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CHARACTERISTIC FORMULAE
FOR TIMED AUTOMATA

LUCA ACETO1 , ANNA INGÓLFSDÓTTIR1,
MLKKEL LYKKE PEDERSEN1 AND JAN POULSEN1

Abstract. This paper offers characteristic formula constructions in
the real-time logic Lu for several behavioural relations between (states
of) timed automata. The behavioural relations studied in this work
are timed (bi)similarity, timed ready simulation, faster-than bisimilar-
ity and timed trace inclusion. The characteristic formulae delivered
by our constructions have size which is linear in that of the timed au-
tomaton they logically describe. This also applies to the characteristic
formula for timed bisimulation équivalence, for which an exponential
space construction was previously offered by Laroussinie, Larsen and
Weise.

Mathematics Subject Classification. 68Q60, 68Q10.

INTRODUCTION

There are two main méthodologies for the formai vérification of reactive
Systems, viz. model checking and refinement vérification. In the model check-
ing approach [8], one establishes the correetness of a System with respect to a
given spécification by checking whether a state-transition graph that models the
program satisfies a temporal logic formula expressing the desired spécification of
the system's behaviour. In refinement vérification, both a System and the spéci-
fication of its desired behaviour are expressed as state-transition graphs. Estab-
lishing that a System is correct with respect to its spécification then amounts to
checking whether the behaviours of the two state-transition graphs are related
in some formai sensé. In the classic, untimed setting, this corrélation between
the behaviours of two state-transition graphs is usually expressed in terms of a
behavioural relation in the linear time-branching time spectrum [12].
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One of the bridges between these two approaches to vérification is provided
by the notion of characteristic formula [13,15,27]. A characteristic formula is a
formula in a temporal logic that completely characterizes the behaviour of a (state
in a) state-transition graph modulo a chosen notion of behavioural relation. Using
it, checking whether two state-transition graphs A and B are related with respect
to a behavioural relation can be reduced to checking whether, say, A is a model
of the characteristic formula for B.

The approach to (automated) vérification where the problem of checking
behavioral relations between finite Labelled Transition Systems (LTSs) [16] is re-
duced to model checking is advocated by Cleaveland and Steffen in [9,10]. In their
approach, the language being model checked is a logic equivalent in expressive
power to the alternation-free fragment of the modal ^-calculus [17]. The efficiency
of this approach hinges on the following two facts:

1. the characteristic formula associated with a finite labelled transition System
has size that is linear in that of the original LTS, and

2. the time complexity of determining whether a process satisfies a formula is
proportional to the product of the sizes of the process and the formula.

The resulting algorithm offered in [9] is still considered to be one of the most
efficient for checking behavioural preorders.

In the setting of modelling and vérification for real time Systems, a charac-
teristic formula construction for timed bisimulation équivalence over timed au-
tomata [2] has been offered in [19].. In op. cit., Laroussinie et al. have proposed the
logic Lv - a real-time version of Hennessy-Milner Logic [14] with greatest fixed-
points -, and have shown that its associated model checking problem is decidable,
and that this logic is sufficiently expressive for representing any timed automaton
as a single characteristic Lv formula. Such a formula uniquely characterizes the
timed automaton up to timed bisimilarity.

The characteristic formula construction presented in [19], together with a model
checking algorithm for the logic Lv, yields an algorithm for checking whether two
timed automata are timed bisimilar, which may be seen as the implementation
of the approach advocated in [9] in a real-time setting. Unfortunately, however,
the characteristic formula construction for timed automata proposed in [19] pro-
duces formulae whose size is ëxponential in that of the original automaton, and
this makes its use in checking timed bisimilarity for timed automata infeasible.
The exponential blow-up involved in the characteristic formula construction from
op. cit. is due to the fact that the formula is essentially constructed by applying
the standard, untimed construction developed by Ingólfsdóttir et ai [15] to the
région graph associated with the timed automaton [2]. As shown by Alur and
Dill [2], the size of the région graph is exponential in that of the original timed
automaton.

This study offers characteristic formula constructions for timed automata using
the logic Lv that, like those in the untimed setting and unlike that offered in [19],
yield formulae whose size is linear with respect to that of the timed automaton they
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characterize. We present characteristic formula constructions for timed bisimilar-
ity [29], timed versions of the simulation [22] and ready simulation [5,21] preorders
and for the faster-than preorder [24]. In particular, the characteristic formula con-
struction for timed bisimilarity improves upon that offered in [19]. In addition,
since, if B is a deterministic timed automaton, checking whether the set of timed
traces afforded by a timed automaton A is included in that of B is equivalent to
establishing that B simulâtes A} the characteristic formula construction for timed
simulation can also be applied to checking timed trace inclusion [2].

The constructions we propose constitute a first step towards the application
of the model checking approach to refinement vérification in the timed setting.
A prototype tool based on the theory we present in this study is described in [26].

FURTHER RELATED WORK. Characteristic formulae were introduced in [13] to
relate equational reasoning about processes to reasoning in a modal logic, and
therefore to allow proofs about processes to be carried out in a logical framework.
The initial research on characteristic formulae concerned terminating processes
and bisimulation équivalences, but extensions to this theory have included finite
processes and further équivalences. The unpublished master's thesis [15] présents,
amongst other things, characteristic formulae for" finite LTSs with respect to bisim-
ulation, and is the precursor of most of the papers on the subject that followed,
including ours. In [27] Ingólfsdóttir and Steffen showed how to extend these re-
sults to cover bisimulation-like preorders which are sensitive to liveness proper-
ties. Their work demonstrates the expressive power of intuitionistically interpreted
Hennessy-Milner Logic with greatest fixed-points, and builds the theoretical basis
for a uniform and efficiënt method to automatically verify bisimulation-like rela-
tions between processes by means of model checking. As previously mentioned,
this approach to checking behavioural relations has been advocated by Cleaveland
and Steffen in a series of papers (see, e.g. [9]).

All the aforementioned papers use some form of Hennessy-Milner Logic with
greatest fixed-points as the logical counterpart of automata. This is, however,
by no means the only option pursued in the literature. For example, Browne
et al. [6] have shown how to characterize Kripke structures in the logic CTL [7]
up to bisimilarity.

Using the characteristic formula constructions presented in this paper, it is
not hard to show that checking any of the relations of timed bisimilarity, timed
(ready) simulation and the faster-than preorder can be done in exponential time
over timed automata. These results are mentioned herejust as an application of
the gênerai characteristic formulae constructions, and are not really novel. In-
deed, Theorem 4.8 in [20] shows that any behavioural relation lying between the
(timed) simulation preorder and bisimilarity is EXPTIME-hard over timed au-
tomata. Moreover, Remark 4.9 in op. cit states that, in light of results previously
published in [1], deciding timed bisimulation and simulation over timed automata
are, in fact, EXPTIME-complete problems.

ROADMAP OF THE PAPER. After a brief review of background material on timed
automata and the logic Lv (Sect. 1), we present the timed behavioural relations for
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which we offer characteristic formula constructions (Sect. 2). The constructions
of the characteristic formulae are the topic of Section 3, where their correctness
is also proven. The paper concludes with a discussion of the use of characteristic
formulae for checking timed trace inclusion between timed automata in a setting
in which the spécification automaton is deterministic (Sect. 4).

1. P R E L I M I N A R I E S

We begin by brieny reviewing the timed automaton model proposed by Alur
and Dill [2] and the logic Lv [19] that will be used in this study.

TIMED LABELLED TRANSITION SYSTEMS. Let Act be a finite set of actions, ranged
over by a, 6, and let N and M>o dénote the sets of natural and non-negative real
numbers, respectively. We use T> to dénote the set of delay actions {e(d) \ d G
M>o}, and C to stand for the union of Act and T>. The meta-variable a will range
over £.

Définition 1.1. A timed labelled transition system (TLTS) is a structure T =
(<S, £, 5°,—•) where S is a set of states, s0 G S is the initial state, and —>C
S x C x S is a transition relation satisfying the following properties:

• (TIME DETERMINISM) for every s,sf,s" G S and d G M>0, if s e-+ sf and

• (TIME ADDITIVITY) for every s,s" G S and di,d2 G M>o, s ^ s" iff

s —> s' —> s", for some s' e S;

• (O-DELAY) for every s, s' G <S, s €—• s' iff s = s'.

As usual, we write 5 A to mean that there is some state sf such that s sf.

The axioms of time determinism, time additivity and 0-delay are standard in
the literature on Yi's TCCS (see, e.g. [29]).

TIMED AUTOMATA. Let C be a set of clocks. We use B(C) to dénote the set
of boolean expressions over atomic formulae of the form x Exl p and x — y tX p,
with x, y G C, p G N, and MG {<, >, =}. Expressions in B(C) are interpreted over
the collection of time assignments. A time assignment^ or valuation, v for C is a
function from C to R>o- Given an expression g G B(C) and a time assignment v,
we write v (= g if v satisfi.es g. Note that B(C) is closed under négation. For every
time assignment v and d G M>o, we use v + d to dénote the time assignment which
maps each clock £ G C to the value v (x) + d. Two assignments u and v are said to
agrée on the set of clocks C1 iff they assign the same real number to every clock
in C". For every subset C" of clocks, v[Cf >—• 0] dénotes the assignment for C which
maps each clock in C" to the value 0 and agrées with v over C\Cf.

Définition 1.2. A timed automaton is a quintuple A = (Act, N, n0, C, E) where 7V
is a finite set of nodes, TÏQ is the initial node, C is a finite set of clocks, and
E Ç NxNx Act x 2e x B(C) is a set of edges. The quintuple e = (n, ne, a, re,ge) G
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E stands for an edge from node n to node ne (the target of e) with action a,
where re dénotes the set of clocks to be reset to 0 and ge is the enabling condition
(or guard) over the clocks of A. •

A state of a timed automaton A is a pair (n, v) where n is a node of A and v
is a time assignment for C. The initial state of A is (no, [C H> 0]) where no is the
initial node of A% and [C i—• 0] is the time assignment mapping all clocks in C to 0.

The operational semantics of a timed automaton A is given by the TLTS TA =
(<SA,£,SA> —0) where <SA is the set of states of A, s°A is the initial state of A,
and —• is the transition relation defined as follows:

(n,v) A (n'y) iff3e = (n,ri,a,re,ge) GE.v^geAv' = v[re ^0]

(n, u) —> (n', f') iff n = n' and t/ = u + d,

where a G Act and e(d) G P.

THE LOGIC £„. The logic Lv is a real-time version of Hennessy-Milner Logic with
greatest fixed-points that sterns from [19]. We now briefly review its syntax and
semantics for the sake of completeness.

Définition 1.3 (Syntax of Lu). Let K be a finite set of formula clocks, ld a finite
set of identifiers and k a non-negative integer. The set Lv of formulae over K, ld
and largest constant k is generated by the abstract syntax below, with <p and ip
ranging over Lu:

<p:~ tb | ff | (p A ip | ip V ip | 3<p | ¥<p | (a)(p \ [a]<p |

x in <

where a G Act, a:, y e if, jp, g G {0,... , fe}, MG {=, <, <, >, >} and Z G Id.

The logic Lu allows for the recursive définition of formulae by including a finite
set Id of identifiers. The formula associated with each of the identifiers is specified
by a déclaration T>, i.e. T> assigns a formula of Lv to each identifier. For an
identifier Z we let Z = ip dénote £>(Z) = <p. Intuitively Z will stand for the
largest solution of the équation Z = <p. We refer the interested reader to [19] for
more information on Lu.

Given a timed automaton A, whose set of clocks C is disjoint from if, we
interpret the formulae in Lv over extended states. An extended state of A is a
pair (n, vu), where (n, v) is a state of A, u is a time assignment for if, and we use
vu for the assignment over C U if that agrées with v over C and with u over if.

Définition 1.4 (Semantics of L^). Let A be a timed automaton and V a décla-
ration. The satisfaction relation \=T> is the largest relation satisfying the following
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implications:

(ra, vu) \=T> tt => true

(ra, vu) \=T> ff => false

(ra, vu) \=T> <p A ijj => (n, vu) (=x? <£> and (n, vu) (=x> ^

(n, vu) \=T> (p V ̂  => (ra, mt) (=ï? cp or (ra, vu) |=T) ^

(n,vu) ^T> 399 => 3d eR> 0 . ( n , (v + d)(u + d)) \=<p (f

(n,vu) |=x> V<̂  => Vd 6R> 0 . (n , ( t ; + d ) ( i i | d ) ) \=T> W

(n,vu) \=T> {a)(p => 3(n\v).(n>v) A (n',v') and (n ,vu) \=v <p

(n,vu) \=T> [a](p => V(n\v').(n,v) A (n',u') implies (n',u'u) (=o y>

(n, vu) \=T> x [xi p => u(x) txi p

(n, vu) |=z> a:+pt><Iy + g =^ u(x) + p M u(y) + g

(n, vu) \=T> x in ĉ? = > > (n, W ) [=0 y? where u — u[{x} H-+ 0]

(n,uit) \=T> Z =$> (n,vu) [=© ï?(Z).

Any relation satisfying the above implications is referred to as a satisfiability re-
lation. From standard fixed-point theory [28] we have that \=-p is the union of all
satisfiability relations.

Remark 1.5. Although the syntax of the atomic formulae of B(C) differs from
that of the atomic formulae in L„, it is easy to see that every guard in B(C) can
be expressed in Lv.

2. TlMED BEHAVIOURAL RELATIONS

In the untimed setting various behavioural relations over processes have been
proposed (see, e.g. [12] for an encyclopedie treatment and detailed références to the
original literature), and some of them {e.g. bisimulation and trace équivalence)
have later been adapted to a timed setting. However, the timed setting also
provides spécifie time-dependent behavioural relations. One such relation is the
faster-than bisimulation from [24], which explicitly requires one process to exécute
at least as fast as another, while having the same functional behaviour. (See [3]
for a similar proposai in the more classic setting of CCS [23].)

We now proceed to review the timed behavioural relations over TLTSs studied
in this paper. The notion of timed bisimulation sterns from [29]. It is the obvious
adaptation to the timed setting of the classic définition due to Park [25].

Définition 2.1. Let T = (5, £, 50, —•) be a TLTS. A timed simulation is a rela-
tion 1Z Ç S x S such that whenever s\Ti$2 and a G £, then:

- If si -^ Si then S2 —• s2 for some sf
2 such that s[!Zs2.

A timed bisimulation is a symmetrie timed simulation.
For states si ,s2 , w e write si £5 s2 (resp. si ~ S2) iff there exists a timed

simulation (resp. a timed bisimulation) 1Z with s\lZs2.
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In the untimed setting, the notion of ready simulation stems from [5,21]. In [5],
the ready simulation preorder was characterized as the largest congruence with
respect to the GSOS format of operational rules included in completed trace in-
clusion.

Définition 2.2. Let T — («S, £,s°,—>) be a TLTS. A timed ready simulation is
a relation 1Z Ç S x S such that whenever si7Zs2, et G Act and a G C then:

- If s\ —* s[ then 52 -^ sf
2 for some s2 such that s^TZs^]

- If s2 A then si A.
For states si,s2 , w e write si ^RS S2 iff there exists a timed ready simulation 1Z
with siJZs2-

Moller and Tofts [24] have proposed a preorder on processes that distinguishes
functionally behaviourally equivalent processes which operate at different speed.
Their original proposai applied to their calculus TCCS, but it is simple enough to
adapt it to the setting of TLTSs.

Définition 2.3. Let T = (<S, £, s0, —>) be a TLTS. A faster-than bisimulation is
a relation 1Z Ç S x S such that whenever silZs2, a G Act and d G R>o then:

1. if si A s[ then there are d G E>o, s", s2 and s2'
 s u c n t n a t si C—*• s'/, 52

 €—•
52 A 52, and s[ 71 52;

2. If 52 -̂> s2 then si A 5̂  for some 5̂  such that ŝ  1Z s2]

3. If Si —> s[ then s2 —̂  s2 for some s2 such that s[ 1Z s2;

4. If s2 —> 52 then si -^ Sj for some Sj such that and 5̂  1Z s2-
For states si,52, we write Si ^FT S2 iff there exists a faster-than bisimulation 1Z
with s\lZs2'

It is well-known that E* (* G {S,RS,FT}) is a preorder. Moreover E5 is the
largest timed simulation, £#5 is the largest timed ready simulation, and £ F T is
the largest faster-than bisimulation. Similarly, ~ is an équivalence relation, and is
the largest timed bisimulation.

All of the previously defined behavioural relations can be lifted to the setting
of timed automata thus:

Définition 2.4. Let A, B be two timed automata. Then, for every relation
7ZG {£S,£RS,^FT,~}> we write A 1Z B iff s°A 1Z s% in the TLTS that results
by taking the disjoint union of T4 and TB-

In what follows, we shall always use the behavioural relations defined above to
compare (states of) timed automata.

3. CHARACTERISTIC FORMULA CONSTRUCTIONS

We now offer gênerai characteristic formula constructions in terms of Lu for
each of the timed behavioural relations introduced in Section 2. The constructions
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associate with each timed automaton a set of propositional équations (one équation
per node of the automaton) that characterizes it up to the given timed behavioural
relation.

To increase the readability of the characteristic formulae we make use of some
derived constructs in the logic Lu. These we now present for the sake of clarity.

For a reset set r = {xi , . . . , Zfc}, we use the abbreviation r in <p to stand for
the formula inductively defined thus:

(h • d e f

0 i n (p — ip
{xi,...,xk} in (f = xi in ({x2,...,xfe} in (p) (k > 1).

Note that the order of the clocks is arbitrary because x in (y in (p) is logically
equivalent to y in (x in (p).

The expression g => <p will stand for gV(p, where ~g is the négation of the guard g.
This is a formula in Lv because the collection of guards is closed under négation.

Given a node n in a timed automaton A, and action a, we define:

enabled(n, a) = \J ge, (1)
eeE(n,a)

where e = {n,ne,a,re,ge) is an edge, and E(n,a) dénotes the set of a-labelled
edges from node n. Intuitively, the formula enabltd{n% a) describes when action a
can be performed from a state of the form (n, v). The négation of the expression
enabled(n^ a) will be used in the characteristic formula construction for timed ready
simulation. Note that, since the collection of guards is closed under négation, the
négation of enabled(n,a) can also be expressed in Lu. Finally, we recall that, as
usual, an empty disjunction stands for ff and an empty conjunction is equivalent
to tt.

In the remainder of this section, we shall implicitly assume a given timed
automaton A, for which all the characteristic formulae will be defined.

CHARACTERISTIC FORMULA FOR TIMED BISIMULATION EQUIVALENCE. For this
relation we define the characteristic formula describing the properties presented in
Définition 2.1. A formula characterizing a node of a timed automaton up to timed
bisimulation should offer a description of:

1. all the actions that are enabled in the node;
2. which node is entered by taking a given transition, together with the resets

associated with it, and
3. the fact that arbitrary delays are allowed in the node.

The resulting characteristic formula is presented below, where we consider
each $(n)~ to be an identifier. The formula consists of three sets of conjuncts, each
associated to one of the above properties, for each node n of a timed automaton A:
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*~(«) =f ( A A 9e^((a)rem^(ne))) A
\aeAct eGE(nya) J

A [a] V PeA(rein$~(ne)) A
\eeE(nya) )

where n is a node of A, e = (n, nei a, r*e) ge), and we recall that E(n> a) dénotes the
set of a-labelled edges from node n. We shall use T>2 to dénote the déclaration
that consists of the équations above, one for each node of A.

Theorem 3.1. Let A^B be timed automata with disjoint sets of docks. Let n be
a node of A and m be a node of B. Assume that u and v are valuations for the
docks of A and B, respectively. Then

(n, u) ~ (m, v) iff (m, vu) f= $~ (n),

where (m, vu) \= $~(n) holds with respect to the déclaration î>^.

Proof. We separately prove that:
1. (n,u) ~ (m,v) only if (m^vu) f= $~(n), and
2. if (m, vu) |= $~(n) then (n,u) ~ (m,v).

(1) To show that the 'only if' implication holds, consider the relation h defined
by structural induction on formulae thus: (m ranges over the nodes of B,
and n over those oî A)

(m, vu) h tt <^ true
(m, vu) \- ff «=> false

(m, vu) \- ip A ip <& (m, vu) h <p and (m, vu) I- ip
(m, vu) \- ifV %p <t=> (m, vu) h y? or (m, vu) h ^

(m, vu) \- 3y? <î=> 3d G R>o.(m, (v + d)(u -\-d)) \- (p
(m, vu) \-Wtp & Vd G R>0.(m, (v + d)(u + d)) h cp

(m, vu) h {a)ip O E3(m',v').(m,v) A (m',v') and
(m\vfu) h <£

(m, vu) h [a]y? o V(m/, v').(m, v) —> (m', ii') implies
(m! ,vfu) h <̂

(m,vu) ha;Mp «=> u(x) Np
(TTT,, VU) h x + pixiî/ + ç =̂> u(x) + p N u(y) H- q

(m, vu) h a; in y? <=> (m, vu') H <̂  where u' = u[{x} i-> 0]
(m, vu) h $~(n) <=̂  (m,v) ~ (n,u).

We prove that h is a satisfiability relation. The only interesting part of the
proof is to show that if {m, vu) h $~(n), then (m, vu) h 2?£($~(n)). This
we now present in detail.

Assume that (m, vu) h $~(n) and let £ be a conjunct of 2?^($~(n)). We
prove that (m, vu) h £ holds for each of the three types of conjuncts of the
characteristic formula.
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(l).l Case ^~ge^ ((a)re in $~(ne)), where a G Act and e G E{n,a).
The claim is trivial if u =̂ ge. Assume now that u \= ge. We wish to
argue that

(m,vu) \- (a)re in <3>~(ne). (2)

Since u \= ge and e G Efa^a), it follows that (n}ti) —> (ne,u[re i—»
0]). By the assumption that (m,vu) h 3>~(n), we have that (n,w)
^ (m,Ï;). Thus there is a transition (m,v) —> {m\vf) with

By the définition of h, it follows that

Thus, again by the définition of h, it holds that

{m!\vfu) \~ re in $

from which (2) follows because (m,v), —> (mf,vf).
(1>.2 Case £ = [a]( V ^ A (re in <&^(ne))), where a € Act.

Assume that (m,v) A (m\vf). We prove that

(m'.v'u) h V 5eA(r e in$~(n e ) ) . (3)
e<EE(n,a)

To this end, note that, since (n,u) ^ (m,^) by the assumption that
(m,vu) \- <3>~(n), there is a transition (n,u) —y (n\vf) with

(n',u') ~ (m'.t;'). (4)

Since (n,n) A (n',u') holds, there is an edge e G E(n,a) such that

- n' = ne, and
- u' = u[re i—s- 0].

Thus (m'^'ifc) h 5?e and, by (4), ( m ' , ^ ^ ^ •-> 0])) h $~(ne). By the
définition of h, we may now infer that

(m\vfu) \- re in $~(ne)

from which (3) finally follows.
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(1).3 Casef = V*~(n).
Assume that d G M>o- We prove that

(m,(t; + d)(u + d)) h *~(n). (5)

Since (m,v) e—> (m,t; + d), (n,u) €—• (n,w + d), and (m,v) ~ (n,u) hold,
it follows by time determinism that (m,v + d) ~ (n,u + d) also holds.
The définition of h now yields (5), which was to be shown.

The proof of statement (1) is now complete.
(2) We prove that the relation

11= {((n,w),(m,?;)),((m,ï;),(n,u)) | (m,vu) |= $~(n)}

is a timed bisimulation. Note, first of all, that 7Z is symmetrie by définition.
We proceed to prove that the relation 7Z satisfies the clauses in Définition 2.1.
Assume to this end that {n^u)lZ{m^v) because (m,vu) \= $~(n).

<2).l Case (n,u) A (n',u').
Since (n,w) A (nf,uf) holds, there is an edge e — (n,ne,a,ge,re)
G E(n,a) such that

(ü) n' = ne, and
(m) n' = u[re \-^ 0].
Since (m,vu) (= <^^(n) and (i) holds, it follows that

(m,vu) \= (a)re in $~(ne).

This means that there is a state {m!,vf) such that (m, i>) —• {mf ,vf)
and (m'^'^fre H-> 0])) |= $^(ne). For such an {m\vf) we infer that
(n'\v!)7l(mf\vf) by (n) and (m).

(2>.2 Case (n,«) ̂  (n,u + d).

Since (m,vu) f= ¥$^(n), we have that

(m, (v + d)(u + d)) [= *"(n).

By the définition of 72-, it follows that (n,w + d)7Z(m,v + d), and,
as (m, Ü) —> (m, ̂  + d), we are done.

We now consider the case that (myv)7l(n,u) because (myvu) \= $~(n).
(2).3 Case (m,v) A (m',^).

Since (myvu) \= [a]( \J peA(re in $~(ne))), we have that (m^v'u) \=
e€E(n,a)

V #e A (re in $^(ne)). It follows that, for some e G J5(n, a),
(i) u f=^e, and
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(it) (m',v'(u[re ^ 0])) (= r ( n c ) .
By (i) we have that (n, u) —> (ne, ti[re i—> 0]) . By (ii) and the définition
of 1Z, it follows that (m', ï/)7£(ne, u[re H->• 0]) and we are done.

(2).4 Case (m,t;) ^ ( m , H d), where d G M>0. Since (m,vu) \= W*~(n), it
follows that (m, (u + d)(u + d)) h *~(n)- Thus (m,v + d)H(n,u + d)

holds. Moreover (n, u) —» (n, u + d) and we are done.
This complètes the proof of the theorem. •

Note that, since we assume that the set of actions Act is fixed, the characteris-
tic formula for timed bisimulation has size that is linear in that of the argument
automaton. Laroussinie et al. [19] have proposed a characteristic formula construc-
tion for timed automata up to timed bisimilarity. However, their construction is
based on directly mimicking the standard construction from the untimed setting
on the région graph, and the size of their characteristic formula is therefore linear
in the size of the région graph. Unfortunately, however, as observed by Alur and
Dill [2], the région graph has size that is exponential in the length of the clock
constraints of the argument automaton.

Remark 3.2. In defining our characteristic formula construction for timed bisim-
ilarity over timed automata, we have used the logic Lv as presented in [19]. As
already remarked, this allows us to construct characteristic formulae for timed
bisimulation whose size is linear in that of thé argument automaton, if the set of
actions Act is fixed. This result can be extended to the case in which the set of
actions is not fixed by adding atomic propositions to Lu, following the example
of [27]. These new atomic propositions take the form PA, where A is a subset of
Act, and hold in states whose initially enabled actions are contained in A. The
easy modification of 3>~(n) using these atomic propositions is left as an exercise
for the reader.

Remark 3.3. Laroussinie et ah [19] have shown that the logic Lu characterizes
timed bisimilarity over timed automata. This means that two timed automata are
timed bisimilar if, and only if, they satisfy the same formulae in the logic Lv. As
a conséquence of Theorem 3.1, we obtain that the existential delay modality 3 is
not necessary to obtain this logica! characterization of timed bisimilarity.

As a further corollary of Theorem 3.1, and the EXPTIME upper bound on the
complexity of model checking for Lv [1], we have another proof of the following
well-known result.

Corollary 3.4. The problem of deciding whether two timed automata are timed
bisimilar is decidable in exponential time.

CHARACTERISTIC FORMULA FOR TIMED SIMULATION. The characteristic formula
for £5 is a minor variation on that for ~, and is defined thus:

(a) re in $~s(ne)) ) A
aeAct eeE(n,a) V / /
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where n is a node of A, e = (n, ne, a, re, pe) and J5(n, a) dénotes the set of a labelled

edges from node n. We shall use T>2S to dénote the déclaration that consists of
the équations above, one for each node of A.

A minor variation on the proof of Theorem 3.1 now establishes that:

Theorem 3.5. Let A,B be timed automata with disjoint sets of docks. Let n be
a node of A and m be a node of B. Assume that u and v are valuations for the
docks of A and B, respectively. Then

(n, u) £5 (m, v) iff (m, vu) H ®~s W,

where (m, vu) \= <&~s(n) holds with respect to the déclaration T>^s.

The full proof of this above theorem may be found in [26].

Corollary 3.6. The problem of deciding whether A £5 B holds for timed au-
tomata A, B is decidable in exponential time.

CHARACTERISTIC FORMULA FOR TIMED READY SIMULATION. The characteristic
formula for timed ready simulation is presented below:

rRS() d ( A A

A enabled(n,a) => [o]ff ] A
ieAct

where n is a node of A, e = (n,ne,a,re,5e) and we recall that E{n,a) dénotes
the set of a labelled edges from node n. The notation enabledfo, a) stands for the

négation of the formula enabled(n,a) given in (1). We shall use T>2RS to dénote
the déclaration that consists of the équations above, one for each node of A.

A minor variation on the proof of Theorem 3.1 now establishes that:

Theorem 3.7. Let A^B be timed automata with disjoint sets of docks. Let n be
a node of A and m be a node of B. Assume that u and v are valuations for the
docks of A and B, respectively. Then

(n,u) £RS (m,v) iff (m, vu) f= $(n)~#s,

where (m, vu) \= $~-R^(n) holds with respect to the déclaration V^RS.

The full proof of this resuit may also be found in [26].

Corollary 3.8. The problem of deciding whether A ^RS B holds for timed
automata A, B is decidable in exponential time.
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CHARACTERISTIC FORMULA FOR THE FASTER-THAN PREORDER. In the charac-
teristic formula constructions that we have presented so far no use was made of
the existential modality ES over delay transitions. The use of the 3 modality will
instead play a crucial rôle in the définition of the characteristic property for the
faster-than bisimulation preorder. This we now proceed to present.

For every node n in a timed automaton A, we define:

f f A A 9e ̂  (r<i*3(a)

( A M ( V 9e A ( re in §~FT(ne]
\aeAct \eeE(n,a) \

) A

where e — {n,ne,a,re,ge) and E(n,a) dénotes the set of a labelled edges from

node n. We shall use V^FT to dénote the déclaration that consists of the équations
above, one for each node of A.

Theorem 3.9. Let A, B be timed automata with disjoint sets of clocks. Let n be
a node of A and m be a node of B. Assume that u and v are valuations for the
clocks of A and B, respectively. Then

(m,v) iff(m,vu)

where (m,vu) (= 3>~^(n) holds with respect to the déclaration V^

Proof We separately prove that:

1. (n,u) £ F T (rn,v) only if (myvu) (= <Ê~^T(n), and

2. if (m,vu) \= $~FT(n) then (n,u) EFT (m,u).

(1) To show that the 'only if' implication holds, consider the relation h defined
by structural induction on formulae thus: (m ranges over the nodes of B,
and n over those of A)
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(m, vu) \- tt <^ true
(m, vu) h S «=> false

(m, vu) h <p A ip O (m, vu) h ip and (m, vu) h T/>

(m, t;u) h (p\/ ip o (m, vu) \~ <p or (m, vu) H ?/>
(m,vu) h 3<p <^> 3d € R>o.(m, (y + d)(it + d)) h y?
(m, vu) h ¥cp <£> Vd € K>0.(m, (v + d)(it + d)) h (/?

(m, vu) \~ {a)(p <ë> 3(m/,t?/).(m,7;) A {mf,vf) and
(m',vfu) h c/9

(m,vu) \- [a]tp 43- \l{m\vf),{m^v) A (m\vf) implies
(m\vfu) h v?

(m, vu) hxN]) <^=> u(x) XI p
(m, vu) \~x+pMy-\-q <^=> u(x) +pN u(y) + g

(m, vu) \~ x in <p <^> (m, vu') h (p where v! = u[{x} H-> 0]

(m^vu) V- $~FT(n) ^ (î^,u) EFT (m,v).
We prove that h is a satisfiability relation. The only interesting part of the

proof is to show that if (m, vu) h Q~FT(n), then it holds that

This we now proceed to prove. Assume that (myvu) h $~FT(JI) and

let £ be a conjunct of T>2FT($~FT(n)). We prove that (m,vu) h £ holds
for the first type of conjunct of the characteristic formula. The proof for
the other two types of conjuncts is similar to the corresponding cases of the
proof of Theorem 3.1.

- Case ^ = ^ e ^ ( r e i n 3{a)$~*T(ne)), where a e Act and e G E(n,a).
The claim is trivial if u ^ ge. Assume thus that u |= ge for some
a-labelled edge e emanating from n. We wish to argue that

(m, vu) h re in 3(a) in <$>~FT(ne). (6)

To this end, it is sufficient to prove that

{m,v(u[re .-> 0])) h 3{a) in * E ^ r ( n e ) . (7)

Since u \= ge and e e E(n,a), it follows that (n,u) -^ (^e,^[^e *—> 0]).
As ( n j ^ E F T ^ , ^ ) holds, there are a d G M>o and a state (m',i/) such
that

- (m,v) —>• (m,u + d),
- (m, v -h d) —> (m', v;), and

- (ne,u[re H-> 0]) e—»• (ne,u[re H-> 0] + d), with
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Hence it is sufHcient to prove that

(m,(v + d)(u[re i->0]+d)) h (a) i n $ ~ ^ ( n e ) . (9)

Since (m,v + d) A (m7,?/), by the définition of h and by (8) it follows

that (m', v'(u[re K-> 0] +d)) h $~FT(ne), from which we may dérive that
(9), (7) and finally (6) hold.

(2) We now show that the 'if ' implication holds. To this end we prove that the
relation

Tl= {((n,u),(m,v))\(m,vu) |= $~Fr(n)}

is a faster-than bisimulation.
Assume that (n, u)H{m, v). We proceed to check that all of the defining

properties of a faster-than bisimulation are met.
(2).l Case (n,tt) A (n\u').

Then there is an edge e G E(n, a) such that

(iï) n' — ne, and
(m) v! — u[re 1—>• 0].

Since (m,vu) \= $^F^(n) and (i) holds, it follows that

(m,vu) \= re in 3(a)$~^^(ne).

Hence (m,vuf) |= 3(a)$fNJiïlT(ne). This means that there are a
delay d e R>0 and a state (mf ,vf) such that

(m, v) -^ (m, v + a) —* (m , t; )

and (m', u'u") |= $ ~ F T (ne), where u" = V + d. By the définition of Tl,

we have (nf,uft)H{mf,vf). Moreover, (n\uf) —» (n',u"), and we are
done.

(2).2 Case (n,u) e ^ (n,u + d).

Since (m,vu) \= ¥$^FT(n), we have that

(m, (f + d)(tt + d)) |= ̂ >~F^(n).

By the définition of 11, it follows that (n, u + d)H{m, v 4- d) and,

as (m, t') —» (m, v + d), we are done.

(2).3 Case (m,v) A (m',^)-
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Since (m,vu) \= [a]( V 9& A (re 2^ 3>~FT(ne))), we have that
eeE(n,a)

(mf,v'u) \= V 9e A (re in $~.FT(ne)). It follows that, for

some e € E(n,a),
(i) u\=ge , and

(M) ( m ' , ï / ( u [ r e ^
By (i) .(ra, u) A (ne, w[re y~-> 0]). By (M) and the définition of 7£, it follows
that (ne,u[re i—• 0])7£(m',t>') and we are done.

(2).4 Case (m, v) ^ (m, v + d), where d e R>0.

ws

h

Since (m,vu) \= $~FT(n), it follows that

Thus it holds that (n,u + d)TZ(m^ v -j- d). Moreover (n, u) €—> (n, w + d)
and we are done.

This complètes the proof of the theorem. D

As for the previous behavioural relations studied in this section, we have that:

Corollary 3.10. The problem of deciding whether A EFT B holds for timed
automata A, B is decidable in exponential time.

4. FURTHER REMARKS

In their séminal paper [2], Alur and Dill proved that the problem of checking
timed trace inclusion between a timed automaton A and a deterministic timed
automaton B is PSPACE-complete. Following the classic automata theoretic ap-
proach, they achieved this result by reducing this problem to checking for the
emptiness of the language accepted by a timed automaton that can be built in
polynomial time from A and B. We shall now argue that the use of characteristic
formulae offers an alternative approach to checking timed trace inclusion^

For the sake of clarity, we begin with some preliminary définitions.

Définition 4.1. A séquence of actions ~ô = a^a^ . . . is a possibly infinité sé-
quence with ai G Act.

A séquence of time instants t = £ 1 ^ 3 . . . is a possibly infinité, nondecreasing
séquence with U e R>o-

A timed trace p is a pair (<r,ï), where â is a séquence of actions and t is a
séquence of time instants. The séquences a and t are either both infinité or both
finite and of the same length.

In a timed trace p, the real number U dénotes the absolute time instant at which
action a» occurs. In particular, t\ always dénotes the time instant at which the
first action of the timed trace occurs. Assume, for the sake of simplicity, that every



582 L. ACETO et al.

timed automaton is supplied with an extra clock XQ which is never reset. Such a
clock will measure the time that has elapsed since a timed automaton started its
exécution.

Définition 4.2. Let A — (Act, iV,no,C, E) be a timed automaton. We say
that (<J,£), with ~& = aia2 - . . a& and t = tit2 • • .tk (k > 0), is a timed trace of
Aiïï

(no, [C ~ 0]) e ( - i l } ^ (m, vi)

for some delays di, efe, • • • > dfc G M>o, valuations ui, Ï>2> • • • i>fc such that £; = Vi(xo)
for every i G { 1 , . . . , fc}, and nodes n i , . . . , n^ of A The set of timed traces of A
will be written traces(A). c

Let A and i? be timed automata. We write A ET B iff traces(A) C traces(5).

As shown by Alur and Dill [2], the relation ET is undecidable for timed au-
tomata. It becomes decidable if the spécification automaton B is deterministic.

Définition 4.3. A timed automaton is deterministic iff for every node n,
action a £ Act and distinct edges e, e' G ü?(n, a), the guards <?e and #e/ are disjoint,
ie., ge f\ge* is unsatisfiable.

A standard argument, that may be found in [26], now suffices to establish the
following result. (See, e.g. [11] for a similar statement in the classic, untimed
setting.)

Proposition 4.4. Let A and B be timed automata. Then the following statements
hold:

1. A^s B implies A Ey B;
2. A ^T B implies A E# B, if B is deterministic.

The import of the above result is that, if B is a deterministic timed automaton,
checking whether the set of timed traces of a timed automaton A is included in
that of B can be reduced to checking whether B satisfies the characteristic formula
of A with respect to timed simulation.

The feasibility of the approach based on establishing behavioural relations for
timed automata via model checking characteristic formulae needs to be established
experimentally. The master's thesis [26] describes a prototype implementation of
a tooi for checking behavioural relations for timed automata based on the theory
presented in this study. This tooi is rather inefficiënt, and cannot handle rea-
sonably sized examples. However, we expect that an efficient tooi for verifying
behavioural équivalences for timed automata can be obtained by implementing
a front-end to the L^-model checker CMC [18] that générâtes the different char-
acteristic formula constructions we have presented. Since the tooi CMC already
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supports timed bisimilarity checking using a different approach, it would be inter-
esting to compare the performance of the two techniques on benchmark examples.

Acknowledgements. We thank the anonymous référées for their constructive comments
that helped us improve the paper.
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