INFORMATIQUE THEORIQUE ET APPLICATIONS

SALVATORE LA TORRE
MARGHERITA NAPOLI

MIMMO PARENTE

A compositional approach to synchronize two
dimensional networks of processors

Informatique théorique et applications, tome 34, n°6 (2000),
p- 549-564

<http://www.numdam.org/item?id=ITA_2000__34_6_549_0>

© AFCET, 2000, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_2000__34_6_549_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informatics and Applications
Theoret. Informatics Appl. 34 (2000) 549-564

A COMPOSITIONAL APPROACH TO SYNCHRONIZE
TWO DIMENSIONAL NETWORKS OF PROCESSORS*

SALVATORE LA TORREY 2, MARGHERITA NAPOLI? AND
MIMMO PARENTE?

Abstract. The problem of synchronizing a network of identical pro-
cessors that work synchronously at discrete steps is studied. Processors
are arranged as an array of m rows and n columns and can exchange
each other only one bit of information. We give algorithms which syn-
chronize square arrays of (n x n) processors and give some general
constructions to synchronize arrays of (m x n) processors. Algorithms
are given to synchronize in time n?, n[logn], n[v/n] and 2" a square
array of (n X n) processors. Our approach is a modular description of
synchronizing algorithms in terms of “fragments” of cellular automata
that are called signals. Compositional rules to obtain new signals (and
new synchronization times) starting from known ones are given for an
(m x n) array. Using these compositional rules we construct synchro-
nizations in any “feasible” linear time and in any time expressed by a
polynomial with nonnegative coefficients.

Mathematics Subject Classification. 37B15.

1. INTRODUCTION

We consider the problem of synchronizing a network of identical processors
that work synchronously at discrete steps. Processors are arranged as an array
of m rows and n columns. Initially a distinguished state starts computing and all
others are in a quiescent state. At each step any processor sends/receives to/from

Keywords and phrases: Cellular automata, synchronization.
* Work partially supported by Universitd di Salerno grant “‘Metodi Formali ed Algoritmi per
la Verifica di Sistemi Distribuiti”.
1 Department of Computer and Information Science, University of Pennsylvania, 200 South
33rd Street, Philadelphia, PA 19104-638, U.S.A.
2 Dipartimento di Informatica ed Applicazioni, Universita degli Studi di Salerno “Renato M.
Capocelli”, 84081 Baronissi (SA), Italy.

© EDP Sciences 2001

550 S. LA TORRE, M. NAPOLI AND M. PARENTE

its neighbours one bit of information. The network is modeled as a 2-dimensional
Cellular Automaton (CA).

This synchronization problem is also known as the Firing Squad Synchronization
Problem (FSSP) and it was introduced by Moore in 1964 [12] as the problem of
synchronizing a line of processors (linear CA) where each processor at each step
can transmit its current state to its two adjacent processors in the line. (Its name
is due to the fact that the line of cells can be seen as a line of soldiers that have
to fire simultaneously.) In literature many solutions to the original problem and
to some variations of it have been given. The early results all focused on the
synchronization in minimal time of a linear CA. Minsky showed that a solution
to the FSSP requires at least (2n — 1) time, where n is the number of cells in
the line [11]. Waksman in [16] gave the first solution in this minimal time, and
Mazoyer in [9] constructed a minimal time solution with the least number of states
to date: six (in [1] it has been shown that five states are always necessary).

A significant amount of papers have also dealt with some variations of the
FSSP. These variations concerned both the geometry of the network and some
computational constraints. In the following we briefly recall some of them. The
FSSP has been studied on a (one-way) ring of n processors [2,7], on arrays of
two and three-dimensions [5, 6, 15], and on graphs [13,14]). Some constrained
variations of the FSSP have concerned solutions on reversible CA (i.e., backward
deterministic CA) [3] and CA with a number-conserving property (i.e., a state is
a tuple of positive integers whose sum is constant during the computation) [4].
Other kinds of constraints have concerned the amount of information which is
allowed to exchange between any pair of adjacent processors: unidirectional flow
of the information [2,7], 1-bit of information exchanged in both directions between
any pairs (8,10].

Besides minimal-time solutions to the FSSP, also solutions at a predetermined
(non minimal) time have been considered. This is an interesting and challenging
theoretical problem, which is also directly connected to the sequential composition
of cellular automata. Given two cellular automata 4; and A; computing respec-
tively the functions f;(z) and f2(z), the sequential composition of A; followed
by As is the cellular automaton obtained in the following way: first A; starts on
a standard initial configuration and when it has done with its computation, As
starts using the final configuration of A; as initial configuration. The resulting
automaton clearly computes fa2(f1(z)). In order to compose these two automata,
it is necessary to synchronize all the cells that will be used by Az at the time A;
computes f(x) for a given input z. Solutions to the FSSP at a given time have
been studied on rings and toroidal square arrays with unidirectional flows of in-
formation [7], and on lines of cells exchanging only one bit at each time step [8].

In this paper we study non minimal time solutions to the FSSP in two dimen-
sions and with the 1-bit constraint on the exchanged amount of information. We
consider a 1-bit 2-dimensional CA, that is a grid of (m x n) identical finite-state
processors (cells) which exchange one bit of information each other. A synchro-
nization in time t(m,n) of an array of (m x n) cells is a 1-bit 2-dimensional cellular
automaton such that, starting from a standard configuration, all cells enter for the

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 551

first time the Firing state at time t(m,n). We obtain new synchronization times in
a compositional way: we first describe basic synchronizing algorithms, then we give
general rules to compose synchronizations. Basic synchronizations are obtained
by composing elementary signals, which can be seen as fragments of Cellular Au-
tomata. A synchronization is thus a special signal obtained as a composition of
many simpler signals. Compositional rules for both signals and synchronizations
include parallel composition, sequential composition, and iterated composition.
We also give sufficient conditions to the applicability of these compositions. In the
parallel composition we start many synchronizations or signals, all at the same
time. Sequential composition appends a synchronization or a signal to the end
of another signal, possibly with a constant time offset. This way we are able to
construct a synchronization in time ¢, (m, n) +t2(m,n)+d, for d > 0, if there exist
synchronizations in time t1(m,n) and tz(m,n). If we are given two synchroniza-
tions respectively in time ¢;(m,n) and t2(m,n), the iterated composition consists
of iterating ¢3(m,n) times the synchronization in time ¢ (m,n), thus obtaining a
new synchronization in time ¢, (m,n) - t2(m,n).

We also give two main techniques to obtain synchronizations of bidimensional
arrays starting from synchronizations of linear arrays. The first one relies on the
fact that an (m x m) array of processors can be seen as many lines of (m + n
—1) processors (each of them having as endpoints cells (1,1) and (m,n)) where
the same synchronization can be executed simultaneously. This way we obtain a
synchronization on an (m X n) array in time t(m + n — 1) provided that there
exists an algorithm for a linear array of k processors in time ¢(k). The second
technique consists of synchronizing a row (respectively, a column) of an (m x n)
array and then starts a same synchronization in parallel (and at the same time)
on all columns (respectively, all rows).

We apply all these results to obtain some interesting families of new synchro-
nizations. By the above techniques, we give basic synchronizations of an (n x n)
square array in time n?, nf[logn], n[y/n] and 2". The compositional rules are
used to determine synchronizations in any “feasible” linear time and in any time
expressed by a polynomial with nonnegative coefficients. These constructions use
as building blocks the synchronizations in minimal time and in time n?.

The remainder of this paper is organized as follows. In Section 2 we give the
definitions and introduce the notation we will use in the rest of the paper. In
Section 3 solutions to the FSSP on an (n x n)-array in time n?, n[logn], n[v/n |
and 2™ are given. In Section 4 we discuss several ways to obtain new solutions to
the FSSP on (m X n)-arrays from known ones. In Section 5 we give our conclusions.

2. PRELIMINARIES

In this section we give basic definitions and some preliminaries.

Basic Definitions. A one bit 1-dimensional cellular automaton (shortly 1-CA)
is a line of n finite-state machines, called cells, which are identical except for those
at the two endpoints. In a 1-CA, the i-th cell is connected to the (i — 1)-th and

552 S. LA TORRE, M. NAPOLI AND M. PARENTE

(i + 1)-th cells, for all i = 2,... ,n — 1. The first and the last cells are connected,
respectively, to the second and the (n — 1)-th cell, see Figure 1. The 2-dimensional
case is a natural generalization of the 1-CA. Omitting minor details, a one bit
2-dimensional cellular automaton (shortly 2-CA) is an array of (m x n) finite-
state machines (cells) which are identical except for the boundary ones, and where
cell (4,7) is connected to cells (¢ — 1,7), (¢ + 1,7), (¢,7 — 1) and (3,5 + 1), see
Figure 1. The cells operate synchronously at discrete time steps. At each step
each cell exchanges one bit of information with its adjacent cells and modifies its
state depending on its current state and the bits sent by the adjacent cells at the
previous step.

b)

FiGURE 1. The 1-dimensional and 2-dimensional array.

In what follows, the symbol @ refers to the set of states of a given cellular
automaton: ‘A configuration of a 1-CA is a mapping C : {1,2,... ,n} — {0,1}
x@ x {0,1}. A configuration at time t gives, for each cell 7, the state entered and
the two bits sent at this time. A starting configuration is a configuration at time 1.
The definition of configuration can be easily extended to a 2-CA, by considering
that each cell sends the bits to its four adjacent cells. In the following we often
write “(A4,C)” to denote a 1-CA, or a 2-CA, A starting on a configuration C.
Within the state set there are three distinguished state: G the General state, L
the Latent state, and F' the Firing state. State L has the property that if a cell in
state L receives all bits 0 from its neighbours, it remains in this state and sends
bits 0 to its neighbours. A standard configuration is a configuration where each
cell is in state L and sends bits 0, except for cell 1 (resp. cell (1,1)) which is in
state G and sends bits 1 to each neighbour. A synchronization in time t{n) of a
linear array of n cells, is a 1-CA such that starting from a standard configuration
all cells enter at time ¢t(n) for the first time state F'. Analogously a synchronization
in time t(m, n) of a rectangular array of (m x n) cells is a 2-CA such that starting

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 553

from a standard configuration all cells enter for the first time state F' at time
t(m,n). When m = n, we speak about a synchronization of a square array in time
t(n). A synchronization of a linear array of n cells in time (2n — 1) is called a
minimal time synchronization, since it can be easily proved that a synchronization
is not possible in time less than (2n — 1).

Signals. In [8] the concept of signal was introduced as a mean to design a 1-CA.
Informally a signal describes the information flow in the space-time description
of a cellular automaton, allowing a modular description of the synchronization
process. The scheme used to present some synchronization algorithms in time ¢ >
2n — 1 for a linear array of n processors is the following: some signals are designed
and composed in order to obtain an overall signal that starts from the leftmost
processor and comes back to it in exactly (¢ — 2n + 1) time units; then a minimal
time synchronization starts, thus synchronizing the n processors in time t. We
consider the time unrolling of a 1-CA A starting on a configuration C, that is we
reason about a space-time array. A pair (¢,t) of this array, with 1 < ¢ < n and
t > 1, is called a site, the state of the cell 7 at time ¢ is denoted state(s,t) and the
bits sent to the adjacent cells are denoted by left(,t) and right(i,t). A site (4,t) is
said to be active if either sends/receives a bit 1 to/from its neighbours or changes
its state. We denote by Cell(A, C) the set of cells ¢ such that site (¢,t) is active
for some t.

Let A be a 1-CA and C be a configuration. Define the time t{*** = max{t|(%, t) is
active} and t™® = min{t|(i, t) is active}. The set of sites (i, t™") for i € Cell(4, C)
is called rear of (A, C) and the set of sites (¢, t™**) is the front of (A, C'). Moreover
we say that (A,C) is tailed if there exists a subset of Q, called tail(A, C) such
that for all 2 € {1,...,n}, state(i,t) € tail(A4,C) if and only if (7,%) belongs to
the front of (A4, C). The states in tail(A, C) are called tail states. In words, a tail
state appears for the first time on the front of (A4, C).

Two active sites (i1,%1), (i2,t2) are consecutive if to = t; + 1 and iz € {i1
—1,41,%1 +1}. A simple signal of (A, C) is a subset S of consecutive sites with the
property that if (A4, C) is tailed, then (7, t™**) belongs to S. The union of a finite
number of simple signals of a given (A, C) is called signal of (4,C). A graphical
representation of a simple signal S is obtained by drawing a line between:

(i) every pair of sites (3,t) € S and (i,t + 1) € S and
(ii) every pair of sites (¢,t) € S and (i +1,t+1) € S (resp. (¢ —1,t+1) €) if
right(i,t) = 1 (resp. left(i,t) = 1).

A graphical representation of a signal is obtained by the graphical representation
of its simple signals. The length of a signal S is (t™®* — ¢t™i" 4 1) where t™3* =
max{t|(i,t) € S,1 < i < n} and ™ = min{t|(i,t) € 5,1 < i < n}. Sometimes, in
the rest of the paper we refer to a signal without specifying a 1-CA and a starting
configuration. '

In the following examples we recall some signals introduced in [8].

Example 1. Let i # j and MAX(4,5) be the set containing the sites (i +h,h+1)
if i < j, or sites (i — h,h + 1) otherwise, for 0 < h < |i — j| + 1. This set is a

554 S. LA TORRE, M. NAPOLI AND M. PARENTE
simple signal, with length |i—j|+1, of a tailed 1-CA that starts from a configuration
having the states of cells i and j different from all the others.

Example 2. Given a positive constant k < n, the signal MARK(n — k) is used to
mark the cell n — k. The length of the signal MARK is n+ k (see Fig. 2). It can
be easily seen that MARK is a signal of a tailed 1-CA.

cells

| QuaD@m2)

| MARK@-2)

2
(n2) -1
2

(n-2)

time
FIGURE 2. The signal cat; (QuAD(n — 2), MARK(n — 2)).

We recall now the signal composition. We say that a 1-CA A, on Cs can
follow a tailed 1-CA A; on C; if there exists a function h defined over tail(A4y, C;)
and such that h(p) = C2(i) if p = state(s,t). Given two signals S7 and Sy, we
can define the concatenation cat,(S7, S2) as the signal obtained by starting S; at
time 1 and Sz at time r + 1, that is Sy is delayed r time steps. More formally
cat,(S1, S2) = S1 U{(s,t +7)|(3,t) € S2}.

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 555

The following remark recalls some sufficient conditions for the existence of a
tailed 1-CA for a signal cat,{S;, S2).

Remark 1. [8] Let 51,55 be signals of tailed 1-CA’s (A1,C1) and (Asz,Cs),
respectively. The signal S = cat (S1,S2) is the signal of a tailed 1-CA (A,C)
if the following two conditions hold:

1. (Az2,Cs) can follow (A1, Ch);
2. if the site (i,t) belongs to the front of (A1,C1) and (3,t') belongs to the rear
of (A3,C2), thent <t +r.

3. SYNCHRONIZATION OF A SQUARE ARRAY

In this section we introduce two signals of a 1-CA. The first has a quadratic
length and the second has an exponential length in the number of cells. Then we
design synchronizations of a square array using the following scheme: first we syn-
chronize the first row of the square array and then we simultaneously synchronize
all the columns. That is the rows and the columns are seen as 1-CA. This way
we obtain synchronizations of a square array of (n x n) cells in n?, 2", nflogn)|

and n[/n].

The signal QUAD. Given a positive constant k£ < n, QUAD(n — k) is a signal of
a 1-CA A which is described as follows:

o initially the cell 1 sends a bit 1 to the right; then if it receives a bit 1 from
the right, it sends with a delay of one step (except for the first time, when
there is no waiting), a bit 1 back to the right; the cell 1 eventually halts
when it receives two consecutive bits 1;

o for 1 < h < (n — k), the cell h sends a bit 1 to the left when it receives for
the first time a bit 1 from the left; then, if the cell h receives again a bit 1
from an adjacent cell, it sends a bit 1 to the other adjacent cell;

e the cell (n — k) sends two consecutive bits 1 to the left when it receives a
bit 1 from the left.

The 1-CA A can be further designed such that it is tailed by observing that the
cells from 1 to (n — k) can enter a tail state when they receive two consecutive
bits 1. The length of the QUAD signal is (n — k)% — 1.

Clearly, for the implementation of this signal cell (n — k) needs to be distin-
guished. In what follows we will use QUAD(n —2), thus we only need to distinguish
cell (n—2): this can be done by MARK(n—2) and for all n > 5. Clearly for smaller n
much easier ad hoc algorithms can be given (see Fig. 2). '

The signal EXP. Given two positive constants k and ¢, we will define the signal
Exp(n -k, c).

An idle cell is a cell which never sends a bit 1 unless it receives a bit 1 from the
left and in this case it sends two consecutive bits 1 to the left.

Initially the only idle cell is the cell (n — k). EXP(n — k, ¢) is a signal of a 1-CA
which is described as follows:

556 S. LA TORRE, M. NAPOLI AND M. PARENTE

o first cell 1 sends a bit 1 to the right; then, whenever cell 1 receives a bit 1
from the right, it immediately replies sending back a bit 1; finally, if cell 1
receives two consecutive bits 1 from the right, then it changes into an idle
cell;

e for 1 < h < (n — k), we distinguish two cases:

— if the bit is received from the left then it alternates the following two
behaviours:
1. it sends a bit 1 back to the left, (let us call these peak cells)®
2. it sends a bit 1 to the right;
each peak cell starts counting from 1 to 2¢*1 — 2, for 1 < i < ¢. When
2+1 — 2 has been just counted, if the peak cell receives a bit 1 from the
left at the next time unit, then it is the i-th cell in the line and is marked
(see below for an explanation). This way it can be distinguished later.
— if a bit 1 is received from the right, then it sends a bit 1 to the left. If at
the next time unit cell h receives another bit 1 from its right neighbour,
then two other subcases need to be considered:
if A > c then the cell switches into an idle cell;
else, for h < ¢, the cell sends two consecutive bits 1 to the left. (Note
that when this case occurs, cells h < ¢ have already been marked
by step 2 above.)

From the algorithm we have just described, a proof by induction on i < ¢ can be
given to show how a peak cell can be marked, in fact the following property holds:
the length of the interval from the instant cell i is a peak cell for the first time and
the instant it becomes a peak cell for the second time is 2¢ + 2;;11 27(i — j) (see
Fig. 3 where ¢ = 3, cell 2 is marked at time 9 and cell 3 is marked at time 20).

To implement a tailed 1-CA for Exp(n — k, ¢) initially the cell (n — k) must be
distinguished. In what follows we will use the signals Exp(n — 2, 3) and Exp(n —
2,1): the cell n—2 can be distinguished by using MARK(n —2), for n > 5. Observe
also that the cells from 1 to (n — 2) can enter a tail state after they received two
consecutive bits 1. The length of EXP(n—k,c) is 2" %! —2(n—k)—2°t14+2(c+1)
(see Fig. 3).

We can give now the synchronizing algorithms for the square array.
Theorem 1. There is a synchronization of an (n x n) square array in time n?.

Proof. The algorithm is the following: first a signal cat;(MARK(n — 2),
QuaD(n — 2)) is started on the first row, the length of this signal is (n — 2)2
since QUAD(n — 2) is delayed one time step. This is a signal of a tailed 1-CA
starting from a standard configuration (see Rem. 1). Thus after (n — 2)? time
units the cell (1, 1) enters a tail state, say G’. Considering G’ as the General state,
a minimal time synchronization on a linear array of n cells is executed on the first
row and this takes other (2n — 2) time units. Once the Firing state F” is reached,
we use F’ as the General state of a minimal time synchronization that this time

3 Actually, this is a property of the state entered by this cell.

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 557

1 23 4 5 67 cels 1 23 4 5 6 7cels

: 16
165 n=7 n=7
k=2 k=
=3 c=1
| Exps3) | Exen
- | markes) | mark)
- ® peak cell 32 e peak cell
: : m marked peak cell
time
55
time

FIGURE 3. The signals cat; (ExP(5,3), MARK(5)) and cat; (ExP(5,1), MARK(5)).

runs on each column, thus taking another (2n — 2) time units, which adds up to a
total time of n2. O

Theorem 2. There is a synchronization of an (n X n) square array in time 2™.

Proof. First a signal cati(EXP(n — 2,3), MARK(n — 2)) is started on the first row,
see Figure 3. After (2”71 —2n — 3) time units the cell (1, 1) enters a tail state, say
H. This is a signal of a tailed 1-CA starting from a standard configuration (see
Rem. 1). Now the cell (1, 1) enters a state G’ and a minimal time synchronization
on the first row is accomplished, using G’ as the General state, thus taking other
(2n — 1) time units. Once the Firing state F” is reached, each cell of the first row

558 S. LA TORRE, M. NAPOLI AND M. PARENTE

enters a state G”, and launches the signals MARK(n —2) and Exp(n—2, 1) on each
column, using G as the General state. This takes another (277! — 2n + 5) time
units, which sums up to time (2" —2n+1). Finally, a minimal time synchronization
on each column is accomplished, thus reaching time 2%. O

Theorem 3. There is a synchronization of a (nxn) square array in time n[logn]
and in time n[y/n].

Proof. The algorithms resemble those used to synchronize a line of n cells at the
same times shown in [8]. Therefore here we only outline the main idea. For the
synchronization in time n[logn], we use a signal to synchronize the first row in
time (nlogn —2n) and then we apply a synchronization to each column in time 2n
(just a minimal time synchronization for a linear array with one more time unit).

Let us informally describe the synchronization of the first row. Initially the cells
numbered (1,5), (1, [n/2]), (1,|{n/2] +1) and (1,n — 4) are marked: this can be
easily accomplished in time 2n. This way the row can be seen as split in two halves
and for each half a symmetric computation is done, therefore we will describe only
the left half. A phase is iterated ([logn] — 5) times: each iteration starts at time
(G+1n+1),1 <i< (logn —5), and has length n. During the i-th iteration,
the test (¢ + 5) > [logn], is performed in the following way: a signal of length
2(i+5) on the linear array consisting of the first (i + 5) cells and a signal MAX of
length n, which is composed of Max(1, [n/2]) and Max([n/2],1), are performed
(see Fig. 4). We compose the two signals to give MAX a higher priority, thus if the
‘exponential signal reaches a cell after the MAX signal, it is aborted. In this case
the MAX signal finishes earlier than or at the same time as the exponential signal,
and this means that (¢ + 5) > logn and thus this is the last iteration. Otherwise
(that is MAX finishes later) cell (¢ + 1) is marked and a new iteration starts (see
Fig. 4). Omitting minor details, at the end of the last iteration all cells are forced
in tail states, so determining a standard configuration for a synchronization of a
linear array of [n/2] cells in time n. The synchronization in time n[y/n] can be
obtained in a very similar way by considering a quadratic signal, instead of an
exponential one, to synchronize the first row in time (n/n — 2n). O

4. HOW TO OBTAIN NEW SYNCHRONIZATIONS OF A RECTANGULAR
ARRAY

In this section we discuss how to obtain new synchronizations of (m x n) arrays
using known algorithms to synchronize linear arrays. We start describing synchro-
nizations of an (m x n) array in time ¢(m + n — 1), given a synchronization of
a line of k processors in time t(k). Then, we give some compositional rules on
synchronizations of (m x n) arrays. We conclude this section showing how to con-
struct synchronizations of a square array of processors in any arbitrary “feasible”
linear time and in any time expressed by polynomials with nonnegative integer
coefficients.

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 559

12 i+5 n/2 n-i-4 n-1n cells

in+l

| MAX signals

l exponential signals

Mark signals

. i
int2

time

FIGURE 4. The phase in the i-th iteration, i > 1 and n odd of
the synchronization in time nlogn.

Theorem 4. Given o synchronization of a line of k processors in time t(k), there
exists a synchronization of an (m x n) array in time t(m +mn — 1).

Proof. An (m x n) array can be seen as many lines of (m + n — 1) cells, each of
them having as endpoints cells (1,1) and (m,n). Each of these lines corresponds
to a “path” from cell (1,1) to cell (m,n) going through (m + n — 3) other cells.
Each cell (i,j) of these paths has as left neighbour either cell (: — 1,3) or cell
(3,7 — 1) and as right neighbour either cell (i + 1, 7) or cell (3,5 + 1).

Notice that the cell (%, 3) is the (i + 7 — 1)-th cell from the left in all the lines
it belongs to. This property allows us to execute simultaneously on all these lines
a synchronization in time t(k) for a line of k cells. Since the length of each line is
(m+n—1), we have a synchronization of the (m xn) array in time t(m+n—1). O

In [8] synchronizations for a linear array of n cells have been given in the
following times: n?, 2", nflogn], and n[/n]. Using these results and the above
theorem we can give the following corollary.

Corollary 1. Given an m X n array and K = m+n — 1, then:
e there are synchronizations of the (m x n) array in time K2, 2K, K [log K],

and K[VK];

e let a and b be two integer numbers, if aK +b > 2K — 1 then there is a
synchronization of the (m x n) array in time (aK + b);

o let h > 2 be an integer number and ag, . .. ,ap natural numbers with ap > 1,
then there is a synchronization of the (m x n) array in time anK" + ...
+a1 K + ag.

560 S. LA TORRE, M. NAPOLI AND M. PARENTE

Given a 2-CA, we can consider its time unrolling and easily extend the definitions
given in Section 2 to signals for 2-CA. For a 2-CA (A, C), we call Links(A, C) the
set of communication links effectively used by (A, C), that is all the ordered pairs
of adjacent cells z,y such that there is a bit 1 sent from z to y at some time ¢.
We give now some results on signal composition. The first lemma says that when
two signals have disjoint sets of active communication links then it is possible
to obtain a new signal which is their parallel composition. The second lemma,
generalizes Remark 1 to the 2 dimensional case and establishes when it is possi-
ble to design a 2-CA to concatenate two signals, thus obtaining their sequential
composition.

Lemma 1. Given an (m X n) 2-CA A, let S1 and S3 be two signals of A on
configurations C1 and Co, respectively. If Links(A,C1) N Links(A,C2) = @ then
there exist an (m xn) 2-CA A’ and a configuration C’ such that S1US> is a signal
of (A, C"). Moreover, if (A,C1) and (A, C2) are tailed then also (A',C") is tailed.

Lemma 2. Let S1,S2 be signals of two 2-CA’s (A1, C1) and (A2, C2), respectively.
The signal cat,(S1, S2) is the signal of a 2-CA (A, C) if the following two conditions
hold:

1. (A1, Ch) is tailed and (Az, C2) can follow (A1, Cy);

2. if the site (i,7,t) belongs to the front of (A1,C1) and (3,7,t') belongs to the

rear of (Az,Cs), thent <t/ +r.

Moreover if (Az, C2) is tailed and Cell(A,,Cy) C Cell(Az, C2), then (A, C) is tailed
too.

We can now give the sequential and iterated compositions of synchronizations
of (m x n) arrays. In the following, if A; is a synchronization, then G;, L;, and F;
are the General, Latent, and Firing states of A;, respectively.

Theorem 5. If A; fori=1,2 are two syhchmm’zations of an (mxn) array in time
t;(m,n) and d > 0, then there is a synchronization in time t;(m,n)+ta(m,n) +d.

Proof. Let S; be the signal of (A4;,Cy), where Cy is a standard configuration.
From Lemma 2, if » = t1(m,n) + d, then there exists A such that cat,(S;, S2) is
a signal of (A, Cy). Moreover, cat,(S1,S2) is a synchronization in time t(m,n) =
ti(m,n) + t2(m,n) + d. O

Theorem 6. If A; for i = 1,2 are two synchronizations of an (m X n) array in
time t;(m,n), then there is a synchronization in time t1(m,n)ta(m,n).

Proof. We define a synchronization A consisting of an Iterative phase with
length t; (m, n) which is executed t2(m, n) times. The set of states of A is Q1 X Q2 x
{0,1}*, the General state is (G1,G2,0,1,0,0), the Latent state is (L;, L2, 0,0,0,0)
and the Firing state is (F1, F»,0,0,0,0). In the Iterative phase, the synchronization
A modifies the first component of its state according to the transition functions
of Ay, until this component is F;. At the end of this phase A executes a transi-
tion step modifying the second component of the state according to the transition
functions of A;. OQutputs of Ay transition functions are saved in the last four

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 561

components according to the order left, right, up, and down. Moreover, in this
same step, A replaces F) with either Gy or L; (depending on whether the cell is
the one triggering in the initial configuration the firing signal of A;) in the first
component. So the Iterative phase can start again, until the Firing state is entered
by all the cells. Thus, the synchronization A; is iterated exactly t2(m,n) times
and A takes time t;(m,n) - to(m,n). O

Let A be a synchronization in time t(m,n) and X XY C {1,... ,m}x{1,...,n},
we say that A is (X x Y)-detectable if the set of states state(s,j, t(m,n) — 1),
V(i,7) € X x Y, is disjoint from the set of states state(i, j',t(m,n) — 1), for all
(¢,7") ¢ X x Y. Furthermore, we say that A has the parity property with respect
to m (respectively, n), if fori=1,... ,mand j=1,... ,n

o the set of states containing state(l, 7,t(m,n) — 1) when m is even (respec-
tively, state(s, 1, t(m,n)—1) when n is even) is disjoint from the set containing
state(1, j, t(m,n)—1) when m is odd (respectively, state(s, 1, ¢(m,n)—1) when
n is odd);

e the set of states containing state(m, 7,t(m,n) — 1) when m is even (respec-
tively, state(Z, n, t(m,n)—1) when n is even) is disjoint from the set containing
state(m, j,t(m,n) — 1) when m is odd (respectively, state(s,n,t(m,n) — 1)
when n is odd).

We recall that if we consider a line of n cells with an initial configuration state(1, 1)
= state(n,1) = G and state(i, 1) = L for i # 1,n, we can synchronize the line in
time n, if n is odd, and time n — 1 otherwise. We call such a synchronization
a two-end synchronization. Mainly, in this synchronization the linear array is
split in two halves and, starting at the same time, on both the halves a minimal
time synchronization is executed (the composition of the corresponding signals is
possible by Lem. 1).

Lemma 3. Letd > 0 and m > d (respectively, n > d). Let A be a synchronization
of an (m x n) array in time t(m,n) with the parity property with respect to m
(respectively, n) and (X x Y)-detectable for a set X xY = (X' x {1,...,n})
(respectively, X xY = ({1,... ,m} x Y")), where:

e X'={1,...,d}U{m—d+1,... m}u{m/2,m/2+ 1} (respectively, Y' =
{1,...,d}U{n—-d+1,... ,n}U{n/2,n/2+ 1}), if m (respectively, n) is
even and

o X' ={1,...,d}U{m—d+1,... ,m}U{[m/2]} (respectively, Y’ = {1,... ,d}U
{n—d+1,...,n}U{[n/2]}), otherwise.

Then there exists a synchronization of an (m x n) array in time t(m,n) +m —d
(respectively, t(m,n) +n —d).

Proof. We consider only the case that A is a synchronization of an (m x n) array
in time ¢(m,n) with the parity property with respect to m, the other case is
analogous. For d = 0, a synchronization in time t(m,n) + m consists of two
phases. The initial phase is the synchronization A itself and the second phase is a
two-end synchronization on (1,%),...,(m,i) fori = 1,... ,n. By hypothesis at the

562 S. LA TORRE, M. NAPOLI AND M. PARENTE

end of the first phase the middle cells (or the shared middle cell, when m is odd)
of each vertical line are marked, so they can behave as the first and the last in the
line. Moreover, the first and the last cells are aware of the parity of m, so that they
can be set in suitable General states, in such a way that the total time of the two-
end synchronization is m in both cases. Thus from Lemma 2, a synchronization
in time t(m,n) + m exists. A synchronization A’ in time ¢(m,n) + m — d can be
obtained by modifying the previous synchronization in such a way that A’ jumps
from the (t(m,n) — 1)-th configuration of A exactly to the d-th configuration of
the two-end synchronization. Notice that in the d-th configuration of the two-end
synchronization only the first d and the last d cells of each line are in states which
are different from the Latent state. Thus, by the (X x Y)-detectability of A, A’
is properly defined and is a synchronization in time t(m,n) + m — d. O

Lemma 4. Let A be a synchronization of an (m X n) array in time t(m,n) with
the parity property with respect to m (respectively, n) and (X x Y)-detectable for
aset X xY = (X'x{1,...,n}) (respectively, X xY = ({1,... ,m} x Y")) where:
o X'={m/2,m/2+ 1} (respectively, Y' = {n/2,n/2+ 1}) if m (respectively,
n) is even, and
o X' ={[m/2]} (respectively, Y' = {[n/2]}), otherwise.
Then there is a synchronization of an (mxn) array in time mt(m,n) (respectively,
nt(m,n)).

Proof. We consider only the case that A is a synchronization of an (m x n) array
in time ¢(m, n) with the parity property with respect to m, the other case is analo-
gous. We define a synchronization A’ consisting of an iterative phase, with length
t(m,n), executed m times. The iterative phase consists of the synchronization A.
The states of A’ are tuples whose first component is a state of A and the second
component is a state of the two-end synchronization applied to each row of the
array. In the iterative phase, A’ modifies the first component of a state accord-
ing to the transition functions of A. At each iteration, just a step of a two-end
synchronization is performed. Thus A’ is a synchronization in time mt(m,n). O

In the rest of the section we present the polynomial time synchronizations of a
square array of (n x n) processors. By the minimal time synchronization presented
in [10], we obtain the following result.

Remark 2. There exists a minimal time synchronization of an (n x n) square
array in time t(n) = 3n — 2 with the parity property and (X X Y)-detectable for
aset X xY = (X'"x{1,...,n}), where X' = {n/2,n/2 + 1}, if n is even, and
X' ={[n/2]}, otherwise.

Thus we have the following theorems:

Theorem 7. Let a and b be integers. There is a synchronization of an (n X n)
square array in time 3n — 2 + a(n — 2) + b.

Proof. Directly by Remark 2, Lemma 3 (for d = 2), and Theorem 5. a

A COMPOSITIONAL APPROACH TO SYNCHRONIZE ... 563

Theorem 1 shows the existence of a synchronization in time n?, which includes
a minimal time synchronization, thus the next remark follows:

Remark 3. There exists a synchronization of an (n X n) square in time n? with
the parity property and (X x Y)-detectable for a set X x Y = (X' x {1,...,n}),
where:

o X' ={n/2,n/2+ 1}, if n is even, and
o X' ={[n/2]}, otherwise.

Finally we present synchronizations for any feasible polynomial time.

Theorem 8. Let h > 2 be an integer number and aq, . .. , an natural numbers with
ap > 1. There is a synchronization of an (nxn) array in time apnl+. . +ain*+ao.

Proof. From Remark 3 and Lemma 4, a synchronization in time n® can be obtained
for every b > 2. Using Theorem 5 to compose these times, the theorem follows. [

5. CONCLUSIONS

We have considered the problem of synchronizing a network of identical proces-
sors that work synchronously at discrete steps and are arranged as an array of m
rows and n columns. We assume that each processor can exchange only one bit
of information with its neighbours. We have given algorithms which synchronize
square arrays of (n X n) processors and some general constructions to synchronize
arrays of (m x n) processors. Our algorithms are obtained using a compositional
approach based on the concept of signal. In this perspective we have used some
compositional rules to obtain new signals (and thus new synchronizations) starting
from known ones. In particular we have signals and synchronizations composition
to construct synchronizations of an (n x n) square in time n?, n[logn], n[vn],
2™ and polynomial. We observe that all these synchronizations can be extended
to the general case of an (m x n) array, considering the time of the synchroniza-
tion as a function of either m or n. We have also presented a result that relates
synchronizations of lines of processors to synchronizations of (m x n) arrays. In
particular, we have proved that an (m x n) array of processors can be seen as many
lines of (m+n — 1) processors where a synchronization can be executed simultane-
ously. This gives an algorithm synchronizing an (m xn) array in time t(m+mn—1),
provided that an algorithm for a linear array of k processors in time t(k) is already
given.

An interesting future direction of research is the case when half duplex links
are used to connect adjacent processors instead of full duplex connections. We
think that one can obtain the same synchronization times as those presented in
this paper. Moreover it maybe interesting to investigate also the minimal time
synchronization in this framework.

564

(1]
(2]

(7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
(18]

[16]

S. LA TORRE, M. NAPOLI AND M. PARENTE

REFERENCES

R. Balzer, An 8-states minimal time solution to the firing squad synchronization problem.
Inform. and Control 10 (1967) 22-42.

K. Culik, Variations of the firing squad problem and applications. Inform. Process. Lett. 30
(1989) 153-157.

K. Imai and K. Morita, Firing squad synchronization problem in reversible cellular automata.
Theoret. Comput. Sci. 165 (1996) 475-482.

K. Imai, K. Morita and K. Sako, Firing squad synchronization problem in number-conserving
cellular automata, in Proc. of the IFIP Workshop on Cellular Automata. Santiago, Chile
(1998).

K. Kobayashy, The Firing Squad Synchronization Problem for Two Dimensional Arrays.
Inform. and Control 34 (1977) 153-157.

K. Kobayashy, On Time Optimal Solutions of the Two-Dimensional Firing Squad
Synchronization Problem, MFCS Workshop On Cellular Automata (1998).

S. La Torre, M. Napoli and D. Parente, Synchronization of One-Way Connected Processors.
Complex Systems 10 (1996) 239-255.

S. La Torre, M. Napoli and D. Parente, Synchronization of a Line of Identical Processors at
a Given Time. Fund. Inform. 34 (1998) 103-128.

J. Mazoyer, A six states minimal time solution to the firing squad synchronization problem.
Theoret. Comput. Sci. 50 (1987) 183-238.

J. Mazoyer, On optimal solutions to the firing squad synchronization problem. Theoret.
Comput. Sci. 168 (1996) 367-404.

F. Minsky, Computation: Finite and Infinite Machines. Prentice-Hall (1967).

E.F. Moore, Sequential Machines, Selected Papers. Addison-Wesley, Reading, Mass (1964).
Y. Nishitani and N. Honda, The firing squad synchronization problem for graphs. Theoret.
Comput. Sci. 14 (1981) 39-61.)
Z. Roka, The Firing Squad Synchronization Problem on Caley Graphs, in Proc. of MFCS’95.
Prague, Czech Republic (1995). Lecture Notes in Comput. Sci. 969 (1995) 402-411.

I. Shinair, Two and Three-Dimensional Firing Squad Synchronization Problems. Inform.
and Control 24 (1974) 163-180.

A. Waksman, An optimum solution to the firing squad synchronization problem. Inform.
and Control 9 (1966) 66-78.

Communicated by J. Gruska.
Received August 10, 2000. Accepted February 16, 2001.

To access this journal online:
www.edpsciences.org

