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PERIODICITY AND ROOTS OF TRANSFINITE STRINGS

OLIVIER CARTON' AND CHRISTIAN CHOFFRUT?

Abstract. This contribution extends the notions of roots and period-
icity to strings of transfinite lengths. It shows that given a transfinite
string, either it possesses a unique root or the set of its roots are equiv-
alent in a strong way.

Mathematics Subject Classification. 68R15.

1. INTRODUCTION

The related notions of periodicity, conjugacy and primitivity of strings are with-
out any doubt among the most important since they represent the simplest “reg-
ularities” that can be observed. They can be defined in different equivalent ways.
We can view a string as mapping an arbitrary integer interval into a finite set of
symbols and extend thus the classical definition of analytic periodic real functions,
provided one changes the domain from the reals to the integers, [6]. A more “word
combinatorical” viewpoint relates periodicity with self-overlapping of strings, i.e.,
with the “conjugacy” relation. As such, it has been studied in numerous con-
texts. F.g. Knuth—Morris—Pratt’s string-matching algorithm is mainly based on
periodicity implemented as the so-called “failure function”. Duval studied the set
of periodicities of strings, references [4] and [5]. More technically, when trying to
“solve” equations in the free monoid, i.e., to find some type of information on the
words that satisfy a given equation, the main tool is again the conjugacy relation.

It is not always clear how to generalize the notion of periodicity to other struc-
tures. As a “geometric” property (invariance under some type of translation of
a given pattern) there are a few tempting candidates. FE.g., infinite strings can
be investigated from this perspective. Césari initiated the study of local versus
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global periodicity in [2]. Also, it can be spoken in a relevant way of periodicity in
trees [7] for example. Another direction of research can be found in [1] where so
called semiperiodic words are defined.

In the present work, we focus our attention on strings of transfinite length. The
“invariance under translation” cannot be adapted directly as we shall see, because
of the peculiarities of the operation of addition of ordinals, so we have to resort to
a property of the division. Next to periodicity, we investigate the notion of roots
of a transfinite string which can be viewed as specific periods of the string. The
purpose of this paper is therefore twofold. It proposes a notion of periodicity of
transfinite strings which generalizes that of finite strings and it shows that every
transfinite string possesses a unique, properly defined, “primitive root”.

2. PRELIMINARIES

We refer the reader to the numerous standard handbooks such as [9,10] or [8]
for a comprehensive exposition of the theory on ordinals. In particular we assume
the reader is familiar with the basic arithmetical rules for ordinals. We consider
countable ordinals only and we denote this collection by Ord.

2.1. ORDINALS

Every ordinal a admits a unique representation, known as Cantor’s normal
form, as a finite sum of non-increasing prime components. By grouping the equal
prime components, an arbitrary non-zero ordinal can thus be written as

a=w'a, +wta,_1 + ... +wMag +wag (1)

where n > 0,an,...,a01,00 < W, ay,a9 # 0 and A\, > Ap_1 > ... > Xg. The
ordinal A, is the degree and Ay the order of a. We recall that « is a successor
ordinal if N\g = 0 else it is a limit ordinal. An ordinal of the form w? for some
ordinal A > 0 is called a prime component. Prime components are characterized
by the condition that they cannot be expressed as the sum of two smaller ordinals.

For the sake of self-containment we recall the basical results on arithmetics of
ordinals. Addition of two ordinals is associative and satisfies for all a,b < w and
all u,v € Ord

" ve | w¥b ifvr>up
wa—’—Wb_{w“(a—i—b) ifv=up.
For v < pu, the expression cannot be simplified further. Addition is not commu-

tative but characterizing the pairs of ordinals that commute is easy ([10], Th. 1,
p. 346).
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The product of ordinals may also be defined. It is associative, distributes over
the sum to the right (a(8 + 7v) = of + ay) and satisfies in particular

wAntH if a = wh, for
An An—1 Ao _ some p > 0
WAy + W p-1+ ... +w ap)a =
( n n—1 0) WA" ana + w)\7L71an71+
A wMag if @ < w.

Observe that the product does not distribute to the left, e.g. (w+1)-w = w? # w?
Fw.

It is well-known that every ordinal may be factored, though not necessarily
uniquely, as a product of prime ordinals, i.e., ordinals whose unique right divisors
are themselves and 1 ([10], Th. 1, p. 309). Furthermore, the prime factors which
are successor ordinals are exactly the prime integers and those ordinals of the form
w*+1 where ) is an arbitrary non-zero ordinal ([10], Th. 3, p. 336). In other words,
infinite prime ordinals which are successor ordinals are exactly the successors of
the prime components.

2.2. TRANSFINITE STRINGS

Given a finite alphabet X, a string is a mapping u of Ord into X. Equivalently,
u is a sequence of ¥ indexed by an ordinal . We denote by u;, for all ¢ < «, the
image of ¢ in this mapping. The collection of all strings is denoted by »0rd Tpe
ordinal « is the length of u, denoted by |u|. The empty string, denoted by 1, is the
string of length 0 and is the unit of »01d 25 4 monoid. By extension, the degree
of a string z is the degree of its length. For a € ¥, |u|, denotes the length in the
letter a of the string u, t.e., the ordinal of the subsequence consisting of all the
positions i < « for which u; = a.

The concatenate of two strings u and v is the mapping from the ordinal |u|+ |v|
to ¥ defined by

(uv); = w; if i < |u
T vy it =ul+ 4,0 < vl

Observe that |uv| = |u| + |v| holds for all u,v € »Ord by definition, but the
condition uv = w, |u| > 0 does not imply |v| < |w| (consider u = a,v = w = a®),
which is a main departure from finite strings. Another difference is the fact that
concatenation (also called product), like addition for ordinals, is left cancellative
but not right cancellative (a*aa® = a¥a®). Also, concatenation can be defined for
a collection of strings indexed by an arbitrary ordinal. As a particularly important



528 O. CARTON AND CH. CHOFFRUT

case, given a string u, we denote by u® the string infinitely concatenated with itself,
i.e., the string of length |u|w defined by

w —
Upgyi = Wi

where ¢ = |u|, k < w and 7 < £.
The notion of prefiz extends naturally from finite to arbitrary strings. An occur-
rence of a string w € YO in a string u € £O is a pair (a,w) € Ord x »Ord

such that u = zwy for some strings =,y € »0rd with || = a. For example,
consider the string x = yy where y = aba?ba®b...a’b... of length w. The under-
lined occurrence aba?ba®b...a'b. .. aba®b...a’b... is specified by the pair (5, ab)
while the underlined occurrence ababa®b...a'b...aba®b...a'b. .. is specified by
the pair (w + 2,a?b). The occurrences of a given string are linearly ordered by
their first component, i.e. (aq,w1) is before (a2, w2) if a1 < as.

We may also say that two strings z,y € & rd are comparable if x is a prefix of
y or y is a prefix of . The most elementary property of finite strings is known as
Levi’s lemma. It trivially holds for strings of arbitrary lengths. We recall it here.

Proposition 2.1. Let x,y,z,t € »Ord satisfy the equality xy = zt. Then there
eists u € $OM such that either © = zu and t = uy or z = xu and y = ut holds.

3. PERIODICITY

Mimicking the definition for functions, the period of a finite or infinite string u is
defined as an integer p less than the length |ul, such that for all 0 < i < i+p < |ul,
U; = U;4p holds. The addition of ordinals is not commutative, so if we are to extend
this notion in a naive way, we must choose between equality u; = u;4, or equality
U; = Upti. The first equality implies however that u; is constant for all ordinals
1 of degree less than or equal to that of p, e.g., the string v = a“av where a is a
letter and v is an arbitrary string of length w would have period 1. The opposite
equality carries no information when the degree of i is greater than that of p
and with this definition, (ab)“v would be periodic of period 2 for an arbitrary v.
We are thus lead to attack the problem differently, via the operation of division.
The uniqueness property of the quotient and remainder for the integers can be
extended to all ordinals, provided the quotient is multiplied to the right of the
divisor. Otherwise, it may no longer hold (e.g., w-3+2=(w+1)-3+1).

Proposition 3.1 ([10], Th. 2, p. 298). Let o, 8 be two ordinals. There exists one
and only one pair of ordinals X\, p such that p < B and a = B\ + p.

With this in mind, given two ordinals o and (3, we define the equivalence fﬁv on
all ordinals less than a by setting ¢ rE 7 whenever the two ordinals i, 7 < a have

the same remainder in the division by (3, i.e., whenever there exist three ordinals
A pand p < Bsuch that i =3- A+ p, 7 =3 u+ p holds.
The first result serves as a definition of the notion of periodicity.
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Proposition 3.2. Given a string x and an ordinal 3, the following conditions are
equivalent:

i) there exists a string y of length B such that x is a prefix of y™ for some
ordinal T;
ii) for all ordinals i,j < |z|, if i rEj holds then we have x; = x;.

Proof. Indeed, if i) holds then for all ordinals 7, j < |z| having the same remainder
p in the division by 3 of y, we have x; = x; = y,. Conversely, let y be the prefix
of x of length § and let 7 be an ordinal such that |z| < 8- 7. For each 0 < i < |z]
consider the division: i = 3-A4p. Then we have z; =y, = Y2+, Which completes
the proof. O

The string y of the previous proposition is called a period of x. By extension
we say that the length of y is a period of . Whichever is meant will be clear from
the context.

4. RooTs

A period of a string x has been defined as a string y such that x is a prefix of
some power of y. Here we impose that x be equal to some power of y, in which
case we say ¥y is a root of x. A root is “primitive” when it cannot be decomposed
further. For transfinite strings unicity of the primitive root does not necessarily
hold. It is only guaranteed when some technical condition is met on the exponents
of the string. When this condition is not satisfied, we must restrict the notion of
primitivity in order to keep the unicity.

In order to establish this result we recall some notions and results of [3].

4.1. GENERALIZED CYCLICITY

The idea behind the following definition is to express a property on two trans-
finite strings which guarantees that any two arbitrary countable products of these
two strings are comparable.

Ord

Definition 4.1. Two strings z,y € & are generalized cyclic if

i) either there exists a string u € »01d and two ordinals a, B € Ord such that
z=uy=u’;

ii) or there exist two strings u, v € EOrd’ two ordinals «, 8 > 0 and two integers
0 <14,j < w such that

= (uv)*u’ y= (uv)’u!  with a = 0 if and only if § = 0. (2)

The term “generalized cyclic” comes from the fact that whatever the product of
occurrences of x and y, the result is of the form u” in case i) or in case ii) when
a = 3 = 0 or of the form (u“v)Yu" for some v € Ord and 0 < r < w in the
remaining case ii). Actually r may assume the values 0, ¢ and j only.
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Example 4.2. The strings = (a“b)“a? and y = a*ba are generalized cyclic but
x = (a¥b)%a? and y = a are not (in particular, a2 is not a prefix of (a*b)?a?, see
condition iv) of the next proposition).

Proposition 4.3. Let x and y be two strings. The following conditions are equiv-
alent:

i) the two strings x and y are generalized cyclic;
ii) for all ordinals X and u, the two strings x* and y* are comparable;
iii) for some limit ordinals X\ and p, we have x* = yH;
i) for some ordinals \ and u the two strings x> and y* have a common prefix
of length max{|zyl, |yz|}.

4.2. STRONG CONJUGACY

Conjugacy is a property that can be defined on all monoids. Formally, two
elements x,y are conjugate if there exist two elements u,v such that z = uv and
y = vu holds. The following refines the notion of conjugacy.

Definition 4.4. Two strings x,y € »0rd a0 strongly conjugate if and only if

EOI‘d

there exist z,t € and two integers m, n such that

x = 2z"tz" and y = 2¥t2"". (3)

We also say that x and y are strong conjugates. Observe that if n < m which can be
assumed without loss of generality, we have: x = 2™ "z¥tz" and y = z¥tz"z"" ",
i.e., strong conjugacy implies conjugacy. The converse is not true, e.g., a*b and ba®
are conjugate but not strongly conjugate. Strong conjugacy has nice properties,
see [3], in particular that of being an equivalence relation.

4.3. UNICITY OF THE ROOT

Definition 4.5. A string = € »0rd 44 primitive if x = y® implies o = 1. It is
strongly primitive if all its strong conjugates are primitive.

Example 4.6. (a“b)%a is not primitive since it is equal to (a“ba)?, (a“b)¥a is
primitive since its length is w? + 1 but not strongly primitive since it is strongly
conjugate to (a*b)¥. Finally, a®ba? is strongly primitive since its conjugates have
length w + n for some n < w.

Definition 4.7. A root of a non-empty string x € »0rd i5 5 string y such that
x = y® for some ordinal a. Then we say that « is an exponent of x which is
associated with y.

Observe that the exponent may assume a finite number of values only, since it
is a right-hand divisor of |z|, ¢f. [10] (Th. XIV 12. 1).
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The main result concerning the notions of root and exponent for transfinite
strings is the following:

Proposition 4.8. If a non-empty string has an exponent which is a successor
ordinal, then it has a unique primitive root. It is the shortest among its roots.

If it has an exponent which is a limit ordinal, the set of its strongly primitive
roots is an equivalence class of the relation of strong conjugacy.

Observe that discriminating the two cases is necessary since e.g., a“b, (a*b)“a,
(a‘”b)‘”2a, cee (a“b)“Wla are primitive roots of (a*’b)*" but among these n prim-
itive roots, a“b only is strongly primitive.

Proof. Since there exists no infinite descending chain, it is clear that every string
admits a primitive root. We start with three general claims.

Claim 1. If y; and y» are two primitive roots of z, then there exist u,v € EOrd,
0 < iy,i2 < w and €1, €3 € Ord such that y; = (u¥v)“u and yo = (u“v)2u®2
hold.

This is a reformulation of Proposition 4.3.

The next claim concerns the exponent € in the expression (u“v)u’ when it is
assumed to denote a primitive string.

Claim 2. Assume y = (u“v)“u’ is primitive with u,v € zOrd’ 0 <i< wand
€ € Ord. If € > 1 then € is an infinite prime component of the form w” for some
ordinal 7 > 0 and furthermore we have i # 0.

Indeed, condition € > 1 implies i # 0 trivially. Consider the special case
y = (a“b)¢a where a,b € X, i.e., u and v are reduced to letters. The ordinal
€ is not a successor ordinal since otherwise equality (a“b)‘a = (a“ba)® would
hold, contradicting the primitivity of y. If e + 1 is not a prime component, then
by [10] (Th. 3, p. 336) we can factor e + 1 = (W + 1)(¢’ + 1) where € is a
non-zero limit ordinal. A simple computation shows that this implies we + 1
= (W +1)(e +1). However, we + 1 is the length of y and w!™7 +1 is the length
of the prefix z = (a*b)*" a of y, yielding y = z€+ contradicting the primitivity
of y. The general case can be dealt with as follows. Consider the substitution
¢(a) = u® and p(b) = v. Then the string y of the claim equals ¢((a*b)¢a) and
(a*b)ca is primitive else y would not be primitive either. The conclusion follows.

Claim 3. If a non-empty string « has an exponent associated with a primitive root
which is a successor ordinal, then all other exponents associated with primitive
roots are successor ordinals.

Let y1,y2 € 30rd e two primitive strings such that = = y{* = y52. The
strings y; and yo are generalized cyclic by Proposition 4.3iii), which means

g = (o) u and yp = (uv)=u’ (4)
for some strings u, v, some integers 0 < 41,479 < w and some ordinals €1, e with
b b ) b

€1 = 0 if and only if e = 0. The case €; = €5 = 0 is trivial since it implies i1 = 5
and therefore ay = ay by [10] (Cor. 7, p. 296), so we assume €; and ey different
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from 0 and by the previous claim we know that €; > 1 implies that €; is a prime
component and likewise for e2. Set A = [u¥v| and p; = |[u%] for j = 1,2. Equality
Y7t = y5? implies

(A1 + pr)ar = (Ne2 + pz)ae. (5)
‘We have

Aejoy 4+ p;  if o is a successor ordinal
Aejoy if o5 is a limit ordinal.

(Aej + pj)ay = { (6)

If o7y were a successor ordinal and as a limit ordinal then we would have Aeja; +
1 = Aégaa. Because A > g holds we would get by Proposition 3.1, ;a1 = €sap
and p; = 0. Now condition g1 = 0 implies ¢; = 1 by Claim 2 and thus a1 = esas.
But this is a contradiction since a; is a successor ordinal and esas is a limit ordinal.
This establishes the third claim.

We first deal with the case where all exponents are successor ordinals and we
show that the primitive root and its exponent are unique. Again we consider two
roots like in (4). Equation (5), via (6), takes on the form Aejoy 4 1 = Aeaca + pa.
Because of A > 1, e, Proposition 3.1 yields equalities €;a; = eaaig and py = po.
Then ¢; = 1 if and only if e = 1 in which case we are done. We are left with
€1 = w™ and e = w™ for some ordinals 7,7 > 0. By equating the elements
of lowest exponent in w in Cantor’s normal form in both handsides of equality
€111 = €axg, We obtain 7, = 7o which completes the proof in this case.

Now we assume all exponents associated with the primitive roots are limit
ordinals. Consider the shortest string y such that x = y® for some (limit) ordi-
nal a. We verify that y is strongly primitive. If this were not the case then by
Definition 4.4 we could factor y = 2¥t with z,t € »01d gych that for some integer
0 < j < w and for some 8 > 1, 2%tz = w”, thus |w| < |y| would hold. Since «
is a limit ordinal we have (2¥t)® = (2%t27)® and thus = = w?®, contradicting the
minimality of |y|. Furthermore, it is clear that all the strong conjugates of y are
strongly primitive roots of x.

Finally, let z be another strongly primitive root of x. The strings y and z
are generalized cyclic: y = (u*v)?u’ and z = (u¥v)7w for some strings u,v, for
some integers 0 < i,j < w and for some ordinals 3, with 8 = 0 if and only if
v = 0. The only means of being strongly primitive is by assuming 6 = vy = 0 and
t=j=1or =+ =1 which concludes the proof. O
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