ).

Since K is a bounded language, the languages {IIg, (u)hi(u) | u € K} for i €
{1, ..., k} are bounded languages too. Moreover, we know that Cn(B) is closed un-
der shuffle since it is shown in [9] that every rational cone closed under
intersection is closed under shuffle operation. It follows that fo(K) € Cn(B).

O

We can now enunciate the main theorem of this section.
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Theorem 5.16. Let 6 be a semi-commutation over ¥ and L C ¥* be a regular
language. There exist two rational functions h and g and a partial commutation
¢’ over ¥’ such that for each word u in L, fg(u) = gofs o h (u) if and only if the
language L satisfies the (P) property.

Proof. From Proposition 5.9, we know that the condition is sufficient. Conversely,
let us suppose that L does not satisfy (P) and there exist two rational functions h
and g and a partial commutation 8’ over an alphabet ¥’ such that for each word
win L, fg(u) = g(fe- (h(w))). We shall see that this leads to a contradiction. From
Lemma 5.13, there exist a bounded language K C L and a rational transduction 7
such that D}* = 7(fs(K))). Since h is a rational function, we get, from [8] and [10],
that h(K) is a bounded language, then from Lemma 5.15, it follows that for (h(K))
belongs to Cn(B) hence fy(K) = g(fg: (h(K))) belongs to Cn(B). It should follow
that D}* = 7(f5(K))) € Cn(B), but this contradicts the following result enunciated
in [12]: D7* does not belong to the least rational cone containing the family of all
the commutative languages which is equal to Cn(B). O

6. CONCLUSION

The results of this paper can be used to make a link between some results for
semi-commutations and similar results for partial commutations. As conclusion,
we present an example of this link.

Let us recall that there exists a sufficient condition to decide whether the closure
of a regular language is regular. This condition is about the connexity of the
iterating factors of the language and has been shown independently by Ochmaniski
in (15] and Métivier in [14] for partial commutations and by Clerbout and Latteux
in [5] for the semi-commutations.

Theorem 6.1 (Métivier and Ochmanski). Let g be a partial commutation over
an alphabet ¥ and L be a regular language over 3. If each iterating factor of L is
connected for o then the closure of L under ¢ is reqular.

Theorem 6.2 (Clerbout and Latteux). Let 8 be a semi-commutation over an
alphabet & and L be a regular language over ¥. If each iterating factor of L is
strongly connected for @ then the closure of L under 0 is regular.

Using Theorem 5.16, we propose a proof of Theorem 6.2 based on Theorem 6.1.

Proof of Theorem 6.2. Let 8 be a semi-commutation over an alphabet ¥ and L
be a regular language over ¥ whose iterating factors are strongly connected for 6.
According to Proposition 5.9, the language 7(5 ¢y(L) is regular. So, it suffices to
show that its iterating factors are connected for the partial commutation gy to get
the result.

Let u be an iterating factor of 7(s ¢)(L). Let us first remark that for each z
and each y of alph(u) such that vx(z) = ¢s(y), (z,y) do not belong to gg, so
the sets of letters which have the same image under ¢y form cliques of the graph
(alph(u), 09). Since u is an iterating factor of 7(s 9)(L), ¥ (u) is an iterating factor
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of L, so for each couple of letters  and y of alph(u), there exists a path from
¢x(z) to ¢x(y) in the non-commutation graph (alph(ps(u)), ). Let us denote by
on(z) = 20,21, -, 2Zn—1,2n = ps(y) the vertices of this path. Now, we just have
to show that for each z; and each z;4; there exists in the graph (alph(u), gg) an
edge between one z; and one 2{,, such that ps(z;) = z; and ¢x(z],,) = zif1.

Since there exists an arc between z; and z;41, two cases can happen. If (241, 2;)
do not belong to the semi-commutation € then, by definition of the coloring, for
each (z;,c) and each (z;41,c") of the alphabet of u, ¢(z;+1) = 0 and ¢'(z;) = 0 and
we have an edge between (z;, F) and (2,41, F). If (2i+1,2;) belongs to 6 then it
suffices to show that there exists a (z;, ¢) and a (z.4+1, ') in the alphabet of u such
that c(zi+1) = ¢(2;). This clearly holds: since u is a iterating factor of 7(s gy(L),
we can consider u2. In this word, for each letter (z;41,¢’) of the alphabet of u, at
least one occurrence is preceded by a (z;,¢) (with no letter corresponding with a
z; between them). In this case, by definition of the coloring, ¢(z+1) = ¢'(2;), so
there is an edge between these two letters. For each couple of letters = and y of
alph(u), there exists a path from z to y in (alph(u), 85), therefore the word u is
connected.

Since each iterating factor of 7(sg)(L) is connected for gy, according
Theorem 6.1, fy, (7(s,9)(L)) is a regular language. According to Theorem 4.18,
fo(L) is the image by the strictly alphabetical morphism @s of f,, (7(x,6)(L)), so
this language is regular. O
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