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RETURN WORDS IN STURMIAN
AND EPISTURMIAN WORDS

JACQUES JUSTIN! AND LAURENT VUILLON'

Abstract. Considering each occurrence of a word w in a recurrent
infinite word, we define the set of return words of w to be the set of all
distinct words beginning with an occurrence of w and ending exactly
just before the next occurrence of w in the infinite word. We give a
simpler proof of the recent result (of the second author) that an infinite
word is Sturmian if and only if each of its factors has exactly two return
words in it. Then, considering episturmian infinite words, which are a
natural generalization of Sturmian words, we study the position of the
occurrences of any factor in such infinite words and we determinate the
return words. At last, we apply these results in order to get a kind of
balance property of episturmian words and to calculate the recurrence
function of these words.

Résumé. Sil’on consideére chaque occurrence d’un mot w dans un mot
infini récurrent, on définit ’ensemble des mots de retour de w comme
I’ensemble de tous les mots distincts débutant avec une occurrence de w
et finissant juste avant I’occurrence suivante de w. Nous donnons une
nouvelle démonstration d’un résultat établi récemment par le deuxieme
auteur : un mot infini est sturmien si et seulement si chacun de ses
facteurs a exactement deux mots de retour. Nous étudions les mots
épisturmiens qui sont une généralisation naturelle des mots sturmiens.
Puis nous déterminons la position d’un facteur donné et ses mots de
retour dans un mot épisturmien. Enfin nous appliquons ces méthodes
pour obtenir une propriété d’équilibre pour les mots épisturmiens et
calculer la fonction de récurrence de ces mots infinis.
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344 J. JUSTIN AND L. VUILLON
INTRODUCTION

The notion of return words is a powerful tool for the study of Symbolic
Dynamical Systems, Combinatorics on Words and Number Theory. Consider-
ing each occurrence of a word w in a recurrent sequence U = (Up)nen, we de-
fine the set of return words of w to be the set of all distinct words beginning
with an occurrence of w and ending exactly before the next occurrence of w in
the infinite sequence. This mathematical tool was introduced independently by
Durand, Holton and Zamboni in order to study primitive substitutive sequences
(see [8,9,12]). This notion is quite natural and can be seen as a symbolic version
of the first return map for a dynamical system. Recently, many articles use re-
turn words. For example, Allouche et al. study the transcendence of Sturmian or
morphic continued fractions and a main argument is to show, using return words,
that arbitrarily long prefixes are “almost squares” (see [1]). Fagnot and Vuillon
give a generalization of the notion of balance property for Sturmian words and the
proof is based on return words and combinatorics on words (see [10]). Cassaigne
also uses this tool to investigate a Rauzy conjecture (see {4]).

At last, the second author shows that a sequence is Sturmian if and only if
for each word w appearing in the sequence, the number of return words of w is
exactly two (see [14]). Recall that Sturmian sequences are aperiodic sequences
with complexity p(n) = n + 1 for all n (the complexity function p(n) counts the
number of distinct factors of length n in the sequence) (see [3,11]).

In this paper, we give a simpler proof of this result (Sect. 2) and then, in
Sections 3 and 4, we study the occurrences of factors and the return words in
episturmian words (episturmian words on a finite alphabet are a natural general-
ization of Sturmian words introduced in [7] which includes in particular Sturmian
words and Arnoux—Rauzy sequences [2]). This allows (Sect. 5) to calculate the
recurrence function, obtaining or completing known results [5,11], and to state a
kind of balance property of episturmian words which when applied to Sturmian
words coincides with the well known balance property of these words.

1. DEFINITIONS AND NOTATIONS
1.1. WORDS

Given a finite alphabet A, A* is the set of words on A and AT = A*\ {e} with e
the empty word. If v = uw(1)u(2)- - -u(m) with u(i) € A its length is |u| = m
and its reversal is u = u(m)u(m — 1)---u(1). The word u is a palindrome or is
palindromic if u = u.

Similarly A% is the set of infinite words (or infinite sequences) t = £(1)¢(2) - - -
on A.

A finite word u is a factor of the finite or infinite word ¢ if t = t'ut”, t’ € A*
and t” € A* U A¥. This factor (or rather its occurrence so defined) is a prefiz
ift' =g, a suffizif t"" = ¢, is interior if t',t" # €. Also u is unioccurrent if it has
exactly one occurrence in t.
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The set of factors of the finite or infinite word ¢ is F(t) and Fy(t) = F(t) N .A°.
The set of letters occurring (resp. occurring infinitely many times) in ¢ is Alph(t)
= F1(t) (resp. Ult(t)).

1.2. RETURN WORDS

Let t = ¢(1)t(2)--- ,#(¢) € A be an infinite word. Then t is recurrent if any
of its factors occurs infinitely many times in it. In this case, for u € F(t),
let n1 < ny < --- be all the integers n; such that u = £(n;)---t(n; + |u| — 1).
Then the word t(n;)---t(ni+1 — 1) is a return word of v in t. Let H,(t) be
the set of return words of w in t. Then t can be factorized in a unique way
ast = t(1)---t(ny — 1)rWr® ... where 7 € H,(t). If we consider 7(7(2) ...
as an infinite word on the alphabet H,(t), this one is called the derived word of t
relatively to u.

The set H,(t) is finite for all w € F(t) if and only if t is uniformly recurrent.
Lastly if 7 is a return word of u then the factor ru of t is a complete return word
of uin t.

1.3. EPISTURMIAN WORDS

An infinite word t € A is episturmian if F(t) is closed under reversal and for
any £ € N there exists at most one right special word in Fy(t) (a factor u is right
special if uz,uy € F(t) for at least two different letters z,y), see [7,13].

Sturmian words, which can be defined in many ways, are exactly the non-
periodic episturmian words on a two-letter alphabet. Sturmian words have the
remarkable balance property. A word w is balanced if u,v € F(w) and |u| = |v|
imply ||ulz — |v|z] < 1 for any z € A and with |u|, the number of z occuring in w.

As episturmian words are uniformly recurrent and as we are interested here only
in factors, we limit ourselves to the consideration of standard episturmian words
(an episturmian word is standard if all its left special factors are prefixes of it). Let s
be a standard episturmian word and let u; = €,uz,us, - be the sequence of its
palindromic prefixes. Then there exists an infinite word A(s) = z1z2--- ,2; € A
called its directive word such that for all n € N, (the set of positive integers),

Un+1 = (unxn)(+)

where the right palindromic closure (+) is defined by: w(*) is the shortest palin-
drome having w as a prefix (see this construction for Sturmian words by
de Luca [6]). -

Example: if A(s) = (abc)” then the infinite word s begins by

s = abacabaabacababacabaabacabac - - -

where the letters of the word A(s) are bold. We have for this example u; = ¢,
us = a, uz = aba and so on.
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For a € A let 9, be the morphism given by

Ya(a) = a,%a(z) = ax

for x € A,z # a. Let

Hn = 1/}11¢w2 o ’d}In)p'O = Id1

and
hy = llfn(xn+l)-

Then we have the useful formula %n41 = hp_1u, and more generally (unz)(*)
= tp—1(x)u, for z € A.

At last, there exists an infinite sequence of standard episturmian words
So =S, S1,S2, - such that s = p,(s,) for n € N.

These notations will be kept throughout this paper.

2. A CHARACTERISTIC PROPERTY OF STURMIAN WORDS

We will say that an infinite word s € A“ has property R, if for any factor w
of s the number of return words of w is exactly n.

A letter a of the alphabet A will be called separating in s € A if any factor of
length two of s contains at least one a. For example: the letter a in the infinite
word y = (aaaabaab)® is separating. Hereafter in this section the alphabet will

be A = {a,b}.

Lemma 2.1. If an infinite word s has the property Ro then either a or b is sepa-
rating.

_ Let 9, be the morphism Yo(a) = a and ¥, (b) = ab. Let ¥, be the morphism
Ya(a) = a and 94 (b) = ba.

Lemma 2.2. Lets € A% be an infinite word with the property Ro. Let for instance
a be a separating letter, then there exists an infinite word t with either s = 14 (t)
ors = zf/;;(t) Furthermore t has the property Ra. Conversely, if s = 1,(t) or
s= 'Zp\;(t) and t € AY has the property Ro then s has the property R.

Lemma 2.3. If an infinite word s € A 1s non-periodic and if s = so, 81, - _is an
infinite sequence of infinite words such that either s,—1 = Y, (s;) or s;i—1 = Yz, (8;)
where z; € A then s is Sturmian.

The following theorem is one half of the main result of [14]. For the second half
see Remark 2.5 hereafter.

Theorem 2.4. [14] If an infinite word s € A¥ has the property Ro then it is
Sturmian.
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Proof. The proof is an immediate consequence of Lemma 2.1, Lemma 2.2 and
Lemma 2.3. |

Proof of Lemma 2.1. Suppose by contradiction that a and b are not separating
in s. Then aa and bb occur in s. Write for instance

s=aPb™a™b™a™ - ;p>0,my,n; > 0.

Then all m; must be equal and similarly all n;. Hence s = a?(b™*a™ )* and s has
not Rg, contradiction. O

Proof. We now prove Lemma, 2.2. Let s be an infinite word with the property Rs.
by Lemma 2.1, it has a separating letter, a for instance. Either s begins with a
and then we write s = 1,(t) or s begins with b and we write s = 9,(t). Let for
instance s = 1),(t). We make a reasoning by contradiction. Suppose that t does
not have the property Rs.

As clearly t is not periodic, there exists a finite word u € F(t) with more than
one return word in t. As t has not Ry u has (at least) three return words in t.
If u ends with b then the occurrences of ¥, (u) in s are exactly the images of the
occurrences of u in t given by the morphism. Thus 9, (u) has three return words
in s, which leads to a contradiction.

Consequently u ends with the letter a. Consider the occurrences of uz in t
where z € A is a non specified letter. Thus all the ¥, (uz) begin with 9, (u)a. In
consequence, the occurrences of 1, (u)a in s are exactly the images of the occur-
rences of v in t under the morphism and then ¢, (u)a has three return words in s.
Contradiction.

Conversely, let s = 9, (t) and t has the property Rs. Suppose that s does not
have the property R2. There exists a word u € F(s) with at least three distinct
complete return words f1, f2, f3 and with minimal length.

First case, suppose that u begins with a. If u ends with b, the factorization
of s in the code {a,ab} shows that the occurrences of v in s exactly correspond
to the occurrences of v = 1 !(u) in t. That is v has three return words and we
have a contradiction. Hence we can suppose that v ends with a and write u = v’a.
The case v’ = ¢ is clearly impossible because a which is separating has at most
the return words a and ab. Then, by minimality of |u|, v’ has exactly two return
words and then u'b appears in one of the f; and u'b € F(s). As a is separating in
s, v’ ends with a. In other words, u = v”aa. Thus u = ¥,(w)a with w € F(t).
The occurrences of u in s exactly correspond to the occurrences of wz in t with
non specified € A. Then w has three return words in t. Contradiction.

Second case, suppose that u begins with . Then as a is separating the occur-
rences of u and au in s are trivially in correspondence, hence au has three return
words in s. If 4 ends with b, then au = 9, (v) and, as in the first case, v has three
return words in t, a contradiction. So u ends with ¢ and we can write au = u/a.
If «’ has three return words, as |u/| = |u| we may consider v’ instead of u and we
are brought back to the first case.
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If «' has only two return words in s, reasoning as in the first case we get
that u'b € F(s) whence v’ = u”a, whence au = ,(w)a for some w € F(t).
Thus w has three return words, a contradiction. O

Lemma 2.3 is the application to a binary alphabet of a property of episturmian
words [13]. For the sake of completeness let us give an independent proof.

Proof of Lemma 2.3. If the property is false then s is not Sturmian hence it has
a prefix v which is not balanced. Choose such a sequence s,s1,S2,- - with |u|
minimal. Suppose for instance s = TZa (s1). Then uz = 'IZa(v) for some prefix v
of s; and z € AU {e}. If |v| < |u| then v is balanced, whence as 1, is a Sturmian
morphism, uz is balanced, contradiction. If |v| > |u| as |uz| = |v| + |v]s we have
|v]s < 1 thus |u|p <1 and u is balanced, contradiction. 0

Remark 2.5. The converse of Theorem 2.4, that is: any Sturmian word has
property Rz, proved in [14], could also be proved using arguments similar to the
previous ones. It also immediately follows from Corollary 4.5 hereafter.

3. OCCURRENCES OF FACTORS
IN THE STANDARD EPISTURMIAN WORDS

With notations as in Section 1.3, s is a standard episturmian word with di-
rective word A(s) = z1z2--- ,z; € A. The palindromic prefixes of s are u; =
€, -, uip1 = (uizs)(H). Recall that for a € A, 1,(a) = a and ¥, (z) = az if z # a,
we note the morphism p, = ¥y, Vs, - - - ¥z, and the image of z,41 by this mor-
phism A, = pn{xn41) with ho = 21 and po = Id. By Section 1.3 uny1 = hn_1Un
and the h,, are prefixes of s.

Theorem 3.1. For a given n, vu, s a prefix of s if and only if
V= hmyAmy - B, (1)

with my > mg > -+ >my, > n — 1 (this sequence could be empty that is v = ¢€).

The disposition of the occurrences of u,, given by this theorem can be illustrated
by Figure 1.

Proof. (<) By induction on the length p of the product in (1). The property is
trivial for p = 0. We suppose that it is true for p—1. With v' = Am, hmy = B,y
we have that v'u, is a prefix of s if mp_; > n’ — 1, in particular we can
take n' = mp + 2. But Um,+2 = Am,Um,+1 and then hm, un is a prefix of um,+o.
Thus we get that vu, is a prefix of v'um,+2, hence of s.

(=) We proceed by induction on n. The property is true for n =1 i.e. un, =¢,
because any prefix of s can be written in the form (1) with m, > 0 (as can easily
be seen using u;4+1 = h;—1u;). Suppose the property is true for n — 1. If @ is the
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FIGURE 1. Position of u, in s.

u
-1 n-1

FIGURE 2. Decomposition of u,,.

first letter of s then s = t,(s1) where s; is a standard episturmian word. If we
denote by u, and h; the u; and h; of s;, we have

Un = Yo (u,_1)a and hy, = g (hl,_4).
As v'u;,_, is a prefix of s; with v' = Ay, -+~ hy, _, it follows that vu, is a prefix
of s with v given by (1). O

Now let w be some factor of s.

Lemma 3.2. Let n be the minimal integer such that w is a factor of u,. Then

w 18 untoccurrent in u, (i.e. there exists a unique pair of words f,g € A* such
that v, = fwg).

Proof. We have u,, = (un_lxn_l)("') = ded where d,e € A* and de = up_1Tn—1
and e is the longest palindromic suffix of up—12n-1 (see Fig. 2). Moreover by
Lemma 1 of [7] %n—1Zn—1 has a palindromic suffix unioccurrent in it and it is
easily seen that this suffix is e. Consider the rightmost occurrence of w in un,,
defined by un, = fwg, f,g € A*. As |fw| > |up—1| and |wg| > |un—1|, we
have w = cec’ and unp_1Zn—1 = de = fce for some c,c’ € A*. If there is in u,
another occurrence of w then f’ce is a prefix of u,_; for some word f’ strictly
shorter than f. Thus e has two occurrences in %,—1%,_1, a contradiction. 0
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Z

FIGURE 3. Return words on u, and y.

Theorem 3.3. Ifs is standard episturmian and if n is minimal such that w occurs
in uy, then there exists a bijection between the occurrences of w and those of un
ins. More precisely, the occurrences of w are given by the prefizes vfw of s where v
is given by (1) and f by Lemma 3.2.

Proof. Let u, = fwg be as in the preceding lemma. If g # ¢ then write ¢'¢" = ¢
with 0 < |¢'| < |gl- By construction, wg’ is not right special otherwise it would be
a suffix of u, (which is right and left special) and w would have two occurrences
in u, in contradiction with the lemma. Then any occurrence of w in s is followed
by g. In addition to that, if f # e we write f = f'f” with 0 < |f”| < |f]
then f”wg is not left special (because it would then be a prefix of s shorter than
un and w would have two occurrences in u,, in contradiction with Lem. 3.2).
So each occurrence of wg in s is preceded by f, that is each occurrence of w is
contained in an occurrence fwg of un. O

4. RETURN WORDS IN EPISTURMIAN WORDS

In order to study the return words of the factor w of s it is sufficient, by the
preceding theorem, to study the return words of the corresponding w,. More
precisely we have the following trivial corollary.

Corollary 4.1. If w € F(s) and un, f,g are those of Lemma 3.2, then y is a
return word of w if and only if fyf~' is a return word of u,, and z is a complete
return word of w if and only if fzg is a complete return word of un.

Proof. The proof is easy (see Fig. 3 in general two occurrences of u, overlap but
for clarity we draw a figure with two distinct occurrences of uy,). O

Proposition 4.2. For each letter x such that u,z € F(s) there exists a unique
complete return word of u, beginning with u,x.

Proof. The existence is obvious. For the unicity, suppose that there exist two
complete return words beginning with u,z. Clearly, no one is a prefix of the
other. We can write them u,ww; and u,wws where w begins with z and wy, w2
begin with different letters. Then u,w is right special and then it has u, for
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suffix. As w; # € there exists an interior occurrence of u,, in u,ww:, this leads to
a contradiction. O

Remark 4.3. By Theorem 6 of [7] up,z € F(s) if and only if z € Alph(zpnZpny1---)-
The next theorem gives a precise description of the return words of w,41.

Theorem 4.4. The return words of the palindromic prefix un1 are the pn(x)
where © € Alph(Zp41Zni2---) and the corresponding complete return words
of upy1 are the ('u.n+1:r)(+). Furthermore, the derived word relative to the fac-
tOTS Upt1 8 Sp = py; 1(S)-

Proof. Clearly, the property is true for n = 0 as the return words of £ are
the po(z) = = € Alph(s). We note v} = €, uy, = z3,--- the palindromic pre-
fixes of s; = ¢;(s). If f'ul, is a prefix of s; then v, (f/)uns1 is a prefix of s
because ¥y, (ul,)Z1 = un+1. Conversely if fu,i; is a prefix of s then f = 1, (f')
for some f’ € A* and f’ul, is a prefix of s;. Thus ¢’ is a return word of «}, in s; if
and only if 9, (¢’) is a return word of u,; in s. Assuming by induction on n that
g, = "pa:z"/)z:; T "/)zn (-'L') with z € Alph(xn+1xn+2 ce ); we get "/)ml (gl) = “n(x)

Moreover p,(z)uny1 is a complete return word of w41, but by a formula given
in Section 1.3 it is (tnq12)(H).

At last if s, = Y192+ ,y; € A then p,(y1)pn(y2) -+ gives the factorization
of s = pp(s,) in return words of u,.;. Thus s, is the derived word relative
tO Up41. O

Now following [7,13] let us say that the standard episturmian word s € A“ (or
any infinite word with the same factors as s) is A-strict if its directive word A
satisfies Ult(A) = Alph(A) = A.

The A-strict episturmian words are exactly the (generalized) Arnoux—Rauzy
sequences on A whose study was begun in [2] and which can be defined as the
recurrent infinite words having exactly one right- and one left-special factor of
each length and with complexity function p(n) = (Card(A) — 1)n + 1. Then we
have:

Corollary 4.5. For any A-strict episturmian word (or Arnouz—Rauzy sequence
on A) each factor has exactly Card(A) return words.

Proof. By Theorem 4.4 and as the episturmian word is A-strict the return words
of up41 are the pn(z),z € A whence the result. |

5. APPLICATIONS

5.1. A KIND OF BALANCE PROPERTY

With s € A% standard episturmian and notations as above we have:

Theorem 5.1. If ¢ € A then the factors of s not containing c are factors of an
episturmian word on A; = A\ {c}.
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Proof. Suppose first that s is A-strict that is Ult(A) = Alph(A) = A,
with A = z;z5--- the directive word of s. Let z, be the leftmost occurrence
of ¢ in A. Then c¢ belongs to Unt1 = UnCun but not to u,. By Theorem 4.4
the return words of un41 are the p,(z),z € A. If = ¢ = z,, then by the same
Theorem the complete return word of upy1 is

pin () uni1 = (Un410) ) = uncuncun

whence pn,(c) = une. If  # ¢ then

bn(T) = pin—1(c)pn—1(x) = pn(C)pn—1(Z) = Uncun—1(z).

Now, consider a standard episturmian word s’ with directive word A’ obtained
by deleting all ¢ in A and denote by u}, u; the u;, p; of 8'. As z1Z2- - Zp—1 is a
prefix of A’ we have u} = u; for 1 <7 < n and pp-1(x) = p,_,(z) for z € A.
Thus pn(z) = uncu,_,(z) for z # c. By Corollary 4.1, the return words of c in s
are cu, and cup,_1{Z)un, for z € A; = A\ {c}.

Therefore the factors of s not containing c are factors of the u,,_,(z)u, for z €
A; and by Theorem 4.4 these words are the complete return words of u,, in s’

At last, if s is not A-strict, as the return words of un,4+; in s are some of
the un(z),z € A, it suffices to replace s by an A-strict standard episturmian word
whose directive word begins with z122 - - . O

Theorem 5.2. Ifs € A“ is standard episturmian, let {d,e} be a two-letter subset
of A. Then for any u,v € F(s) N {d, e}* with |u| = |v|, we have ||u|q — |v|a| < 1.

Proof. Assume without loss of generality that s is A-strict. If Card(A) = 2 there
is nothing to prove as s is Sturmian. Otherwise, let ¢ be a letter in A\ {d,e}.
Let A; = A\{c}. The words in F(s)N.A} are by Theorem 5.1 factors of a standard
Aj-strict episturmian word s’. Deleting in the same way a letter ¢’ € A; \ {d, e}
we get an Ajg-strict standard episturmian s”, with Ay = A; \ {c}. Continuing, we
arrive at a Sturmian word on {d, e} and this one has the balance property. O

Remark 5.3. The property stated in the Theorem 5.2 is not characteristic as
trivial examples show.

5.2. RECURRENCE FUNCTION

With s standard episturmian, A = Alph(s), A(s) and the other notations as
above, given any w € F(s), we define W(w) to be the smallest integer such that
every v € F(s) with || = W(w) contains at least one occurrence of w (this
integer exits because s is uniformly recurrent). The recurrence function R(£) is
then given by

R(£) = sup{W(w)|w € Fy(s)} - (2)

This is the minimal length R(¢) such that each block of s of that length contains
each factor of length ¢.
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Lemma 5.4. Let r be the longest complete return word of w in s. Then W(w) =
|r| — 1.

Proof. Let v € F(s) with |v| = |r| — 1. If w does not occur in v then there exists a
complete return word of w of the form zvy,z,y € A*. As |zvy| > |r| — 1 we have
a contradiction. Thus we have W(w) < |r| — 1.

Now the complete return word r can be written zr'y, z,y € A. Clearly w does
not occur in . As |r'| = |r| — 2 the proof is complete. a

Now let 7, (resp. 77,) denote the longest(resp. longest complete) return word
of u, in's. For w € F(s)\ {e}, define n,, by w € F(un,+1)\ F(tn,), that is n, +1
is the minimal integer such that w is a factor of wn,, +1.

Lemma 5.5. If w is a factor of s then
W(w) = [rn,41] + |w| — 1.

Proof. By Lemma 3.2, we can write in a unique way u, 1 = fwg, f,g9 € A*. By

Corollary 4.1 the longest complete return word of w is f _lr;w +1g_l. In conse-
quence by Lemma 5.4 we have
W(w) =, il = 1fl = lgl =1 = |rn, 41| + Jw] - 1.
O
Then by equation (2) we get
R(€) = sup{|rn,+1| |w € Fp(s)} +£—1. (3)

In order to get a more explicit form of R(£), let us calculate r, for n > 0.
For this, we give first two definitions about positions of letters in the directive
word A(s) = zyzg---. For i € Ny, let S(i) be the smallest 7 > ¢ such that
x; = x;, if it exists, S(¢) undefined otherwise, and let P(%) be the largest j < ¢
such that z; = x; if it exists, P(z) undefined otherwise.

Lemma 5.6. o) |ry,| is a monotone increasing function of n.
b) If some x € A does not occur in u, then |rn| = |un| + 1. Otherwise |ry|
= |ugn| — Jup| with p = inf{P(7)]i > n}.

Proof. By Theorem 4.4 v, 1 = pn(z) and 7, = pnp—1(y) for some z € B =
Alph(zp41Znt2---) and y € BU {z,}. Suppose by contradiction that |r,| >
|rn+1]- By the maximality of |rp4+1| we have z # z,, unless B = {z,} which would
give y = z, and 7,411 = T,, a contradiction. Thus rp41 = pn—1{znz). fy =
Zn then clearly |rp| < |rp41]- Otherwise y € B and the maximality of |rp+1]
implies [ftn—1(2)| > liin1(y)| Whence [ra] < [rasa].

b) If z € A does not occur in u, then (un.'z:)(+) = unTu, is a longest com-
plete return word of u, hence |r,| = |unz| = |un| + 1. If the letter z occurs in
Uy, then (unz)*) = vu,v with vu, = u, and u, the longest palindromic prefix
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of u,, followed by = in u,. Thus we have |(u,z)*)| = 2|un| — |up|. The longest
complete return word of u, is obtained when p = inf{P(7)[i > n} and then
7| = ltn| = lup|-

Now let
D(¢) = sup{ny|w € Fy(s)} -
Then by part a) of Lemma 5.6 and formula (3), we get
R(¢) = |rp@y+1] +£—1. (4)

At last for obtaining D(¢), remark that if u,41 = vupv with vu, = up? = u,
then z, = z, and n = S(p). Let ¢ be the minimal integer such that Alph(z,z2 - - - z¢)
= A. If w € Fy(s) then either un, 41 = Un,TUn, for some z € A not occurring
in up,,, whence ny, < ¢, or up, 41 = vupv with n,, = S(p) and w = fryuyzyg for
some f,g € A*, whence £ > |up| + 2.

Conversely, for any x € A there exist factors of s of length ¢ > 1 containing z
and for any p such that |u,| + 2 < £ and that S(p) exists, there exists w € Fy(s)
containing z,u,Tp.

Consequently for £ >1

D(f) = sup({S(p) | lup| +2 < L} U {t})- (5)

This achieves the determination of D(¢). Clearly D is a monotone increasing
function. If {ny,n2, - },n; < niy1, is the image of D, writing D™ (n;) = [bs, bit1],
we have in conclusion:

Theorem 5.7. The recurrence function of the episturmian word s is given by
R(€) = |rn;+1]| + £ =1 for £ € [b;, bit1]

where all notations are as above.

Corollary 5.8. The growth of R(£) is linearly bounded if and only if S(p) —p is
bounded for p € N;.

Proof. 1If the S(p) — p are bounded by M then for £ = |uy| +2, D({) < g+ M
whence

[up@y+1l +1 < 2M+(Jug| + 1)
whence by formula (4) and Lemma 5.6
R(Jug| +2) < (2M* + 1)(lug| +2).

The proof of the only if part requires a lemma:

Lemma 5.9. If z,11 # X, then |hn| > |uy|.
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Proof. Suppose first that, for some n, u, = h,, and x,+1 # . We have 2,41 =
1. AlSO Unt2 = hptny1 = hnhn_1Un = unhp_1u,. Hence h,_; is a palindrome,
thus its last letter z, is z1, in consequence z, = Zn41, contradiction.Thus u, # hp
whenever Tpny1 # Tn.

Now suppose by contradiction |h,| < ju,|. Let u}, h; be the u; and h; of s;.
Then un = Vg, (u,_1)z1 and hy, = Py, (h),_;). As |h,| < |u,| it follows that A/

n—1
is a prefix of u,_, whence,as these words are different by the just above property
|h!,_1| < |ul,_|. Passing in the same way to sg,--- ,s,_1, we get that with evident

(n—1)
1

O

notations A"V is a prefix of u and this is false as u{" ™D = ¢.
1 1

End of the proof. Suppose S(q) — ¢ > M for arbitrarily large M. For ¢
luq| +2, D(£) > S(q)- By upy+1 = hp@)—1hp(e)—2 - - - hqiqs1, we get [up(e)41l
M|hg| + |ug| > (M + 1)|ug|, whence easily R(£)/£ is not bounded.

ov i

5.3. EXAMPLES

Example 5.10. Let s be standard Sturmian with directive word A(s) = a*

be2q® ... Je; > 0. It is well known that the continued fraction expansion of the
slope @ < 1/2 of s is [0,e1 + 1,ez,---]. Denote by go =1, ¢1 = e1 +1,---qj41
=e€;41q; + gj—1, - the denominators of the convergents.

Let, for j > 1,L; = e; +ea+ --- +e;. Then zp41 # z, if and only if n is
some L;. We deduce S(L;) = Lj+1 + 1 and P(Lj41 + 1) = L;. It follows that,
for jur,| +2 < € < |ug,,,| + 2, we have by equation (5) D(¢) = L;j;1 + 1. Then
using Lemma 5.6 with n = D(£) 41, we get |r,| = |un| — |up| where p = inf{ P(%)|¢
> D(£) + 1} = Lj41. Thus by equation (4), we have

R(¢) = |ur; 42|l — |lur, .| +£ -1

It is easily seen that ur, ,+2 = hr,, hr,,,—1ur,,, = b, hr,ur,,,. It can also
be shown that the hy, satisfy the same recurrence relation as the g;, whence
hr; = g;. Moreover, by a known property of Sturmian words, |ur;| = ¢; — 2
whence at last the known formula

R() =qj41+ ¢ +£—1for g; <L < gj1.
Example 5.11. In the general case A(s) = y{'ys? - ,e; > 0,4 € A, yiy1 #
y;. When the sequence y1y2 --- is periodic, R({) is given by rather simple for-
mula recalling the Sturmian case. Let us consider only here the simplest case:
s = abacaba - - - is the Rauzy word, also called Tribonacci word, having directive
word (abc)®. Clearly S(i) =i+ 3 and P(% + 3) = ¢ whence easily
R(f) = lujya| — |ujra| + £ -1 = |hjps| + £ -1

for Juj| +2 < € < |ujpq|+ 2.
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