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RETURN WORDS IN STURMIAN
AND EPISTURMIAN WORDS

JACQUES JUSTIN1 AND LAURENT VUILLON1

Abstract. Considering each occurrence of a word w in a récurrent
infinité word, we define the set of return words of w to be the set of all
distinct words beginning with an occurrence of w and ending exactly
just before the next occurrence of w in the infinité word. We give a
simpler proof of the recent result (of the second author) that an infinité
word is Sturmian if and only if each of its factors has exactly two return
words in it. Then, considering episturmian infinité words, which are a
natural generalization of Sturmian words, we study the position of the
occurrences of any factor in such infinité words and we determinate the
return words. At last, we apply these results in order to get a kind of
balance property of episturmian words and to calculate the récurrence
function of these words.

Résumé. Si l'on considère chaque occurrence d'un mot w dans un mot
infini récurrent, on définit l'ensemble des mots de retour de w comme
l'ensemble de tous les mots distincts débutant avec une occurrence de w
et finissant juste avant l'occurrence suivante de w. Nous donnons une
nouvelle démonstration d'un résultat établi récemment par le deuxième
auteur : un mot infini est sturmien si et seulement si chacun de ses
facteurs a exactement deux mots de retour. Nous étudions les mots
episturmiens qui sont une généralisation naturelle des mots sturmiens.
Puis nous déterminons la position d'un facteur donné et ses mots de
retour dans un mot épisturmien. Enfin nous appliquons ces méthodes
pour obtenir une propriété d'équilibre pour les mots episturmiens et
calculer la fonction de récurrence de ces mots infinis.

AMS Subject Classification. 68R15.

1 LIAFA, Université Paris VII, Case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France;
e-mail: {Jacques.Justin, Laurent.Vuillon}@liafa.jussieu.fr

© EDP Sciences 2000
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INTRODUCTION

The notion of return words is a powerful tooi for the study of Symbolic
Dynamical Systems, Combinatorics on Words and Number Theory. Consider-
ing each occurrence of a word w/ina récurrent séquence U = (Un)n€N, we de-
fine the set of return words of w to be the set of all distinct words beginning
with an occurrence of w and ending exactly before the next occurrence of w in
the infinité séquence. This mathematical tooi was introduced independently by
Durand, Holton and Zamboni in order to study primitive substitutive séquences
(see [8,9,12]). This notion is quite natural and can be seen as a symbolic version
of the first return map for a dynamical System. Recently, many articles use re-
turn words. For example, Allouche et al study the transcendence of Sturmian or
morphic continued fractions and a main argument is to show, using return words,
that arbitrarily long préfixes are "almost squares" (see [1]). Fagnot and Vuillon
give a generalization of the notion of balance property for Sturmian words and the
proof is based on return words and combinatorics on words (see [10]). Cassaigne
also uses this tool to investigate a Rauzy conjecture (see [4]).

At last, the second author shows that a séquence is Sturmian if and only if
for each word w appearing in the séquence, the number of return words of w is
exactly two (see [14]). Recall that Sturmian séquences are aperiodic séquences
with complexity p(n) = n + 1 for ail n (the complexity function p(n) counts the
number of distinct factors of length n in the séquence) (see [3,11]).

In this paper, we give a simpler proof of this resuit (Sect, 2) and then, in
Sections 3 and 4, we study the occurrences of factors and the return words in
episturmian words (episturmian words on a finite alphabet are a natural general-
ization of Sturmian words introduced in [7] which includes in particular Sturmian
words and Arnoux-Rauzy séquences [2]). This allows (Sect. 5) to calculate the
récurrence function, obtaining or completing known results [5,11], and to state a
kind of balance property of episturmian words which when applied to Sturmian
words coincides with the well known balance property of these words.

1. DÉFINITIONS AND NOTATIONS

1.1. WORDS

Given a finite alphabet A, A* is the set of words on A and A+ = A* \ {e} with e
the empty word. If u = u(l)u(2) • • -u(m) with u(i) € A its length is \u\ = m
and its reversai is u = u(m)u(m — 1) • • • u(l). The word u is a palindrome or is
palindromic iïu = ïï.

Similarly Aw is the set of infinité words (or infinité séquences) t = t(l)t(2) • • •
on A.

A finite word u is a factor of the finite or infinité word t if t = tfutN', tf G A*
and t11 e A* U A™. This factor (or rather its occurrence so defined) is a prefix
if tf = e, a suffix if tft ~ s, is interior if £', tn ^ e. Also u is unioccurrent if it has
exactly one occurrence in t.
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The set of factors of the finite or infinité word t is F(t) and Ft(t) — F(t) C\ Ae-
The set of letters occurring (resp. occurring infinitely many times) in t is Alph(t)
= F1{t) (resp. Ult(t)).

1.2. RETURN WORDS

Let t = t(l)t(2) • • • ,t(i) G A be an infinité word. Then t is récurrent if any
of its factors occurs infinitely many times in it. In this case, for u G F(t),
let ni < 7i2 < • • • be all the integers Ui such that u = t{ui) - • -t(rii + \u\ — 1).
Then the word t(rii) • • • t(rii+i — 1) is a return word of u in t. Let 7iu(t) be
the set of return words of u in t. Then t can be factorized in a unique way
as t = t(l) • • -t(ni - l)rWr& • • • where r « G Hu(t). If we consider r^M2* • • •
as an infinité word on the alphabet 7ïu(t), this one is called the derived word of t
relatively to u.

The set Hu(t) is finite for all u G F(t) if and only if t is uniformly récurrent
Lastly if r is a return word of u then the factor ru of t is a complete return word
of u in t.

1.3. EPISTURMIAN WORDS

An infinité word t G A is episturmian if F(t) is closed under reversai and for
any f e N there exists at most one right special word in i^(t) (a factor u is right
special if ux, uy G F(t) for at least two different letters x, y), see [7,13].

Sturmian words, which can be defined in many ways, are exactly the non-
periodic episturmian words on a two-letter alphabet. Sturmian words have the
remarkable balance property. A word w is balanced if u, v G F(w) and |u| — \v\
imply \\u\x — \v\x\ < 1 for any x G A and with \u\x the number of x occuring in u.

As episturmian words are uniformly récurrent and as we are interested here only
in factors, we limit ourselves to the considération of standard episturmian words
(an episturmian word is standard if all its left special factors are préfixes of it). Let s
be a standard episturmian word and let u± = e,U2,U3,- • • be the séquence of its
palindromic préfixes. Then there exists an infinité word A(s) = Xi#2 * • • , %i G A
called its directive word such that for all n G N+ (the set of positive integers),

where the right palindromic closure (+) is defined by: w^ is the shortest palin-
drome having w as a prefix (see this construction for Sturmian words by
de Luca [6]).

Example: if A(s) = (abcf*3 then the infinité word s begins by

s = ahacabaabacabahacabaabacabac • • •

where the letters of the word A(s) are bold. We have for this example u\ = e,
U2 = a, U3 = aba and so on.
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For a G A let ipa be the morphism given by

ipa(a) = a,ij)a{x) = ax

for x e A,x ^ a. Let

Mn = ^ i f e • • "0xn,Mo == ld,

and

Then we have the useful formula un+i = hn-iun and more generally
= ^n_i(x)nn for x e. A.

At last, there exists an infinité séquence of standard episturmian words
So = s,Si,S2, • • • such that s = /in(sn) for n G N.

These notations will be kept throughout this paper.

2. A CHARACTERISTIC PROPERTY OF STURMIAN WORDS

We will say that an infinité word s G Au has property 7Zn if for any factor w
of s the number of return words of w is exactly n.

A letter a of the alphabet A will be called separating in s e A° if any factor of
length two of s contains at least one a. For example: the letter a in the infinité
word y = (aaaabaab)^ is separating. Hereafter in this section the alphabet will
be A = {a, 6}.

Lemma 2.1. If an infinité word s has the property IZ2 then either a or b is sepa-
rating.

Let %l)a be the morphism t/)a(à) = a and ipa(b) = ab. Let ipa be the morphism
V'a(a) = a and ^a(&) = &a.

Lemma 2.2. Le£ s G A" be an infinité word with the property 7Z2. Let for instance
a be a separating letter, then there exists an infinité word t with either s = ipa(t)
o r s = ^a(t)- Furthermore t has the property 72-2- Conversely, if s = ^a(t) o r

s = ^a(t) and t G A? has the property 7Z2 then s has the property TZ2.

Lemma 2.3. If an infinité word s G Au is non-periodic and if s = So, Si, • • • is an
infinité séquence of infinité words such that either s^_i — ipXi(si) orSi-± = ipXi(si)
where x% G A then s is Sturmian.

The following theorem is one half of the main resuit of [14]. For the second half
see Remark 2.5 hereafter.

Theorem 2.4. [14] If an infinité word s G Au has the property IZ2 then it is
Sturmian.
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Proof. The proof is an immédiate conséquence of Lemma 2.1, Lemma 2.2 and
Lemma 2.3. •

Proof of Lemma 2.1. Suppose by contradiction that a and b are not separating
in s. Then aa and bb occur in s. Write for instance

s = apb7nianibrn2an'2 •-- ,p>0,muni > 0 .

Then all rrti must be equal and similarly all n .̂ Hence s = ap(brniani)Ui and s has
not 7̂ 2, contradiction. D

Proof. We now prove Lemma 2.2. Let s be an infinité word with the property 7̂ 2-
by Lemma 2.1, it has a separating letter, a for instance. Either s begins with a
and then we write s = ipa(t) or s begins with b and we write s = ^ a( t) . Let for
instance s = ^a(t). We make a reasoning by contradiction. Suppose that t does
not have the property 7£2 •

As clearly t is not periodic, there exists a finite word u e F(t) with more than
one return word in t. As t has not IZ2 u has (at least) three return words in t.
If u ends with b then the occurrences of ij)a{u) in s are exactly the images of the
occurrences of u in t given by the morphism. Thus ^ia(u) has three return words
in s, which leads to a contradiction.

Consequently u ends with the letter a. Consider the occurrences of ux in t
where x G A is a non specified letter. Thus all the ij)a[ux) begin with ipa(u)a. In
conséquence, the occurrences of ipa(u)a in s are exactly the images of the occur-
rences of u in t under the morphism and then ipa(u)a has three return words in s.
Contradiction.

Conversely, let s = ^a(t) a n d t has the property IZ2. Suppose that s does not
have the property 7̂ 2- There exists a word u € F(s) with at least three distinct
complete return words ƒ1, ƒ2, ƒ3 and with minimal length.

First case, suppose that u begins with a. If u ends with 6, the factorization
of s in the code {a, ab} shows that the occurrences of u in s exactly correspond
to the occurrences of v = '0~1(u) in t. That is v has three return words and we
have a contradiction. Hence we can suppose that u ends with a and write u = v!a.
The case v! = e is clearly impossible because a which is separating has at most
the return words a and ab. Then, by minimality of \u\, v! has exactly two return
words and then ufb appears in one of the ƒ; and u'b G F (s). As a is separating in
s, v! ends with a. In other words, u = uffaa. Thus u — ipa(w)a with w G F(i).
The occurrences of u in s exactly correspond to the occurrences of wx in t with
non specified x G A. Then w has three return words in t. Contradiction.

Second case, suppose that u begins with b. Then as a is separating the occur-
rences of u and au in s are trivially in correspondence, hence au has three return
words in s. If u ends with 6, then au = il)a(v) and, as in the first case, v has three
return words in t, a contradiction. So u ends with a and we can write au = ufa.
If u! has three return words, as |u'| = \u\ we may consider uf instead of u and we
are brought back to the first case.
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If v! has only two return words in s, reasoning as in the first case we get
that ufb E F (s) whence uf — u/fa, whence au = ipa(w)a for some w € F(t).
Thus w has three return words, a contradiction. D

Lemma 2.3 is the application to a binary alphabet of a property of episturmian
words [13]. For the sake of completeness let us give an independent proof.

Proof of Lemma 2.3. If the property is false then s is not Sturmian hence it has
a prefix u which is not balanced. Choose such a séquence s, Si,s2, • • • with \u\
minimal. Suppose for instance s — ̂ a( s i)- Then ux = ïpa(v) for some prefix v
of Si and x e A U {e}. If \v\ < \u\ then v is balanced, whence as ipa is a Sturmian
morphism, ux is balanced, contradiction. If H > \u\ as \ux\ = \v\ + \v\b we have
\v\b < 1 thus \u\b < 1 and u is balanced, contradiction. D

Remark 2.5. The converse of Theorem 2.4, that is: any Sturmian word has
property 7£2> proved in [14], could also be proved using arguments similar to the
previous ones. It also immediately follows from Corollary 4.5 hereafter.

3. OCCURRENCES OF FACTORS
IN THE STANDARD EPISTURMIAN WORDS

With notations as in Section 1.3, s is a standard episturmian word with di-
rective word A(s) = X\X2 • • - ,Xi G A- The palindromic préfixes of s are u\ =
e, • • • , Uï+i = (uiXi)(+\ Recall that for a e A, i/>a(a) = a and ij)a(x) = ax \i x ^ a,
we note the morphism {jin =

 fipXx
flPx2 ' * ' ̂ xn ^nd the image of xn+i by this mor-

phism hn = fjLn(%n+i) with fro = xi cind Mo = Id. By Section 1.3 wn+i = hn^\un

and the hn are préfixes of s.

Theorem 3.1. For a given n, vun is a prefix of s if and only if

v = hrnihm2 • • 'hmp (1)

with 77i\ > rri2 > • • > mp > n — 1 (this séquence could be empty that is v = e).

The disposition of the occurrences of un given by this theorem can be illustrated
by Figure 1.

Proof (<=) By induction on the length p of the product in (1). The property is
trivial for p = 0. We suppose that it is true for p — 1. With vf = hmi hrri2 - - • / im p - 1 ,
we have that v'unt is a prefix of s if mv~\ > n' — 1, in particular we can
take n' = mp + 2. But Ump+2 = ^mp^mp+i and then hmpun is a prefix of wmp+2-
Thus we get that vun is a prefix of v'ump+2i hence of s.

(=>) We proceed by induction on n. The property is true for n = 1 i.e. un = £,
because any prefix of s can be written in the form (1) with mp > 0 (as can easily
be seen using iti+i = hi-±Ui). Suppose the property is true for n — 1. If a is the
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FIGURE 1. Position of un in s.

u x

FIGURE 2. Décomposition of un.

first letter of s then s = ipa(si) where Si is a standard episturmian word. If we
dénote by u^ and hli the u\ and hi of Si, we have

As vfuf
n_l is a prefix of Si with t/ =

of s with Ü given by (1).

Now let w be some factor of s.

_1 it follows that vun is a prefix
D

Lemma 3.2. Lei n be the minimal integer such that w is a factor of un. Then
w is unioccurrent in un (Le. there exists a unique pair of words f^g E A* such
that un =

Proof We have un = (un~ixn-i)^ = ded where d,e e A* and de — un-ixn-i
and e is the longest palindromic suffix of un„ixn_i (see Fig. 2). Moreover by
Lemma 1 of [7] un-ixn-i has a palindromic suffix unioccurrent in it and it is
easily seen that this suffix is e. Consider the rightmost occurrence of w in un,
defined by un = / ^ , f,g G .4*. As > |un-i | and \wg\ > |itn-i|>
have u; — eed and wn_ixn_i = de = /ce for some c, e' G v4*. If there is in un

another occurrence of w then fee is a prefix of un_! for some word ƒ' strictly
shorter than ƒ. Thus e has two occurrences in Un-ix^^-i^ a contradiction. •
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Z

FIGURE 3. Return words on un and y.

Theorem 3.3. Ifs is standard episturmian and if n is minimal such that w occurs
in un then there exists a bijection between the occurrences of w and those of un

in s. More precisely, the occurrences ofw are given by the préfixes vfw of s where v
is given by (1) and ƒ by Lemma 3.2.

Proof Let un = fwg be as in the preceding lemma. If g ^ e then write grgff — g
with 0 < \g*\ < \g\. By construction, wg1 is not right special otherwise it would be
a suffix of un (which is right and left special) and w would have two occurrences
in un in contradiction with the lemma. Then any occurrence of w in s is followed
by g. In addition to that, if ƒ ^ e we write ƒ = ƒ'ƒ" with 0 < | /" | < | / |
then fffwg is not left special (because it would then be a prefix of s shorter than
un and w would have two occurrences in un, in contradiction with Lem. 3.2).
So each occurrence of wg in s is preceded by ƒ, that is each occurrence of w is
contained in an occurrence fwg of un. •

4. RETURN WORDS IN EPISTURMIAN WORDS

In order to study the return words of the factor w of s it is sufficient, by the
preceding theorem, to study the return words of the corresponding un. More
precisely we have the following trivial corollary.

Corollary 4.1. If w G F (s) and un,f^g are those of Lemma 3.2, then y is a
return word ofw if and only if fyf~1 is a return word ofun, and z is a complete
return word ofw if and only if fzg is a complete return word of un.

Proof The proof is easy (see Fig. 3 in gênerai two occurrences of un overlap but
for clarity we draw a figure with two distinct occurrences of un). D

Proposition 4.2. For each letter x such that unx G F (s) there exists a unique
complete return word of un beginning with unx.

Proof. The existence is obvious. For the unicity, suppose that there exist two
complete return words beginning with unx. Clearly, no one is a prefix of the
other. We can write them unwwi and unww2 where w begins with x and w\yW2
begin with different letters. Then unw is right special and then it has un for
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suffix. As w\ ^ e there exists an interior occurrence of un in unwwi^ this leads to
a contradiction. D

R e m a r k 4.3. By Theorem 6 of [7] unx e F(s) if andonly if x G Alph(x n x n + i • • - ) .

The next theorem gives a précise description of the return words of iAn+i-

Theorem 4.4. The return words of the palindromic prefix un+\ are the /J>n(x)
where x G Alph(xn+ixn+2 * • • ) and the corresponding complete return words
of un+i are the (un+ix)(^. Furthermore, the derived word relative to the fac-
tors un+i is sn = Mn1^)-

Proof Clearly, the property is true for n — 0 as the return words of e are
the }JLO(X) = x e Alph(s). We note u[ = e, uf

2 = x2, • • * the palindromic pré-
fixes of si = ipxi(s)- H f/un is a Pr^fix of Si then ipXl(f

/)un+i is a prefix of s
because ipXl(u

f
n)xi = un+i. Conversely if fun+\ is a prefix of s then ƒ = /ipXl{f/)

for some ƒ' e *4* and /rw^ is a prefix of Sj.. Thus gf is a return word of uf
n in si if

and only if ipXl (g
f) is a return word of un+\ in s. Assuming by induction on n that

g' = ipX2iJxs • --ipxn(
x) w i t h x € Alph(xn+iXn+2 • • Oi w e ê e t ^ i ^ O = Mn(^).

Moreover ^(a:)wn+i is a complete return word of un+i, but by a formula given
in Section 1.3 it is (un+ix)(~*~).

At last if sn = yiy2 • • • ,y% G A then Mn(2/i)Mn(î/2) * * * gives the factorization
of s = Mn(sn) in return words of xxn+i- Thus sn is the derived word relative

Now following [7,13] let us say that the standard episturmian word s € Au (or
any infinité word with the same factors as s) is *4-strict if its directive word A
satisfies Ult(A) = Alph(A) = A.

The ^4-strict episturmian words are exactly the (generalized) Arnoux-Rauzy
séquences on A whose study was begun in [2] and which can be defined as the
récurrent infinité words having exactly one right- and one left-special factor of
each length and with complexity function p(n) = (Card(*4) — l)n + 1. Then we
have:

Corollary 4.5. For any A-strict episturmian word (or Arnoux-Rauzy séquence
on A) each factor has exactly Card(.A) return words.

Proof By Theorem 4.4 and as the episturmian word is ^4-strict the return words
of wn+i are the jJLn{x), x G A whence the resuit. D

5. APPLICATIONS

5.1. A KIND OF BALANCE PROPERTY

With s G Au standard episturmian and notations as above we have:

Theorem 5.1. If c € A then the factors of s not containing c are factors of an
episturmian word on Ai = A \ {c}.
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Proof. Suppose first that s is A-strict that is Ult(A) = Alph(A) = A,
with A = x\%2 • • • the directive word of s. Let xn be the leftmost occurrence
of c in A. Then c belongs to un+i = uncun but not to un. By Theorem 4.4
the return words of un±i are the fin{x),x G A. If x = c = xn then by the same
Theorem the complete return word of wn+i is

= UnCUnCUn

whence fin(c) = unc. If re ̂  c then

Now, consider a standard episturmian word s' with directive word A' obtained
by deleting all c in A and dénote by u^ ji^ the u^ fa of s'. As £1X2 • • * #n-i is a
prefix of A' we have v!i = Ui for 1 < i < n and fj,n-i(x) = fJ>;

n-i(x) for x € A.
Thus fJLn(x) = wnc^_1(x) for x ^ c. By Corollary 4.1, the return words of c in s
are cun and c^_1(x)^an, for x G AL = vA \ {c}.

Therefore the factors of s not containing c are factors of the ii/
n_1(x)un for x G

*4i and by Theorem 4.4 these words are the complete return words of un in s'.
At last, if s is not «4,-strict, as the return words of wn+i m s are some of

the fjLn(x),x G Aj it suffices to replace s by an A-strict standard episturmian word
whose directive word begins with x±X2 • • • xn- D

T h e o r e m 5.2. Ifs € A° is standard episturmian, let {d,e} be a two-îetter subset
of A. Then for any u,v E F (s) n {d, e}* with \u\ = \v\, we have \\u\d — \v\d\ < 1.

Proof. Assume without loss of generality that s is A-strict. If Card(A) = 2 there
is nothing to prove as s is Sturmian. Otherwise, let c be a letter in A \ {d, e}.
Let Ai = A\{c}. The words in F(s)nA[ are by Theorem 5.1 factors of a standard
Ai-strict episturmian word s'. Deleting in the same way a letter d G A\ \ {d, e}
we get an Az-strict standard episturmian s", with A2 = A\\ {c}. Continuing, we
arrive at a Sturmian word on {d, e} and this one has the balance property. D

Remark 5.3. The property stated in the Theorem 5.2 is not characteristic as
trivial examples show.

5.2. RÉCURRENCE FUNCTION

With s standard episturmian, A = Alph(s),A(s) and the other notations as
above, given any w G F (s), we define W(w) to be the smallest integer such that
every v G F (s) with \v\ = W(w) contains at least one occurrence of w (this
integer exits because s is uniformly récurrent). The récurrence function R(£) is
then given by

R(£) - sup{W(w)\w G Ft(s)} • (2)

This is the minimal length R(ê) such that each block of s of that length contains
each factor of length £.
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Lemma 5.4. Let r be the longest complete return word of w in s. Then W(w) =
\r\ - 1.

Proof. Let v G F (s) with \v\ — \r\ — 1. If iu does not occur in v then there exists a
complete return word of w of the form xvy, x,y G A+. As \xvy\ > \r\ — 1 we have
a contradiction. Thus we have W(w) < \r\ — 1.

Now the complete return word r can be written xr'y, x,y E A. Clearly w does
not occur in r'. As |r'| = |r| — 2 the proof is complete. D

Now let rn (resp. rf
n) dénote the longest(resp. longest complete) return word

oïun in s. For w G F(s)\{e}, define nw by w G F(unw+i)\F(unvj), that is nw-\-l
is the minimal integer such that w is a factor of unw+i.

Lemma 5.5. /ƒ w is a factor of s then

W(w) = \rnw+1\ + \w\ - 1.

Proof By Lemma 3.2, we can write in a unique way unw+\ = fwg, fyg € A*. By
Corollary 4.1 the longest complete return word of w is f~1T;

n +Ig~l. In consé-
quence by Lemma 5.4 we have

W(w) = \rf
nw+1\ - l/l - Ifll - 1 = |rniB+1 | + |w| - 1.

D

Then by équation (2) we get

R(£) - sup{|rnuj+i| \w e Fe(s)} +i-l. (3)

In order to get a more explicit form of R(£), let us calculate rn for n > 0.
For this, we give first two définitions about positions of letters in the directive
word A(s) = X\X2---- For i G N_j_, let S(i) be the smallest j > i such that
Xj — Xi, if it exists, S(i) undefined otherwise, and let P(i) be the largest j < i
such that Xj = Xi if it exists} P(i) undefined otherwise.

Lemma 5.6. a) \rn\ is a monotone increasing function of n.
b) If some x G A does not occur in un then \rn\ = \un\ + 1. Otherwise \rn\

= \un\ - \up\ with p = 'mf{P(i)\i > n}.

Proof By Theorem 4.4 r n + i = iin(x) and rn = fin-i(y) for some x G B =
Alph(xn+ixn+2 • • •) and y G B LJ {xn}. Suppose by contradiction that \rn\ >
|rn+i|. By the maximality of |rn+i| we have x ^ xn unless B = {xn} which would
give y — Xn and r n + i — rn, a contradiction. Thus r^+i = iin-i(xnx). If 2/ =
a;n then clearly |rn | < |rn+i|. Otherwise y G B and the maximality of |^n+i|
implies |/xn_i(a;)| > |/xn_i(ï/)| whence |rn | < | rn + i | .

b) If x G A does not occur in un then (wnx)^+^ = unxun is a longest com-
plete return word of un hence \rn\ = \unx\ = |un| + 1. If the letter x occurs in
un then (unx)^ = vupïJ with t?wp = un and wp the longest palindromic prefix
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of un followed by x in un. Thus we have \(unx)^\ = 2\un\ — \up\. The longest
complete return word of un is obtained when p = inf{P(z)\i > n} and then
\rn\ = \un\ ~ \up\. •

Now let

D{£) = swp{nw\w G Fi(s)} •

Then by part a) of Lemma 5.6 and formula (3), we get

e~i. (4)

At last for obtaining D(l), remark that if un+i — vupv with vup = upv — un

then xp — xn and n = S(p). Let t be the minimal integer such that Alph(2:1X2 * • • xt)
= A. If w e Fi(s) then either wn^+i = tinwxunw for some x e A not occurring
in Unw, whence nw < t, or unw+i = vupv with nw = S(p) and w = fxpupxpg for
some f,g£A*, whence £ > \up\ + 2.

Conversely, for any x G v4 there exist factors of 5 of length £ > 1 containing ar
and for any p such that \up\ + 2 < £ and that S(p) exists, there exists w G Fz(s)
containing xpupxp.

Consequently for £ > 1

upj + 2 < ^} U (0 ) • (5)

This achieves the détermination of D{£). Clearly D is a monotone increasing
function. If {ni,n2, • • • },rii < ni+\, is the image of £>, writing D"1^) = [bi,&i+i[,
we have in conclusion:

Theorem 5.7. The récurrence function of the episturmian word s is given by

R{£) = \rni+l\+£~lfor£e [bubi+l[

where all notations are as above.
Corollary 5.8. The growth of R{£) is linearly bounded if and only if S(p) — p is
bounded for p e N+ .

Proof If the S(p) - p are bounded by M then for £ = \uq\ + 2, D(£) < q + M
whence

whence by formula (4) and Lemma 5.6

The proof of the only if part requires a lemma:

Lemma 5.9. If xn+i ^ xn then \hn\ > \un\.
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Proof. Suppose first that, for some n, un = hn and xn+i ^ xn. We have x^+i =
x\. Also wn+2 = hnun+i = hnhn-\un = unhn-iun. Hence hn-\ is a palindrome,
thus its last letter xn is x±, in conséquence x n = £n+i5 contradiction.Thus tin 7̂  hn

whenever £n+i 7̂  2cn.
Now suppose by contradiction \hn\ < \un\. Let u^h^ be the Ui and /^ of Si.

Then un = '0Xl('u^_1)xi and hn = ^ciC^n-i)- As 1^1 < l^nl it follows that h!n_Y

is a prefix of uf
n_1 whence,as these words are different by the just above property

h!n_i\ < l^n-il* Passing in the samewayto S2, ••• , ,sn_i, we get that with evident
notations h^1* is a prefix of u^1 ~^ and this is false as u^1 ~1^ —e. •

End of the proof. Suppose S(q) — q > M for arbitrarily large M. For £ —
\uq\+29D(e) > S(q). ByuDW+i = hD^)_xhD^)-2 ' ' ' VVn> we get \uD{i)+1\ >
M\hq\ + |uq| > (M + l)\uq\, whence easily R(£)/£ is not bounded. •

5.3. EXAMPLES

Exarnple 5.10. Let s be standard Sturmian with directive word A(s) = aei

be2a&3 • • • , Ci > 0. It is well known that the continued fraction expansion of the
slope a < 1/2 of s is [0, ei + I,e2, • * •]. Dénote by <?o = 1, qi = ei + 1, • • -qj+i
= ej+iÇj + Çj-i, * * • the denominators of the convergents.

Let, for j > l,Lj = e\ + e2 + • • • + e .̂ Then xn+i 7̂  xn if and only if n is
some Lj. We deduce S(Lj) = Lj+i + 1 and P(Lj+i + 1) = Lj. It follows that,
for \uLj \ + 2 <£ < \uLj+11 + 2, we have by équation (5) D[£) — Lj+1 + 1. Then
using Lemma 5.6 with n — D(£) + 1, we get \rn\ = \un\ — \up\ where p — inî{P(i)\i
> D{£) + 1} = Lj+i. Thus by équation (4), we have

= \uLj+l+2\-\uLj+1\+e-l.

It is easily seen that uLj+1+2 = ^ L j + i ^ + i - i ^ + i = hLj+1hLjuLj+1. It can also
be shown that the h£Jj satisfy the same récurrence relation as the Çj, whence
h>Lj = Çj- Moreover, by a known property of Sturmian words, \ULJ\ — qj — 2
whence at last the known formula

R(i) = qj+1 + qj + £ - 1 for Qj < £ < qj+1.

Example 5.11. In the gênerai case A(s) = y^y^2 • • • , e>% > 0 ,^ € Aî/î+i ¥"
yi. When the séquence yiy2 • • • is periodic, R(£) is given by rather simple for-
mula recalling the Sturmian case. Let us consider only here the simplest case:
s = abacaba • • • is the Rauzy word, also called Tribonacci word, having directive
word (abc)u. Clearly S(i) = i + 3 and P(i + 3) = i whence easily

R(£) = \uj+4\ - \uj+1\ + £ - 1 = \hj+3\+£-l

for \UJ\ +2<£< | u j+ i | + 2.
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