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TWO-VARIABLE WORD EQUATIONS

LUCIAN ILIE1 '2 AND WOJCIECH PLANDOWSKI3 '4

Abstract. We consider languages expressed by word équations in
two variables and give a complete characterization for their complexity
functions, that is, the functions that give the number of words of the
same length. Specifically, we prove that there are only flve types of
complexities: constant, linear, exponential, and two in between con-
stant and linear. For the latter two, we give précise characterizations
in terms of the number of solutions of Diophantine équations of certain
types. In particular, we show that the linear upper bound on the non-
exponential complexities by Karhumàki et al. in [9], is tight. There
are several conséquences of our study. First, we dérive that both of the
sets of all finite Sturmian words and of all finite Standard words are ex-
pressible by word équations. Second, we characterize the languages of
non-exponential complexity which are expressible by two-variable word
équations as finite unions of several simple parametric formulae and so-
lutions of a two-variable word équation with a finite graph. Third, we
find optimal upper bounds on the solutions of (solvable) two-variable
word équations, namely, linear bound for one variable and quadratric
for the other. From this, we obtain an Ö(n6) algorithm for testing the
solvability of two-variable word équations, improving thus very much
Charatonik and Pacholski's O(n100) algorithm from [3].
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1. INTRODUCTION

Word équations constitute one of the basic parts of combinatorics on words. The
fundamental result in word équations is Makanin's algorithm, [12], which décides
whether or not a word équation has a solution. The algorithm is one of the most
complicated ones existing in the literature. However, the structure of solutions of
word équations is not well understood; see [7,14,15]. A new light on that topic has
been led recently by [9] where the languages which are defined by solutions of word
équations are studied. These languages possess some pumping-like properties.

The structure of languages which are defined by équations with one variable is
very simple. Infinité languages which are defined by one-variable word équations
consist of a finite part and an infinité part which is of the form AnA/ for Af a prefix
of A. The structure of the finite part is not completely known [6]. Our analysis
deals with languages which are defined by two-variable word équations. We prove
that the complexity of those languages, which is measured by the number of words
of a given length, belongs to one of five classes: constant, Di-type, X>2-type, linear
and exponential. The complexities Di-type and £>2-type are in between linear and
constant and they are related to the number of solutions of certain Diophantine
équations. As a side effect of our considérations we prove that the linear upper
bound given in [9] for languages which do not contain a pattern language is tight.
Another interesting related result is that the sets of Sturmian and Standard words
are expressible by simple word équations. As another conséquence of our study, we
characterize the languages of non-exponential complexity which are expressible by
two-variable word équations as finite unions of several simple parametric formulae
and solutions of a two-variable word équation with a finite graph.

Based on our analysis, we find optimal upper bounds on the solutions of (solv-
able) two-variable word équations, namely, linear bound for one variable and
quadratric for the other. From this, we obtain an 0(n6) algorithm for test-
ing the solvability of two-variable word équations. Recall that there is only one
polynomial-time algorithm known for this problem and it works in time 0(n100),
see [3].

2. EXPRESSIBLE LANGUAGES

In this section we give basic définitions we need later on, as well as some previous
results. For an alphabet E, we dénote by card(E) the number of éléments of E;
E* is the set of words over E with 1 the empty word. For w G £*, \w\ is the length
of w\ for a G E, \w\a is the number of occurrences of a in w; for 0 < k < |iy|,
pieîk(w) dénotes the prefix of length k of w. By p(w) we dénote the primitive
root of w. If w = uv, then we dénote u~~lw = v and wv~l = u. For any notions
and results of combinatorics on words, we refer to [11] and [4].

Consider two disjoint alphabets, of constants, E, and of variables, S. A word
équation e is a pair of words tp,ip G (EU S)*, denoted e : tp = 1p. The size of e,
denoted |e|, is the sum of the lengths of ip and ip. The équation e is said to be
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reduced if (p and if) start with different letters and end with different letters, as
words over S U S . Throughout the paper, all équations we consider are assumed
to be reduced.

A solution of e is a morphism h : (EU H)* —> E* such that h(a) = a, for any
a G E, and h(tp) = h(ip). The set of solutions of e is denoted by Sol(e).

Notice that a solution can be given also as an ordered tuple of words, each
component of the tuple corresponding to a variable of the équation. Therefore, we
may take, for a variable I 6 S , the X-component of all solutions of e, that is,

Lx{e) = {x E E* | there is a solution h of e such that h(X) = x\-

The set Lx (e) is called the language expressed by X in e. A language L Ç E* is
expressible if there is a word équation e and a variable X such that

L = Lx(e).

Notice that, if X does not appear in e, then Lx (e) = E* as soon as Sol(e) / 0.
Also, if card(E) = 1, that is, there is only one constant letter, then all expressible
languages are trivially regular, as we work here with numbers. Therefore, we shall
assume that always card(E) > 2.

The complexity function of a language L C E*, is the natural function

defined by

#z,(n) — card{u> G L | \w\ = n}*

Example 1. Consider the équation e : XX ~ Y. The complexity of its solutions
with respect to y is

card(S) t if n is even,

Since the function #/, can be very unregular, as can be seen.from the above
example, we use in our considérations a function #£, which is defined by

#L(n) = max #L(*) .
l<z<n

We say that a function ƒ is constant if /(n) — 0(1), is linear if f(n) = 0(n), and
is exponential if /(n) = 2 0 ^ .

We make the following conventions concerning notations:
- a, 6,... G S are constant letters;
- A, 5 , . . . G E* are (fbced) constant words;
- X, 7 , . . . G S are variables;
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- Xj y,... G S* may dénote some arbitrary constant words but may also stand
for images of variables by some morphisms from (S U H)* to £*, that is,
x = h(X),y = h(Y), etc;

- (f, ip,... E ( S U Ü ) * are mixed words, which may (but need not) contain both
constants and variables.

We shall use also the following notation (due to Hmelevskii [7]); for a* G ( E U
S)*, 1 < i < n, we dénote

We give next two simple examples of languages expressible by word équations.
For counterexamples, i.e., examples of languages that are not expressible, see [9].
(It is actually quite difficult to give such examples.)

Example 2. For a fixed word A e S*, the language

L1 = {An \n>0}

is expressed by the variable Y in the two-variable word équation

ei : XAY = AXX1

where t is such that A = p{A)t. Then #LY(e) — #Li is constant.
Example 3. The language of all words containing a séquence of letters a, b, a in
this order, that is

L2 = {xaybuav \ x,y,u,v G £*}

is expressed by the variable W in the équation

e2 : W = XaYbUaV.

We recall the following two results from [9]. The first is a lemma which we shall
use later.

Lemma 4. (Karhumaki et al [9]) Assume that e is a word équation over E =
{X, Y} such that none of the complexity functions ^Lx(e) and #Ly(e) %s exponen-
tial. Then, for any n,m G N, there is at most one solution (x,y) of e with \x\ = n
and \y\ = m.

The second is the upper bound on the non-exponential complexities. We shall
prove it to be tight.

Theorem 5. (Karhumaki et al. [9]) Any non-exponential complexity function of
languages expressible by two-variable word équations is at most linear.

We shall need also the graph associated with an équation e : tp = ?/>, see [11]. It is
constructed by applying exhaustively the so-called Levi's lemma which states that
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X=YX Y=XY

<P(Y\X) = i>(Y\X) W{XY\Y)

(0

aip =

err

(ü) (in)

FIGURE 1. The graph associated with a word équation.

if uv — wt, for some words u, v, u>, t, then either u is a proper prefix.of w or u = w
or w is a proper prefix of u. The vertices of the graph are different (reduced!)
équations (including e) and the directed edges are put as follows. We start with e
and draw the graph by considering iteratively the following three cases, depicted
in Figure 1: (i) both sides of e start with variables (which are different since the
équation is assumed to be reduced), (ii) one side starts with a constant and the
other starts with a variable, and (iii) the two sides start with constants which are
different. Clearly, in the last case the équation has no solution, which is marked
by an error node. In Figure 1, we dénote by <p(ct\(3) the word obtained from ip by
replacing all occurrences of j3 by a.

Thus, we start by processing e and then process all unprocessed vertices. When
we find an équation already obtained, we do not create a new vertex but direct
the corresponding edge to the old one.

Examples of such graphs are given in the next sections.
We notice that the graph associated with a word équation may be infinité but,

if it is finite, then all solutions of the équation are obtained starting from a vertex
with no outgoing edges and different from err and going in the oposite direction
of the edges to the root; at the same time, the corresponding opérations on the
values of the variables are performed.

We recall that the Euler's totient function <f> : N —» N is defined by

(f)(n) = caid{k\k is coprime with n} = n( 1 ] ( 1 ) . . . (1 )
V pi J \ P2 s ^ pk '
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e0 : XbaY = YabX

ei : XbaY = abYX err e4 : baXY = YabX

X=aX

e2 : XbaY = bYaX err err e5 : aX6F = YabX

e3 : oY = Y a

Ga*

^ bX

X eb*

FIGURE 2. The graph of e0.

where pi,P2, • • • ,Pfe are all the distinct prime factors of n. Clearly, the function
4>{n) = maxKKn <p(i) is linear.

3. THE ÉQUATION XbaY - YabX

The starting point of our analysis is the équation

e0 : XbaY - YabX

which we study in this section. We show first that there is a very close connection
between solutions of eo and the family of Standard words which we define below.
Using then some strong properties of the Standard words, we prove that both
functions #Lx(eo)

 a n d #Ly(e0) a r e Ihiear.
Let us consider the set of solutions of our équation eo- For this we draw its

associated graph in Figure 2.
Consider the following two mappings

: {a,b}* x {a, 6}* —• {a, b}* x {a, 6}*

defined by

u,v) = (vabu,v),
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for any u,v G {a, 6}*. Using these two mappings, we give the following resuit
which characterizes the set of solutions of e0.

Lemma 6. The solutions of eo are precisely the pairs of words obtained by:
(i) starting with a pair (u, v) o f words in the set

{(an+1,an) | n > 0} U {(bn,bn^) \ n > 0},

(ii) applying to (u,v) a finite (possible empty) séquence 0 ^ , 0 ^ , . . . ,ctik,'for
some k > 0,1 < ij < 2, for any 1 < j < k.

Proof. The proof is based on the graph of eo which is presented in Figure 2. The
solutions (an+1, an) (respectively (bn, ̂ n+1)), for n > 0, are obtained by composing
substitutions which are labels of the path eo,ei,e2,e3 (respectively eo,e4,e5,ee).
The other solutions are obtained by composing these solutions with substitutions
which corresponds to loops eo, 64, es, eo, and eo, ei, e2, eo- These are, respectively,
(X, Y) -> (X, X&aF) which is ai and (X, Y) -^ (YabX, Y) which is a2. D

We define next the Standard words. The set 31 of Standard pairs (as defmed by
Rauzy [13]) is the minimal set included in {a, &}* x {a, 6}* such that:

(i) (a, b) e % and
(ii) 31 is closed under the two mappings

/?i,/?2 : {a,6}* x {a,6}* —> {a,6}* x {a,6}*

defined by

0i(u,v) = (u,uv),
/32(w,v) = (vu.v),

for any u, u G {a, 6}*. The set S of Standard words is defined by

S = {ti G {a, 6}* | there is v G {a, 6}* such that either (u, v) e 01 or (7;, u) G 31}•

We shall use the following strong properties of Standard words, proved by de Luca
and Mignosi in [5].

Lemma 7. (de Luca Mignosi [5]) The set of Standard words vérifies the formula

S = {a, b} U U{ab, ba}

where

II = {w G {a, 6}* | U) has two periods p, q which are coprime and \w\ = p + q — 2}-

Lemma 8. (de Luca Mignosi [5]) #n(^) = 4>{n + 2), for any n > 0; where (j) is
Euler's totien function.
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We now establish a connection between the solutions of e0 and the set of
Standard pairs 31.

Lemma 9. Sol(e0) — {{u7v) | (uba.vab) G 31}.

Proof. We notice first that, for any u,v,w,z e {a,6}* and any i = 1,2, we have
the équivalence

oti(u,v) — (w,z) iff Pi(uba,vab) = (wba.zab). (1)

Indeed, this équivalence is proved by straightforward calculation. Next, we change
slightly the définition of the Standard pairs into an equivalent one which is more
suitable for our purpose. We claim that all Standard pairs (u, v) such that \u\ > 2
and \v\ > 2 (only these are of interest for us hère) are obtained by

(i) starting with a pair (u, v) of words in the set

{(an+16a, anab) | n > 0} U {(bnba, bn+1ab) \ n > 0},

(ii) applying )3^s in any order finitely many times.
To see this, it is enough to emphasize all steps in the forming of the Standard
pairs when all components become of length at least two; this is seen below:

(a, b) ^ (a, an+16) -^ {an+1ba, anab),

(a,6) ^ (6n+1a,6) -^ (bnba,bn+1ab).

Now, using (1), the equality in the statement is clear by Lemma 6. D

Theorem 10. #Lx(eo)(
n) = #LY(eo)(

n) = ^i71)' for anyn>l.

Proof. We have, by Lemma 9, that

S = Lx(eo)ba U Ly(eo)a6U {a,6}-

Thus, by Lemma 7, we get

Lx(e0) = LY(e0) = U (2)

and the claim follows from Lemma 8. D

Remark. We notice the unexpected equality (2).

As a corollary of Theorem 10 we obtain that the upper bound of Karhumaki
et al. in Theorem 5 is optimal.

Corollary 11. The linear upper bound for the non-exponenüal complexities of
languages expressible by two-variable word équations is tight.
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Furthermore, using the above considérations, we prove that both sets, of
Standard and of Sturmian (finite) words are expressible by word équations.

Example 12. Standard words. The set of Standard words S is expressed by
the variable Z in the following System:

f XbaY^YabX
\ Z = Xba or Z = Yab or Z = a or Z = b.

First, by Lemma 9, it is clear that the Z-components of ail solutions of the System
above are precisely the Standard words. Second, from the above System we can
dérive a single équation, as well known; see, e.g. [9]. Hence, the set of Standard
words is expressible.

Example 13. Sturmian words. There are many definitons of the finite
Sturmian words (see, e.g. [2] and références therein). We use hère only the fact
that the set St of finite Sturmian words is the set of factors of Iï, see [5]. Therefore,
the set §t is expressed by the variable Z in the System

XbaY = YabX
X = WZT.

Again, this can be expressed using a single équation.

4. LlNEAR CASES

Our next step in the analysis of the two-variable word équations is to consider
équations of a form which is a generalization of e0, namely

ei : XAY = YBX,

where A,B G XI*. The study of this type of équations is not only interesting
in itself, but also it will be of essential help later, for other more complicated
équations.

Notice first that, if A = B, then both fonctions #Lx(ei) a n d #Lv( e i)
 a r e

exponential since, in this case, we have

{(w,w) w e £*} C Sol(ei).

Consider the other case, that is, A^ B. As already noticed by Hmelevskii in [7],
e1 has a non-empty set of solutions if and only if there are P,Q,R € S* such
that A — PQR, B = RQP. We assume in the sequel that this is the case for
some fixed constants A and B and draw the partial graph of ei in Figure 3.
In the graph, the substitutions X — wX, for a fixed word w and a variable X,
correspond to a séquence of substitutions X = a\X, X = CL2X, . . . , X — anX,
where w — a\Q>2 .. • an, and therefore the edge labeled by X = wX corresponds to
a path of edges labeled by X = a±X, X = a2X, . . . , X = anX.
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XPQRY = YRQPX

XPQRY = RQPYX err PQRXY = YRQPX

X=RQx/ \v=i Y=l / \ Y=PQY

XPQRY = PYRQX err RXPQY = YRQPX

QRY = YRQ XPQ = QPX

Y G (QR)*Q x e (QP)*Q

FIGURE 3. A part of the graph of ex-

As it will be seen, considering only the part in Figure 3 of the graph of ei will be
enough to conclude the linearity of the functions 4^LX{^)

 a n ( i #Ly(ci)- (In f&ct,
it is clearly enough to prove this only for one of the two functions; the resuit for
the other will follow by symmetry.) Notice here that the tuple (P, Q, R) need not
to be uniquely determined by constant words A and B as it is in the example A =
aabab, B — babaa where the possible tuples are (aa, I,6a6), (a^a^bab)^ (a,aba,b),
(1, aa, bab) and (aa, bab, 1).

We first establish a connection betwen the solutions of ei and those of e0-
Consider a new letter # ^ {a, 6}, the mapping

* : {a,by ̂  {a,b,#Y

defined by

{axa2 • • • an)# = # a i # a 2 # • • • # a n # ,

for any n > 1, â  € {a, 6}, 1 < i < n, and the morphism

/ i :{a ,6 ,#}*—,S*,
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given by

h(a) = R,
h(b) = F,

= Q.

Lemma 14. The composition & oh is an injective mapping.

Proof. We argue by contradiction. Assume there are ui,W2,£ {a, b}*,ui ^ 7/2,
such that h(uf) = h(uf). Let u G #({&,&}#)* be the longest common prefix
of uf and uf. As # is injective, there are a\,a<i € {a, 6}, a± ̂  a2, such that

uf =
uf —

for some u'̂ Ug ^ ({^3^}#)*- Without loss of generality, we may assume
that ai = a,a2 = b. Thus

RQhiu'j) = PQh(u£,

hence either F is a prefix of R or R is a prefix of P. If |P| = \R\, then P = R and
consequently A = PQP = 5 , a contradiction. So \P\ / \R\ and, again without
loss of generality, we may assume that \P\ > \R\. Dénote PQ = Pf and RQ = R!.
Then

Rfh(u[)Q = Pfh{uf
2)Q (3)

and h(u[)Q, h(u'2)Q Ç (P; U iî7)*. The identity (3) is a nontrivial identity on
two words Rr and Pf. Therefore Rf

y P! commutes, see [11]. Hence, PfR! =
PQRQ = R'P' = RQPQ and finally A = PQR = i^QP = S, a contradiction.
This complètes the proof. D

We now can give the relation between the solutions of eo and e±.

Lemma 15... For any solution (u,v)- of eo7 the pair- of words (h(u#),h(v#)) is a
solution of e\.

Proof. From Figure 3, it is clear that ail solutions of ei obtained from the partial
graph there are also obtained by the steps (i) and (ii) below:

(i) start with a pair of words in the set

{{{QR)n+lQ, (QRTQ) | n > 0} U {((QP)nQ, (QP)n+1Q) | n > 0}

(ii) apply a séquence 7^7^ * • • Jik to this pair of words, for some k > 0,1 < ij <
2, for any 1 < j < k. where

7i(u,u) = (u.uPQRv),
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for any u,v € £*. It is then enough to compare this with the procedure of
obtaining the solutions of eo in Lemma 6. D

Theorem 16. If A = PQR,B = RQP, and A^B, then the function #z,x(Cl)
is linear.

Proof. According to Lemma 15, for any u € Lx(e0), we have h(u#) G Lx(ei)-
Also

\h(u#)\ = (\u\ + 1)|Q| + \u\a\R\ + \u\b\P\ < 3\u\ max(|P|, |Q|, |* |) . (4)

Consider a fixed k > 1. Then, by (4), all words in Lx(e0) which are not longer
than

k

have their images through # o h in Lx (ei) and not longer than k. Moreover, by
Lemma 14, all these images are distinct. Dénote c = 3max(|P|, |Q|, \R\). Then,
by Theorem 10,

i=0 i=0

We use next the following property of the totient function (see, e.g. [16]):

[X]

lim is=1 , - 1. (6)

Thus, by (5) and (6), we get that, for any k > 1,

, f—1

i=0 i=0

with e —̂  0 when A: —> oo. Since, by Theorem 5, #Lx(ei) is a^ rnost linear, the
theorem is proved. •

Another type of équation which is very similar to ei is

e2 : AXY = YXB.

If the set Ly(e2) is finite, then certainly #LxCe2) ^s constant. Otherwise, we may
restrict the analysis to those words in Ly(e2) which are longer than \A\ + \B\ and
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make the substitution Y = AYB. We obtain the équation XAY = YBX, which
is of type ei. Therefore, we have:

Theorem 17. The functions #Lx(e2) an<^ #Ly(e2) are ezi/ier constant or linear
or else exponential.

5. PERÏODIC SOLUTIONS

We study in this section équations in two variables for which ail values for one
component in the solutions are periodic with a short period; by "short" we mean
bounded from above by a fixed constant which dépends only on the length of the
équation. We show that in this case there are three possible types of complex-
ity for the language expressed by the other component: constant, exponential,
and T>i-type. The last type lies in between constant and linear and is defined in
terms of the number of solutions of certain Diophantine équations.

Before giving the définition of the Di-type, we give an example showing how it
arises naturally.

Example 18. Consider the équation

e : aXXbY = XaYbX.

Clearly, the set of solutions of e is

Sol(e) = {(an, (an6)man) | n > 0}-

Hère #Lx(e) 'IS constant but #£,y(e) is not. For any p > 0, #Lv(e)(p) is the number
of solutions of the Diophantine équation in unknowns n and m

(n + l)m + n = p.

We now define the Di-type precisely. A function ƒ : N —> N is of divisor-type
if there are some non-négative integers CÏ,1 < i < 4, such that c\ > C3,c2 > C4
and, ƒ (fc) is the number of solutions of the Diophantine équation in unknowns n
and m

(cin -h c2)m -h csn -h C4 = k.

A function ƒ is Qi-type if there is a divisor-type function g such that ƒ = &(g)
where g(n) = maxi<i<n^(i).

Before stating the announced resuit, we need the notion of a P-factorization
(as defined in [10] and [9]). Consider a primitive word P G S*. It is well-known
that any word w E S* can be uniquely written in the for m

w = w1P
klw2P

k2 • • • wnP
knwn+1 (7)

where n > 0, fc$ > 0, for any 1 < i < n and
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- Wi does not contain P2 as a factor, for any 1 < i < n;
- P is a proper prefix and a proper suffix of any wi with 1 < i < n\
- P is proper suffix of w\ or w\ — 1;
- P is proper prefix of wn+i or wn+\ = 1.

The équation (7) is called the P-présentation of w. The P-factorization of w is
the ordered séquence

We now fix the hypotheses for the result on periodic solutions. Let C, D be two
words and e an équation on two variables X and Y". In many parts of our analysis
we consider solutions (x,y) such that x is in form (CD)nC. In order to deal with
those solutions we define Xc,D{e) to be the set of those words of the form (CD)nC
for which ((CD)nC, y) is a solution of e for some y, Similarly, define Yc)D(e) to be
the set of words y such that ((CD)nCy y) is a solution of e for some nonnegative n.

Lemma 19- Assume that e : <p = ip is an équation over E = {X, Y} and C, D
are two words. Then

ft) #xc,D{e) is constant;
(ü) #YC D(e) is either constant, or exponential, or else of T>i-type.

Proof. Part (i) is clear. Consider part (ii) and assume that #LY(e) is n°t ex-
ponential. Then #y c r )( e) is not exponential, too. . (See Ex. 21 for an exam-
ple that it can be also exponential.) Dénote A — CD and A! — C. Con-
sider now the first variables appearing in (p and ip. If Y appears first in both}

then #YC n(e) is constant. Indeed, we may assume that (p — Y(p''Tip = BYtpf
} for

some B G I]+,(/9/,'0/ G (EUS)*, and then we have that any y e Ly(e) is.a prefix
of a word in B*. If X appears first in both <p and ^, then, for x = AnA' G Lx(e)
with n large enough (say n > |e|), the occurrences of x at the beginning of (p and
ip, together with the constants in between can be reduced (if the équation is not
contradictory). Therefore, we may assume that the first variable which appears
in ip is X whereas for %ji is Y : Hence, the équation is of one of the forms below,
where E and F are constant words:

X . . . = EY...,
y... = Fx...,
X . . . = F . . .

We may assume that Y and X are "long enough" because the solutions with
"short" X or Y give, due to Lemma 4, a constant contribution to the complexity
functions #z,x(e), #Ly(e)- Then in the first two cases we make the substitution
X = EXf and Y = FY' 7 respectively. After making this substitution, the first
two cases turn into the third one. We have
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where l > l , r > Q,BuCi G S*,^',^' G (EUH)*, and ij)f either starts with Y or
is empty and <pf either starts with Y or is empty. If ipf is empty then there is a
one to one correspondence between the lengths of X and Y (or the length of Y
is fixed) and therefore by Lemma 4 both #y(e) and #x(e) are constant. Hence,
we assume <p = [XBi]l

i==lYtpf. Take any n > |e| such that x = A*1 A! G Lx(e),
There is y € £* such that

where (ff(x,y) (resp. ^f{x,y)) is <̂ ' (resp. ^') where X is replaced by x and
by y. Depending on the relation between l and r we consider three cases.

Case 1. l < r. It follows that

and so, for large enough n, [AM'S*]^ is conjugated with [CiAnAf}l~XCiA71'D,
for some nf > n — |e|,£> e S*, such that either nf ~ n and |L>| < |e| or n' < n
and D a proper prefix of A. If A!Bi G p(A)*, for ail 1 < i < Z, then /̂ is a
prefix of some power of p(A), hence #L^(e) is, in this case, constant. Assume that
some A(Bi is not a power of p(A). Then

y = {[A"AfBx)\=1T[AnA'Bx]UA^Df, (9)

where m > 0, 0 < V < l - 1, - e| < c|A| < |e|, and D' G S*, |£>'| < |e|.
Moreover, assume that there is a solution (xo,yo) € Sol(e) with x0 = A710^'
and 2/o from (9) with n = no,m = mo, such that \An°\ > |e|,m0 > 1. Then, for
any n > no, m > mo, we have that x = AnAf and y from (9) (with these m and
n) constitute a solution of e. To prove this consider the equality ip(xo,yo) =
^(ZOÏÏ/O). For any p, the pth occurrence of An° in < (̂xo,2/o) overlaps longer
than \p(A)\ the pth occurrence of An° in i/>(xo,yo). Indeed, if this is not the
case, then one can easily show that, for any i, A!B\ is a power of p(A)*, a con-
tradiction. So, if n0 is increased by one, the equality is maintained; the new
A is introduced inside the overlapping part of the two pth occurrences of An

in the two sides of the equality. Consider next the case when mo is increased. We
make the same reasoning as above, just that we consider here the pth occurrences
of 2/o or, more precisely, of ([An° A'Bi]\=1)

m°.
Now, for different values of n or m we get different words in (9). By possibly

decreasing n, we can write y from (9) as

y = (KAjl^^Ald^A'+i,

for some D* e £*, 1 < z < Z. Therefore, the value of the complexity
fonction #£y(e)(fc) differs, for large enough fc, by at most a constant from the
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number of solutions of the Diophantine équation in unknowns n and m

/ i \ J'+I

J2 I A| + l\A\n m + Y, |A| + (l' + l)|A|n = fc.

Consequently, #Yc,D(e) is of ©i-type.

Case 2. Z = r. If K^]^ 1] > |[i?ï]J=1|, then the reasoning is similar with the one
in Case 1. Otherwise, we replace Y by DY and X by DX, for any D e E * with

As |D| < |e|, there are finitely many possibilities and each of those is treated as
above, since, under the current assumption, ipf cannot be empty and so,
if ip' = Y$", ijj" e (E U H)*, then we have

, DY) = Y[CiDX]l=1Cr+iDYil>"(DX, DY)

We notice that the case when ipf is empty is included either in case 1 or in
Case 2, so we may assume in the sequel that tfi' is not empty.

Case 3. l > r. Consider first the solutions (x,y) where

\y\ > \[AnA'Bi\U\ ~ \[CiAnA']UCr+A.

Then y conjugates

and

since the first letter of ÎJJ is Y. Therefore, the reasoning is similar with the one in
Case 1.

Consider now the solutions (x, y) where

\y\ < \[AnA'Bi]U\ ~ | [ a^ n A' ] [ = i a+ i | . (10)

Now the solutions where y is a prefix of a word in A* bring the constant con-
tribution to the complexity function #z,r(e)- Consider the solutions in which y
starts with a prefix which is periodic with a period A and contains a position
in which this period is broken. We may assume that y is long enough, z.e., it
starts with A2. Then, due to uniqueness of p(A)-factorization of the right-hand
side of the équation, the second occurrence of y which contains A2 and a position
where this period is broken matches in the left hand side some of l occurrences of
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An in [An^4'JBi]'=1 and a position where this period is broken. For each n, there
are at most l such positions and therefore there are at most l solutions (x, y) such
that x = AnA', y satisfies (10) and y contains a position where the period A is bro-
ken. These solutions again bring at most constant contribution to the complexity
fonction # L y ( e ) .

Consequently, in ail cases, the function #yc D(e) is either constant, or 2) !-type,
or else exponential, as claimed. •

The next corollary of Lemma 19 shows the possible complexities for équations
in two variables in which the variable appearing first in both sides is the same.

Corollary 20. If e : ip = ip is an équation over E = {X, Y} such that the first
variable appearing in each of (p and ip is X, then #Lx(e) is constant and #z,v(e)
is either constant, or T>i-type, or else exponential.

We now give some examples in order to see that ail situations in Corollary 20
(and so in Lem. 19) are indeed possible.

Example 21. (i) Consider first the équation e± : aXaY ~ XaYa. Then, clearly,
both #Lx(ei) and #£,v(ei) are constant.

(ii) For the équation in Example 18, we have that #Ly(e) is Di-type.
(iii) Our last équation is

e2 : aXYXa = XaYaX.

Then, clearly,

Sol(e2) - {(an,w) \ n > 0,w € £*},

hence #LY(e2) '
1S exponential as soon as card(S) > 2.

We show also, in the next example, that, for almost ail divisor-type fonctions,
there is a language expressible by a two-variable word équation such that its com-
plexity function is precisely the given one.

Example 22. As we have defined it, a divisor-type complexity function is pre-
cisely determined by the four non-negative integers c;, 1 < i < 4 such that C\ > es
and C2 > C4. Consider such integers given and construct the équation

e : XaXC3bC4XCl-c*bC2-c*Y = aXYXCl-C3bC2~c*Xc*bC4.

It is not difficult to see that, if C3 7̂  c\ — c$ or C4 ^ C2 — C4, then

LY{e) = {(aC3n6C4a (c i-C3)n6C2-°4)maC3n6C4 | n , m > 0}-

Thus, for any k > 0, #Lv(e)(^) is the number of solutions of the Diophantine
équation (in unknowns n and m)

C2)m + csn + C4 = k.
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We give also another lemma which considers some solutions which behave similarly
with those in Lemma 19. Given an équation e in two variables, we consider those
solutions of e in which the X component is of the form AnBAnC, for fixed words A,
B, C. We define X1 to be the set of the words of the form AnBAnC in Lx(e)\ Y1

will dénote the set of words y such that, for some n, (AnBAnC,y) € Sol(e).

Lemma 23. Assume that e : <p = ijj is an équation over E = {X, Y} and X\,Y\
are defined as above. Then

ft) #Xi is constant;
(U) $zYi is either constant, or T>i-type, or else exponential

Proof. The proof is similar with the proof of Lemma 19. D

Even if the proof is similar with the one of Lemma 19, we stated the result
in Lemma 23 separately, since it will be applied in some cases where it would be
difficult to see how Lemma 19 can be applied directly.

6. THREE TECHNICAL ANALYSES

We study in this section three Systems of équations which will be very useful
tools in our analysis in the remaining part of the paper.

The first contains two different équations of type e2, that is,

ƒ AUV = VUB
Sl : \ CUV = VUD

where A,B,C,D € £*, |i4| = |J3|, \C\ = \D\ and by "different" we mean that the
two équations composing si are not the same, that is, we assume that
either A / C or B ^ D.

Rather than being interested in the complexity of the sets of solutions of.si,
we shall be concerned with the structure and complexity of the set

Si — {uvu | (u,v) € Sol(si)}-

Let us now start the analysis of 8±. If |A| = |C|, then \A\ = \B\ = \D\ and
either A ^ C or B ^ D. Consider the case A ^ C the other being symmetrie.
Let (w, v) be a solution of s±. Then since vu is a prefix of both A and C we
have \u\ -f \v\ < \A\, for any (u,v) G Sol(si), so both LJJ(S1) and Lv(s\) are
finite. Then Si is finite, too.

Assume now \A\ ^ \C\ and, without loss of generality, \A\ < \C\. Consider a
solution (u,v) of s± and assume that u and v are long enough.

We have then C = AC\ D = D'B, and v = v'D = Cv11, for some C", D', z/, v" e
E*. Hence, by the first équation, we get Auv'D(B = vuB and, by the second
équation, AC'uv'D = vuD. Thus C'uv' = uv'D' and so Cf and Df are conjugated.
Assume C' = {PQ)n>D' = (QP)n, for some n > 1, where p(C') = PQ,p(Df) =
QP. We have then uv' = (PQ)mP> for some m > 0.



TWO-VARIABLE WORD EQUATIONS 485

Similarly, we obtain that C'v"u — v"uDf and so v"u = (PQ)mP, as \v"\ = \v'\.
Since we may assume that \u\ > \PQ\i we get that u = (PQ)rP for some 1 < r <

m and v' = {QP)m-r,v// = (PQ)m" r . Therefore, ( Q P ) m - r + n £ = A(PQ) m " r + n .
As we may assume that |v| > 2\A\ + |PQ|, we have A = (QP)SQ = B, for
some 5 > 0, hence v = Q(PQ)m~ r + n + s . Finally, we obtain that

uvu =

which brings a constant contribution to #§i since PQ is a fixed word, PQ =

Consider next the case when one of u and v is short. (If both are short, then
there are finitely many of them.) If u is short, then the first équation of si
gives Au = PQ,uB = QP,v e (PQ)*P, where PQ is short. Thus AuvuB G
(PQ)*P, hence uvu has a short period. When v is short, then, assuming \u\ >
\PQl we get by the above uvu = (PQ)rPv(PQ)rP.

We have thus proved:

Lemma 24. If the two équations in Si are different, then there is a constant k
such thaty for any solution (u, v) of s± with v long enough, uvu has k as period.
In particular, #sx is constant. The words in Si such that v is short are of the
form (CD)nCv(CD)nC.

The second System which we study hère has the form

ƒ AUV = VUB
32 '' \ CDU = UDC

where A, B,C,D G £*, CD primitive. As for Si, we shall be interested in the set

S2 = {uvu

This analysis will be of help in the next section, when defining the D2-type com-
plexity.

Consider a solution (utv) e Sol(s2). Then

u = (CD)nC,

for some n > 0, and we have that

A(CD)nCv = v(CD)nCB.

Thus A(CD)nC and (CD)nCB are conjugated by v, hence there are s,t G S*
such that

A(CD)nC = st,
(CD)nCB = ts. (H)
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We shall assume in the sequel that n is large enough. When n is small, u is short
and, by the first équation of S2, we get a short period for uvu. Indeed, the first
équation in s2 is equivalent to (UA)UVU = UVU(BU) so uA is a short period
of uvu. Let i, j , A! be such that A = (DCyA'(CDy and (CD)^1 is not a suffix
of A and (DC)i+1 is not a prefix of A{(CDY)-1. Similarly, let k, Z, 5 ' be such
that B = {DC)kBf(CD)1 and {CD)l+l is not a suffix of B and (DC)fc+1 is not a
prefix of B^CD)1)"1. Then, assuming that n is large enough, we have, by (11),
that A' = B1 and k + l = i + j . Hence if A' ̂  D, then

v = ((DC)iA\CDy+nC)m{DC)iA'{CD)\

uvu =

and finally, again for large enough n, we have

v = ( i ^
)m+1(CD)l+n-juvu = ({CD)nCA)m+1(CD)l+n-jC. (12)

If A' = B' = D, then v = {DCfD and uvu = (CD)2 n + t + 1C, for some t.
The conclusion of the analysis above, which will be useful in the next section,

is summarized in the next lemma.

Lemma 25. If (u,v) e Sol(s2), then uvu either has a short period or is of the
form in (12).

We give next an example of a System of type s2-

Example 26. Let A = B = a, C = 1, D = b. Then we have the following System
of équations

f aUV - VUa
{ bU = Ub

whose solution is u = bn, v = (abn)ma, so that uvu = {bna)7n+1bn.

The third System s3 we consider hère is of the form:

ƒ AXBYC - DYEXF,ƒ
= D'YE'XF1,

with long X and Y. Hère we are interested in the complexity of the solutions
of s3. We assume that the équations in s3 are not equivalent, z.e., for either of
the équations of s3, there is a solution of it which is not a solution of the other.
Since we are interested only in long solutions, by making substitutions of the
form X = HX\ X = X'H, Y = HYf and Y = Y'H, we may turn the second
équation into the form XB'Y = YE'X. The System is now in the form

AXBYC - DYEXF,
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Since the équations are not equivalent we have A ^ D or C ^ F
or B ^ Bf or E ^ Ef. Consider solutions (x,y) such that \y\ > \xBf\ (the case
\x\ < \y\ < \xBf\ leads to periodic solutions and the other cases are symmetrie).
Then, from the second équation, we have y = xBfy = yE'x, for some y. We put
it to the first équation obtaining

AxByE'xC = DxB'yExF.

Now, if A ^ D or C / F then x has a short period. Otherwise, ByE' — B'yE
and since either B / Bf or E ^ E' we have y = (PQ)ZP for some short primitive
word PQ. Thus

y = yE'x = {PQfPE'x

and

Let fc, j , B be such that B' = (QP)kB(PQ)j and (PQ)jJrX is not a_ suffix of
Bf and (QP)fc+1 is not a prefix of Bf((PQY)~1. Similarly, let m, n, I£ be such
that £ ' = {QP)mË(PQ)n and (PQ)n + 1 is not a suffix of E[ and (QP)m + 1 is not
a prefix of E'((PQ)n)~l. Then, since x conjugates B!(PQYP and (PQ^PE', we
have, for large enough i (Le., large enough y), E = B. Finally if E ^ Q we obtain

x = ({PQ)iPE')t{PQ)i+i-nP ( .

UE = Q, then x, y e (PQ)*P.
The above analysis is summarized in:

Lemma 27. /ƒ £fte équations in s$ are not trivially equivalent, then either X and
Y are of the form in (13) or one of them is periodic with a short period.

The above result holds with the same proof for similar Systems with two or
more équations

4 : AiXBiYd = DiYEiXFi: 1 < i < n.

Lemma 28. Ifany two équations in s'3 are not trivially equivalent, then either X
and Y are of the form in (13) or one of them is periodic with a short period.

7. EQUATIONS OF THE FORM A(X)Y = YB(X)

We study in this section the complexity for the solutions of équations of the
form
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uv uv uv

X" Bi+2

vu vu

FIGURE 4. The équation e 3 when \Ai\ = |#(i+j-2,modfc)+il>
1 <i<k, \Ai\ < \A2\.

where k > 2 and Ai, Bi e E*,l < i < k. (For k = 1 we have ei.) We shall see
also how the £>2-type complexity (defined later in this section) arises naturally. In
the following we divide all solutions into several disjoint classes proving that each
class brings only constant, Di-type, D2-type, linear or exponential contribution
to overall complexity.

We dénote

A(X) =

Consider a solution (x,y) G Sol(e3). Then y conjugates A(x) and B(x). If we
consider the mapping cycle: E* —• E*, defined by cycle (mu) = wa, for any
a e S, w e S*, then

A(aO=cycle*(B(x)),

for some 0 < t < \B(x)\.
Then, there is 1,2 < l < k, such'that either t = \[Bix][zlB'\, where Bf is a

prefix of Bi^li or t — \[Bix]\zlBi-ixf\, for xf a prefix of x. In the first case x
has a period shorter than |e31 and the contribution of those solutions to #Lx(e3)
is constant and, by Lemma 19, the contribution to #LY{e3) '1S either constant,
or Di-type, or else exponential.

Assume now that t = \[Bix)l~^Bi_ixf\, for some 2 < l < k}x' G E*, such that
x = xfxN', xn G S*. Therefore, we have the equality

the beginning of which is depicted in Figure 4: above is the beginning of the
left-hand side of (14) whereas below is the beginning of the right-hand side.

Let u be the'overlapping of the first x above and the first (whole) x (that is,
the one after Bi) below. We have that x = xNBiu. Assume that u < ^ . (The
case u > *~ is treated similarly.) If u is short, then x has a short period, \uA\\,
and we can apply Lemma 19. Assume that u is long enough.
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Since, by our assumption, |u| < |a?77.Bz|, we have that u is a prefix of xl! B\.
Put xtfBi = uv. Then x = uvu. In Figure 4, from the overlapping of the second x
above and the first x below, we get

A±uv = uupref ( j 4 l | (Si+ iu), (15)

which is of type e^ (in u and v). More precisely, (15) is obtained by considering,
in Figure 4, the prefix uv of the second x above and the suffix vu of the first
(whole) x below. If we consider in the same manner the overlapping of the third
x above and the second x below, then we obtain another équation of type e?
(in u and v), If this is different from the one in (15) and we consider solutions
where v is long then, by Lemma 24, uvu = x has a constant period and hence, by
Lemma 19, #Lx(e3) is constant and #Ly(e3) £ {constant, 3)i-type, exponential}.
If we consider solutions wit h short v> then by Lemma 24, x = uvu is of the
form x = (CD)nCv(CD)nC and so, by Lemma 23, they bring constant contribu-
tion to #Lx(e) a n ( i constant or ©i-type contribution to #x r (e)-

We assume next that all équations of type e2 i n u and v we obtain in this way,
namely, by considering the prefix uv of the (k + l)st x above and the suffix vu
of the fcth x below in Figure 4 - see the hatched areas - are identical. Then,
necessarily,

We distinguish two cases:

Case 1. \A\\ — IA2I = • • • = \Ak\. Then, as we assumed that there is only one
équation of type e 2 in u and v} we obtain that, in fact, Ai = A2 = • • • = Ak and
also Bi — B2 — • • • = Bk, hence e 3 reduces to

(XA)kY - Y(BX)k (16)

which is equivalent with the équation XAY = YBX. If A = 5 , then

so both fonctions #Lx(e3) and # L y ( e 3 ) are exponential. Otherwise, by Theo-
rem 16, the fonctions #Lx(e3) a n d #Lv(e3) a r e linear.

Case 2. |AÏ | 7̂  |-Aj|, for some 1 < i,j < k. Without loss of generality, we may
assume that |^4i| < \A2\ (this case is shown in Fig. 4). Then u has a short period
and we get that (u, v) is a solution of a System of the form s 2 , say

AUV = VUB
CDU = UDC K • }

A,B}C,D G E*, CD primitive, where the first équation of (17) is équation (15),
that is, A = A i , B = prefi^^-Bz+iu). By our previous assumption, we have a
unique such équation.
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If u is long enough, then all équations we obtain for u (of the same type as
the second équation in (17); given by the segments in between the hatched ar-
eas in Fig. 4) are all of the form {CD)kU = U{DC)k, k > 0. Therefore, the
équation (14) (seen as équation i n l ) does not only imply (17) but they are even
equivalent. We thus have x — uvu, for a solution (u,v) of (17) and

y = {AWnBixÜzlBt-tx', (18)

for p > 0, where we know that xf ~ xfavBf1)"1 = uA.
In virtue of (18) and Lemma 25, it appears natural to defrne the following type

of complexity. We say that a natural function ƒ : N -—> N is of divisor2-type if
there are some integers Q, 1 < % < 8, such that, ƒ (k) is the number of solutions of
the Diophantine équation in unknowns n, m, and p

((cin + C2)m + c$n + c4)p + {c*>n + c6)m + c7n + c$ = fc.

Note here that each divisor-type function is also divisor2-type function We say
that a function ƒ is of V2-type complexity if there is divisor2-type function g such
that ƒ = Q(g) where g{n) = maxi<i<np(i).

The following remark on the complexities will be useful for the gênerai analysis.

Remark 29. According to the définitions, the sum between two X>i-typefunc-
tions is a function of the same type. Similarly for £>2-type functions. The sum
between a Di-type function and a î>2-type function is a î>2-type function.

As it was intended, #Lr(e3) is: m this case, of ©2-type. We have thus proved:

Theorem 30. (i) #Lx(e3) € {constant, Vi-type, linear, exponential } ,
(w) #Ly(e3) ^ {constant, Qi-type, T>2-type, linear, exponential } .

We give next an example in which the î>2-type complexity is reached.

Example 31. Consider the équation

e : XabcXcbabcY = YcbaXcbabcX,

which we solve completely in what follows. Consider a solution (x,y) € Sol(e).
Then xabcxcbabc and cbaxcbabcx are conjugated by y, that is,

xabcxcbabc = cycle*(cbaxcbabcx),

for some 0 < t < 2\x\ + 7. It is not difficult to see that the only possibilities
for t are (i) t = 1, (ii) t = \x\ + 4, and (iii) \x\ + 9 < t < 2\x\ + 7. (The
cases t G {0,2,3, \x\ -f 3} and \x\ + 5 < t < \x\ + 8 are immediately rulled out;
for 4 < t < \x\ + 2, we apply the reasoning in the proof of Th. 30.)

In case (i) we have x — bab, y = (ba(babc)3)nba(babc)2bab> n > 0, and in case (ii)
we obtain x = b^y = (ba(bc)2babc)nbabcb,n > 0. Thus, in both cases, we have a
constant contribution to either of #Lx(e) a nd #Ly(e).



TWO-VARIABLE WORD EQUATIONS 491

The interesting case is (iii). Applying the reasoning in the proof of Theorem 30,
we obtain x = uvu where

abcuv — vucba
ucb = bcu.

Therefore, we have

u = (bc)nb,
v = (a(6c)71+16)ma,
x = (6c)n6(a(6c)n+16)ma(&c)n6,

for any n) m > 0. We then obtain for y the formula

y = (xabxaab)puv(cba)~l, (19)

where u,v,x are given by above and p > 0. Hence, for any k > 0, #LY(e) dif-
fers by at most 2 from the numberof solutions of the Diophantine équation (in
unknowns n, m, and p)

{{An + 8)m + 8n -h ll)p + (2ra + 4)m + 2n - 1 = fc.

We have used also the fact that, if we dénote y in (19) by ym)n,p> then (ni, mi,pi) /
{n2,m2,P2) implies ynwmuPl + 2M2)m2,P2- Consequently, #L^(e) is of D2-type.

8. MORE TECHNICAL LEMMATA

We mainly consider in this section équations in two variables for which ail
values for one variable are given by some formula involving constant words and
some variable integers. We also consider the case when one of the variable is
expressed as a flxed formula of the other. These are the last steps before the
gênerai analysis in the next section.

Remark 32. Given an équation e : ip = t/>, if \tp\x ^ \ip\x or \tp\y / |^|y, then
we obtain a non-trivial relation between lengths of x and y, for any (x, y) € Sol(e)
and, by Lemma 4, the functions #Lx(e) an<3 #Ly(e) a r e constant or exponential.

We may assume also that (p and tj) both start and end with different variables.
Indeed, consider the start. (The same reasoning holds for the end.) If both start
with constants, then, as the équation is reduced, it has no solution. If one starts
with some constants, then there are two possibilities: (i) the same variable appears
as the first variable in both (p and ip and (ii) the first variable appearing in <p and
ij) is not the same. In case (i), we apply Lemma 19 and we are done. For (ii), we
can eliminate the constants at the begining by a suitable substitution.

The first resuit is similar with the one in Lemma 23 but a bit more compli-
cated. We consider hère those solutions of e in which the X component is of the
form {AnB)rnAnC, for fixed words A, B, C. As above, we defme X2 to be the set
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of the words of the form (AnB)rnAnC in Lx{e); Y2 will dénote the set of words y
such that, for some n and m, ((AnB)7nAnC,y) G Sol(e).

Lemma 33. Assume that e : (p = ip is an équation over S = {Xy Y} and X2, Y2
are defined as above. Then

(i) #x 2 i$ either constant or T)\-type;
(ii) #y2 is either constant, or T>i-type, or T>2-type} or else exponential.

Proof. The basic ideas are similar with the ones in the proof of Lemma 19. Con-
sider e : (p = ip and assume #£v(e) is not exponential. Then also #y2 is not
exponential.

By Remark 32, we may assume that \tp\x = |^ |x, \<P\Y = |^|y and ip and ip have
the forms in (8), where (pr and ipf end with different variables. Also, if B G p(-A)*,
then X± Ç p(A)*C and we can apply Lemma 19. Assume then B ^ p(A)*, that
is, there is no equality Bp(A)s = p(A)sB, for some s > 1.

Take then some n > |e|, m > \e\ such that x = (AnB)rnAnC G Lx(e). (If there
are no such n or m, then we can apply Lem. 19 or Lem. 23.) Thus, there is y G E*
such that

[(AnB)rnAnCBi]
l
i=ly(p/(x,y) = ^[^(^ .B) 7 7 1^ 7 1^^!^-^!^ '^ ,? / ) .

Consider, as in the proof of Lemma 19, three cases, depending on the relation
between l and r.
Case 1. l <r. We have then

y - ([(AnB)mi4nCBi]{=1)p[(AnB)milnCr5i]|/=1(AnB)m'AnC, (20)

where p > 0,1 < V < l - 1, 0 < m! < m. (For the suffix AnC we considered the
end of the équation.)

Assume first that m' < m. Then CQ = CBi = 5 , for any 1 < % < L If
B = CJ3', then C»- = Bi = S7, for all 1 < i < L The équation becomes

e : (XB')lY<p' = Y{BfX)l^ff, where $' = [C?iX]^^Cr+i^.

Therefore, e is equivalent with the System

V" D' V

5 : • ' Y B X

Now, x = (A7l,B)mA7lC implies, by the first équation of s, that_y = (AnB)pAnC,
for some p > 0. We prove that the contribution to either of #x 2

 a nd #y2 is in

this case X>i-type.
First, since the corresponding occurrences of An in the two sides of e overlap

long enough, n can be increased and the equality is maintained.
Consider the equality (pf(x,y) = ipff(x,y). Since B 0 p(A)*, the corresponding

occurrences of B in the two sides of the equality must be perfectly matched (i.e.y
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overlap completely). Therefore, tf/(x,y) = i>"{x,y) = [(AnB)liAnCDi]%=1,Di ^
B\ where each Di corresponds to a place in between variables, that is, either
Di = 1 or Di = D, for some constant D / Bf of e. Consider each part (AnB)li AnC
separately. There are two possibilities. First, for any z, the number of rc's (j/'s,
resp.) in this part is the same in ipf and ift". In this case, no matter how m and p
are increased, the equality is maintained. Second, for some Î, the number of x's or
y's is not the same. Then, out of ail such z's, we get a unique relation between m
and p, of the form cm = dp. In this case, we can increase m by T^T and p by T^T
where (c,d) stands for greatest common divisor of c and d. Consequently, in any
case, the contribution to either of #x 2

 a n d #r2 ig ^i-type.
Consider next the case m — m1. Then y is given by (20) with m instead of m'.

Consider the equality <p(x,y) — i/;(x,y). The corresponding occurrences of An in
the left and right must be perfectly matched since otherwise B G p(A)*. There-
fore, the corresponding occurrences of (AnB)mAnC are also perfectly matched.
Consequently, n and m can be increased. For p, this is true as soon as p > \e\.
Now, if CBi = B, for ail 1 < i < l, we have that y has the form y = (AnB)pAnC
and reason as above. Otherwise, for different triples (n, m,p), we get different y's
and as's. Therefore, we have in this case Di-type contribution to #x2

 a n d ^2-type
contribution to
Case 2. l = r. This reduces to Case 1 as in the proof of Lemma 19.
Case 3. l > r. For long y, it reduces to Case 1 as in the proof of Lemma 19. If y

is short, that is,

M < \[{AnB)mAnCBi]\=l\ - \[Ci(A
nB)mAnC]U1Cr+1\,

then y has the form y = (AnB)pAnCi so we can reason as above. D
Our next lemma deals with the solutions of the form (x, <f>(x)), for some formula

<)>{x) G ( £
Lemma 34. Let e be an équation on two variables X and Y. The solutions (x, y)
such that y = <j>(x) for a fixed (j) bring either constant or exponential contribution
to the complexity functions #Lr(e); #Lx(e)-

Proof. We put <f>(X) instead of ail occurrences of y in e obtaining an équation
with one variable. If it is trivial (both sides are identical) then ail solutions of
the form {x,<j>(x)) are solutions of the équation and consequently both #Lx(e)
and #i/y(e) are exponential. If the équation is not trivial then its long solutions
are of the form AnAf so that the contribution of theni to #Lx(e) 'IS constant and
consequently also the contribution of them to #LY(e) 'IS constant. D

9. THE GÉNÉRAL FORM

We now study two-variable word équations of the gênerai form. We show that
one cannot obtain as complexities of their expressed languages anything but the
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five types we have identified so far, namely constant, Di-type, X>2-type, linear,
and exponential.

Now we describe the basic ideas of the procedure for treating these équations.
Depending on the form of the équation we will treat it differently. We also divide
the solutions into finite number of smaller parts. For each part we will prove that
it brings either constant, 2)i-type, T^-type, linear, or exponential contribution to
overall complexity. By Remark 29, this will prove that the overall complexities can
be only constant, Di-type, D2-type, linear, or exponential. There are several cases
when the procedure stops. It stops when it finds a formula for X or Y (then we
apply one of the Lems. 19, 23, and 33 to the starting équation e), or a formula of
the form Y = <fi(X) (then we apply Lem. 34). Otherwise, we end up with a set of
équations of the form AXBYC = DYEXF. If there are at least two of them, then
we apply Lemma 28. If there is only one, then, by considérations in Section 4, the
solutions of it bring linear or exponential contribution to the complexity function.

Consider an équation e : tp — ij) over S = {X, Y}. We make several observations
which help us to restrict a bit the form of e, without loss of gênerality. First, we
may assume that \ip\x > 2 and \ip\y > 2 since the other cases have been already
studied. Second, we may assume, by Remark 32, that \<p\x = \?P\x and \tp\y = \i>\y
and also that ip and ip both start and end with different variables.

Consequently, we may assume for e the form

e : XiPl(X)YiP(X,Y) = Y^{X)Y^{X,Y),

where cp, ip G (£ U H)*, y?i, ̂ i € (S U {X})*. Since we investigate both fonctions
#Lx(e) a n d #LY(e)î w e ma;y take int o account only those solutions (#, y) of e with
M < \y\-
Case 1. \ipi(X)\x > \Xcp1(X)\x^ Let ijj[(X) be the shortest prefix of tpi(X)
such that |V>iPOU = \Xtpiix)\x. If, additionally, \i>[(X)\ - \Xipx{X)\, then we
can divide the équation e into two parts Xcpi(X)Y = Yip[(X) and <p(X,Y) =
iPÏ(X)YiP(X,Y), where ipi(X) = ^ ( I ) < ( I ) . Using the considérations in
Section 7, we conclude that the solutions of the first équation are either the so-
lutions of the équation XAY = YBX for some constants A, B or of the form
(12). In the last case we stop with the formula for X. If XAY = YBX, then we
proceed by processing the équation e' : (p(X, Y) = ?p"(X)Yip(X, Y). Observe that
the number of X's and y s are the same on both sides of e'. Now if e' is in form
A(X)Y = YB(X) we either generate another équation of the form XAY — YBX
or again a formula for X. In the latter case we stop. In the former case we gen-
erate the new équation of the form XAY = YBX and stop. If e' is not of the
form A(X)Y = YB(X), then we proceed as we proceeded with e. Notice that e'
is strictly shorter.

If \ip[(X)\ < \Xipi(X)\, then we consider ail (finitely many) possibilities of
completing the word ^[(X) to a word of length \X(pi(X)\ by adding a constant
word D of length |X<pi(X)| - \ip[ (X)\. Then, for any such D, we have X<px(X)Y =
Yipf

1(X)D and D(p(X,Y)= ^({{X)Y^{X)Y). We may assume, that < ( X ) starts
with X or is empty. Now, if the first variable appearing in ip(X, Y) and ipf-[{X)Y
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VU VU

uv

FIGURE 5. If \A0\ ̂  \Bi\, then we obtain a System Si for U and V.

is the same, then we apply Corollary 20. Otherwise, for any solution (x,y), we
have that x and y are x is a prefix of y. Then Dx - • • = x • • • and so x has a short
period and we apply Lemma 19.

If |^4 pQI > |Xcpi(X)|, then we have a similar reasoning as above but D is
such that ip[(X) = X(px(X)D.

Case 2. \ipi(X)\x < \X<pi(X)\x and consider solutions (x,y) such that
\y\ > \xipi(x)\ — \ifii(x)|. Let B'(X) be the shortest prefix of X<pi(X) such that
\B'(X)\X = \XiPl(X)\x~\,p1(X)\x. We have then |X^(X)U = \^i{X)Bf{X)\x.
If, additionally, |Xc/?i(X)| = \îjJi(X)Bf(X)\, then we may divide the équation e into
two parts, X(p1(X)Y = Yi/;1(X)B/(X) and B'(X)(p(X,Y) = y^(X,y), so that
we proceed as in Case 1. If \Xy>\{X)\ / \ipi(X)B'(X)\, then we show as in Case 1
that x has a short period.

Case 3. |^i(-X")|x < \Xtpx(X)\x and consider solutions (x,y) such that \y\ <
\xipi(x)\ — \îpi(x)\. Recall that we consider solutions for which \y\ > \x\. The
considérations in this case are similar to those in Section 7. Let Xtpi(X) —
[XBk}{=1 and ^{X) = A0[XAk]Uv Then y = [xB^x' or y = [xB^^xB'
where Bf is a prefix of B{, In the latter case we have a formula of the form
Y = 4>(X) so we stop. In the former case, if \A0\ ̂  | ^ | , see Figure 5 (we assume
hère u long and u < [~\ - the other case is treated similarly; we assume also that
x is a suffix of y) then (u, v) vérifies A0UV = VUBf where Bf = pref |Aoj B\x, and
CDU = UDC for some C, D. This is a System of équations s^ from Section 6.
The solution of it gives a formula for xy x = tttm, so we stop. We obtain a similar
formula if \Ai\ / |£^+i|, for some i, so in those cases we stop. Now we consider the
case |i4i| = \Bi+i\. Then AiUV = VUBi+i and again, if, for some i, j , Ai / Aj
or 5;+^ / S;+<?- we have at least two équations forming a System s2 and we stop
with the formula for X.

The remaining case is Ao = Ai and Bt = Bi+i, for ail i. Now we use the
properties of the end of the équation. Since we may assume that one side of
the équation ends with X and the other by Y we have y = xnC\X - • • Csx. As
previously, we either stop with a formula for X or d = AQ and Bi = B^ for
ail i. Dénote B - Bh A = Ao. We have Xtp^X) = (XB)*, ipi(X) = A{XAf
and \A\ = \B\. We have the situation depicted in Figure 6; the hatched areas
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VU VU

fi x \B x

y^M

B

VDi
uv

FIGURE 6. The hatched parts correspond to the word h = Auv = vuB.

correspond to the word h = Auv = vuB. The second occurrence of y has xB
as prefix, so B is a prefix of h. Hence, A — B and the équation is in form
(XAYY'" = Y(AXyAY with j < i. We have y = (xA)ku, x = uvu, and
Auv = vuA. Then, xAy — yAx. We have {xA)%y • • • = y(Ax)1 • • • — y(Ax)3 Ay • • •

iand finally (xA)t~i~1x • • • = 2/ • • •. N°w we generate XAF — 104X and proceed
by considering (XA)Z~^~1X. • • = y •. • in the way we considered e. Note hère
that the last équation is shorter than the starting one, thus the procedure will
eventually stop.

10. COMPLEXITY AND CHARACTERIZATION
OF THE EXPRESSIBLE LANGUAGES

Summarizing the above results, we have proved the following theorem which
characterizes all possible complexity functions of the languages expressible by two-
variable word équations.

Theorem 35. Let e be an équation with two variables X,Y. Then

#ix(e)?#Ly(e) ^ {constant, D\-type, T>2~type, linear, exponential}-

As another conséquence of our study, we can give the gênerai forms of the languages
expressible by two-variable word équations.

First, we need the notion of pattern language from [1] (see also [8]). A pattern
is a word over the alphabet S U E. A pattern language generated by a pattern a,
denoted L(a) is the set of all morphic images of a under morphisms h : (EUS)* —•
S* satisfying h(a) = a, for any a G S.

By Theorem 13 in [9], we know that, for any language L which is expressible
by a two-variable word équation, if #£ is exponential, then there exists a pattern
a containing occurrences of one variable only such that L(a) Ç L.

We have then the following theorem which characterizes the languages express-
ible by two-variable word équations.

Theorem 36. For any language L which is expressible by a two-variable word
équation, we have
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(i) tf # L is exponential, then L contains a pattern language;
(ii) if #/, is not exponential, then L is a union of

(a) a finite language;
(b) finitely many parametric formulae of the forms

- AnB;
- (AnB)rnAnC;

- ([(AnB)rnAnCDi]^=1)
ppreî{[(AnB)rnAnCDl%l)} and

(c) solutions of an équation XAY = YBX (including the case A = B);
these solutions can be expressed as compositions of finite number of sub-
stitutions which can be computed on the basis of the graph for XAY —
YBX.

11. MINIMAL SOLUTIONS AND SOLVABILITY

We consider here the lengths of solutions for two-variable word équations. The
reasöning will be again based on the above analysis. We take an équation e : tp — ip
over E = {X, Y} and assume e is solvable, i.e., it has solutions. Then, we show
that there is a solution of e for which the length of one component is linear in
terms of |e| while the length of the other is quadratic. The following example
shows that we cannot hope to improve these bounds by more than a constant.

Example 37. Consider the équation

e : aXanbXn = XaXbY.

The équation e has a unique solution which is (x, y) = (an, an ). As |e| = 2n + 8,
we have that |x| = 0(|e|) and \y\ = 0(|e|2).

Before starting the proof of our bounds, we shall give the corresponding result
for one-variable word équations, which will be useful.

Lemma 38. If e is a solvable one-variable word équation, then e has a solution
of length at most |e| — 1.

Proof. Put e : ip = ïjj. If \tp\x ^ \ip\x, then there is only one possible length for the
solutions of e and this is at most |e| — 1 since it is the solution of a linear équation
with coefficients at most |e| — 1. Assume \ip\x = \4>\x and also that ip = X • • •,
Ï/J = AX • • •, A a constant word. Then x e Sol(e) implies x = AnA/\ for some
n > 0, A! a prefix of A. Since e is solvable, we have also that \tp\ — \?p\. Thus,
if I^A'I > |e|, then, for any 1 < k < \(p\x, the kth occurrence of An in ip(x)
overlaps at least ̂ —^- > \A\ the A:th occurrence of An in ip(x). Therefore, |ar| > |e|
implies that n can be decreased such that the equality is maintained. The proof
is completed. D

We notice that the bound in Lemma 38 is tight as shown by any équation
X — A, A a constant word. When the équation e is balanced, then a better bound
can be given, but we shall use the gênerai one above.
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The way we are to use the result in Lemma 38 is clear. It is enough to prove
that one component of the solution can be made of linear length since this will
imply, by way of Lemma 38, a quadratic bound on the other.

Let us now prove the bounds we mentioned. We shall follow the different steps
of our analysis, that means, we shall consider first the special forms of solutions
and équations and then the gênerai case. The main idea is to consider solutions of
length bigger than certain values and then show that they can be shortened such
that the respective équation is still satisfied. In order to simplify the arguments,
we shall often refer to some of the previous proofs.

First, for the équations of type ei, it is clear from the graph in Figure 3 that
ei , if solvable, has solutions with both components shorter than |ei|. Similarly
for e2-

Consider next the periodic solutions in Lemma 19. Asume x = AnA/, \A\ <
|e|,A' a prefix of A. Consider first the case when y is also periodic, say y —
BmB\\B\ < |e|,i?' a prefix of B. For simplicity, assume A and B primitive.
Now, if A and B are not conjugated, then we can decrease n and m independently
as soon as \An\ > |e|, \B\ > \e\. Therefore, if there are such solutions, then
there are some for which both components are shorter than |e|. If A and B are
conjugated, then Y = B"A^B'" and tp(x,y) = t{>(x,y) = [CiAli]^=1Ck+u where
d £ A* corresponds to a place in between two variables in either side of e. Assume
\An\ > |e|, \Am\ > |e| and consider each part Ali separately. If, for any i, this
part is composed of the same number of xys (y's) in the left and in the right of
e, then we can decrease n and m independently. Otherwise, there is a unique
relation of the form en — dm and we can simultaneously decrease n by T^T and
m by -rrj\> Due to the conditions \An\ > |e| and |Am| > |e|, the constants play
no important rôle hère but, if we allow, for instance, |^4n| < |e|, then we might
have that some Ali is composed in one side of constants only, as it happens for the
équation aXbanbXn = XabXbY71 (which is a slight modification of the équation
in Ex. 37). In such a case, by Lemma 38, we can decrease m such that \y\ < |e|2.
The worst case is, as in Example 37, when y dépends on x only and x cannot be
shorthened.

Consider now the gênerai case in Lemma 19, that is, when x is periodic and y
is arbitrary. If Y is the first variable occurring in both ip and i/;, then y has a short
period and we apply the above reasoning. If X appear first in both sides, then the
occurrences of x at the beginning, together with the constants in between can be
reduced. We may therefore assume that the first variable appearing in ip is X and
in ip is Y. Assume first e has the form X • • • = Y • • •. We follow the reasoning in
the proof of Lemma 19. Using the same notations, in the case l < r we have that
if, for ail i, A!Bi € p(A)*, then y has short period and this was studied. Otherwise,
no can be decreased such that \x\ < \e\ and we apply Lemma 38. The case l = r is
reduced to the previous one and in case l > r we consider only long y which again
is reduced to the first case. If e is such that one of the sides starts with constants,
then we have a similar reasoning by assuming |a:| > 2|e .

For the formula in Lemma 23, we have a similar reasoning.
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Consider next the case of the formula in Lemma 33. The reasoning is similar.
Where we proved that n, m can be increased maintaining the equality, we can
decrease them as well.

For the formula in Lemma 34, we replace Y by <f>(X) and if the obtained équation
is not trivial, then x has a short period and this was studied. If the équation is
trivial, then the length of x can be reduced to zero and so \y\ < |e|.

Finally, for the gênerai form, we use the considérations in Section 9. As shown
there the gênerai case reduces to one of the cases we studied above. Notice that
in the case when two or more équations of the type ei are obtained, we have,
according to Lemma 28, that either one component has short period, which was
studied, or they have the form in (13) which is of the same type as the formula in
Lemma 23.

We have therefore proved:

Theorem 39. If e is a solvable two-variable word équation over'EL = {X, Y}, then
e has a solution (x,y) such that \x\ < 2|e|, \y\ < 2|e|2.

Given a two-variable word équation e : tp = ip, and two non-négative numbers
lx,ly, it is clear that we can check in time |e| + \(p^\x(lx — 1) + \^\y(ly ~ 1)
whether e has a solution (x,y) for some x,y with \x\ = lx, \y\ = ly. Therefore, we
get immediately from Theorem 39 the following resuit.

Theorem 40. The solvability of two-variable word équations can be tested in time
0(n6).

Notice that the only polynomial-time algorithm known for this problem is the
one given by Charatonik and Pacholski [3] and it runs in time 0(n100). In fact,
they intended to prove mainly that the problem can be done in polynomial time.

Another conséquence of Theorem 39 concerns the complexity of languages ex-
pressible by three-variable word équations. The following resuit can be proved as
Theorem 13 in [9].

Theorem 41. Let L be a language expressible by a three-variable word équation.
Then either there is a one-variable pattern a such that L(a) Ç L or #1,(71) =
0{ns).
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12. FURTHER RESEARCH

We end our paper by leaving some open problems.

1. What is the précise complexity of X>i-type and î>2-type functions?
2. What are those Di-type or D2-type functions that we can obtained as com-

plexities of languages defined by two-variable word équations?
3. How good are the bounds in Theorem 39? By Example 37 they are optimal

up to a constant factor, but are all the cases when the bounds are reached
pathological?

4. Improve the n6-algorithm for solvability.
5. Theorem 36 describes precisely the form of the languages of non-exponential

complexity which are expressible by two-variable word équations. It remains
an open problem to describe the form of those of exponential complexity.

6. Find a polynomial-time algorithm for finding all solutions of an input équa-
tion. Observe here that the algorithm which can be derived is not polynomial
since in many places, e.g. in the proof of Lemma 19, we split the solutions
into exponential number of parts one for each short word D.
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