
Theoretical Informatics and Applications
Theoret. Informatics Appl. 35 (2001) 61–81

A COALGEBRAIC SEMANTICS OF SUBTYPING

Erik Poll
1

Abstract. Coalgebras have been proposed as formal basis for the
semantics of objects in the sense of object-oriented programming. This
paper shows that this semantics provides a smooth interpretation for
subtyping, a central notion in object-oriented programming. We show
that different characterisations of behavioural subtyping found in the
literature can conveniently be expressed in coalgebraic terms. We also
investigate the subtle difference between behavioural subtyping and
refinement.

Mathematics Subject Classification. 18C50, 68Q70, 68Q85.

1. Introduction

Subtyping is one of the famous buzzwords in object-oriented programming.
However, the precise meaning of subtyping, and more in particular the question
whether subtyping is the same as inheritance, has been the subject of a lot of
debate (more on that in Sect. 2).

Given that coalgebras has been proposed as a semantics of objects in [26], an
obvious question to ask is if this semantics accounts for subtyping. This paper
shows that the coalgebraic view of objects provides a clean semantics for so-called
behavioural subtyping. Moreover, different characterisations of behavioural sub-
typing found in the literature can conveniently be expressed in coalgebraic terms,
and proved to be equivalent.

Refinement is an important notion in specification languages, which at first
sight it seems to be closely related to, if not identical to, the notion of subtyping.
However, we show that refinement and subtyping are really different notions.

One should be aware that there are important limitations to coalgebras as
semantics of objects. The coalgebraic semantics of objects only explains objects
in a purely functional – as opposed to imperative – setting, and, because states of
individual objects are completely independent of one another, it does not account

1 Department of Computer Science, University of Nijmegen, P.O. Box 9010, 6500 GL
Nijmegen, The Netherlands.

c© EDP Sciences 2001

62 E. POLL

for aliasing and sharing, which are major complications in the imperative OO
setting. The work in this paper inherits these limitations of the coalgebraic view
of objects.

This paper is organised as follows. Section 2 gives an informal explanation
of subtyping in object-oriented programming languages. Section 3 defines some
basic coalgebraic notions and Section 4 explains the format of class specifications
we use. Sections 5 and 6 then consider the coalgebraic semantics of signature sub-
typing and behavioural subtyping, respectively. Section 7 considers the extension
of classes with constructors. Section 8 discusses the relation between subtyping
and refinement, and we conclude in Section 9.

2. Subtyping

Different notions of subtyping exist. There is a purely syntactical notion of
subtyping, which we call signature subtyping, and a stronger, semantical, notion
of subtyping, usually called behavioural subtyping [3, 19].

2.1. Signature subtyping

Signature subtyping concerns the signatures – or interfaces – of classes, i.e. the
collection of methods a class provides together with their in- and output types.
A class A′ is a signature subtype of another class A if the subclass A′ provides
all the methods that the superclass A provides, with “compatible” types2. This
notion of subtyping is extensively studied in type theory, e.g. see [1,6,10]. Signature
subtyping can be mechanically checked by type checking algorithms, ensuring that
no type errors (of the form “method not found”) can occur at run-time.

2.2. Behavioural subtyping

Behavioural subtyping is a stronger notion than signature subtyping. It not
only concerns the signatures of the methods, but also their semantics. Behavioural
subtyping captures the idea that objects in one class (the subclass) “behave like”
objects in another class (the superclass). For example, classes Car and Truck could
be behavioural subtypes of a class Vehicle. Behavioural subtyping is sometimes
referred to as the “is a” relation: a car “is a” vehicle.

Behavioural subtyping guarantees that any code written for objects in the
superclass, i.e. vehicles, will behave as expected when applied to objects in the
subclasses, i.e. cars or trucks. So behavioural subtyping allows the reuse of so-
called client code: code written for vehicles will also work for cars and trucks. This
is the justification of the implicit casting of objects from sub- to superclasses, also
known as subsumption, by which for example any object of type Car is also of type

2A word about notation: throughout this paper we stick to the convention that a primed
letter such as A′ refers to a subtype of the unprimed one.

A COALGEBRAIC SEMANTICS OF SUBTYPING 63

Vehicle. Signature subtyping is a necessary – but not a sufficient – condition for
this.

Many definitions of behavioural subtyping have been proposed in the literature,
e.g. [2–4,17–21,25].

One approach to define behavioural subtyping is to say that behavioural sub-
types correspond to stronger specifications. Usually, this is expressed in terms
of pre- and post-conditions of methods: methods in a behavioural subtype are
then required to have weaker pre-conditions and stronger post-conditions than the
corresponding methods in the supertype. This characterisation of behavioural sub-
typing is used in the programming language Eiffel and the “Design by Contract”
approach [21], and is widely used in the literature, e.g. [2, 17,19].

Another well-known characterisation of behavioural subtyping is by the princi-
ple of substitutability [18]: “A′ is a behavioural subtype of A iff for every object a′

of type A′ there is an object a of type A such that for all programs p that use a,
the behaviour of p is unchanged when a is replaced with a′”.

In Section 6 we give definitions of behavioural subtyping in the coalgebraic
setting in both of the ways mentioned above, and relate the two.

2.3. Subtyping vs. inheritance

In the OO literature there has been a lot of discussion on the precise meaning
of inheritance and subtyping, and the difference, if any, between them. It is
now generally recognised that one can distinguish (at least) two different notions
[2, 8, 29]. Beware that a lot of the literature on OO treats the terms inheritance
and subtyping as synonyms! This is why, to avoid any confusion, we use the
term “behavioural subtyping” instead of just “subtyping”. Sometimes subtyping
is called “interface inheritance” and inheritance “implementation inheritance”.

Inheritance allows a (sub)class A′ of a (super)class A to be constructed by
adding new methods and new fields to the class, and by overriding existing meth-
ods. In many cases this will lead to behavioural subtyping, i.e. A′ will be a
behavioural subtype of A. However, this is not always the case. It should be clear
that if methods are overridden in a subclass, then objects in this subclass may
behave quite differently from objects in the superclass3.

So the only relation between inheritance and behavioural subtyping is that
inheritance may result in behavioural subtyping. Although ideally one uses in-
heritance to produce behavioural subtypes, there may be good reasons to use
inheritance even if it does not produce behavioural subtypes. Like behavioural
subtyping, inheritance makes it possible to reuse code, namely the code of class
definitions. The code reuse by inheritance, i.e. the reuse of class definitions,
may well be more important than the code reuse made possible by behavioural
subtyping, i.e. the reuse of client code. The programming language C++ of-
fers a distinction between private and public inheritance for this purpose: public

3In the presence of so-called binary methods just adding methods may also break behavioural
subtyping, even when no methods are overridden (see [5, 8]).

64 E. POLL

inheritance should be used when inheritance produces a behavioural subtype, oth-
erwise private inheritance should be used. Objects of a subclass can then only be
cast to the superclass when public inheritance has been used.

Note that there can be behavioural subtyping between two classes even though
there is no inheritance between them. This is because behavioural subtyping,
unlike inheritance, concerns the observable behaviour of objects, and not their
implementation. Classes with completely different implementations, which are
not in the inheritance relation, may well provide objects with identical behaviour,
and can thus be behavioural subtypes.

3. Coalgebraic preliminaries

We will only need the very basics of the theory of coalgebras (see for instance [15]
or [27]).

We work in the category Set. Polynomial functors are of the form

F (X) ::= X | C | F1(X) + F2(X) | F1(X)× F2(X) | C → F (X)

where C ranges over constant sets. Throughout this paper, the variable name X is
used to denote some (hidden) state space. We write π1 and π2 for the projections
from the Cartesian product, and inl and inr for the injections into the disjoint sum.
For functions fi : Ai → C and gi : C → Ai, the functions [f1, f2] : A1 + A2 → C
and 〈g1, g2〉 : C → A1 ×A2 are defined as usual.

An F -coalgebra is a pair (S,m) consisting of a set S – called the state space – and
a function m : S → F (S). An F -coalgebra homomorphism f : (S,m)→ (S′,m′) is
a function f : S → S′ such that m′ ◦ f = F (f) ◦ m.

For every polynomial functor F , there exists a final coalgebra, which is unique
up to isomorphism. We fix particular final coalgebras, denoted (νF, αF). The
unique homomorphism from a coalgebra (S,m) to the final coalgebra is denoted
by behaviourm. The final coalgebra can be viewed as the collection of all the
possible behaviours of objects with interface F ; the function behaviourm then
maps every state s ∈ S to its observable behaviour behaviourm(s) ∈ νF .

An invariant on a coalgebra (S,m) is a subset S′ ⊆ S such that (S′,m) is also
a coalgebra; (S′,m) is then called a subcoalgebra of (S,m). Invariants are closed
under union, so given a predicate P ⊆ S we can define the strongest invariant
contained in P , written P , as the union of all invariants contained in P .

To define the notion of bisimulation, we first define relation lifting. For a relation
∼ ⊆ X × Y the relation F rel(∼) ⊆ F (X)× F (Y) is defined by induction on the
structure of F , as follows:

• if F (X) = X then F rel(∼) = ∼;
• if F (X) = C then F rel(∼) = eqC , the equality relation on C;
• if F (X) = F1(X) + F2(X) then F rel(∼) =

{(inl(x), inl(y)) | (x, y) ∈ F rel1 (∼)} ∪ {(inr(x), inr(y)) | (x, y) ∈ F rel2 (∼)};

A COALGEBRAIC SEMANTICS OF SUBTYPING 65

• if F (X) = F1(X)× F2(X) then
F rel(∼) = {(x, y) | (π1(x), π1(y)) ∈ F rel1 (∼) ∧ (π2(x), π2(y)) ∈ F rel2 (∼)};

• if F (X) = C → F1(X) then
F rel(∼) = {(f, g) | ∀x ∈ C.(f(x), g(x)) ∈ F rel1 (∼)}.

A bisimulation ∼ between F -coalgebras (S,m) and (S′,m′) is a relation ∼⊆ S×S′
such that

∀x : S, x′ : S′. x ∼ x′ ⇒ (m(x),m′(x′)) ∈ F rel(∼).

Bisimulations are closed under union; we write↔= for bisimilarity, the largest bisim-
ulation, the union of a bisimulations, between two coalgebras. Bisimilar elements
have the same behaviour, and the unique homomorphisms to the final F -coalgebra
identify precisely these elements:

Lemma 3.1. Let (S,m) and (S′,m′) be F -coalgebras. Then behaviourm(s) =
behaviourm′(s′) iff there is some bisimulation ∼ between (S,m) and (S′,m′) such
that s ∼ s′, i.e. iff s

↔= s′.

4. Classes and class specifications

Our format of class specification is based on that used in the experimental
specification language CCSL [11, 14]. An example of such a class specification is
given in Figure 1. This example specifies a class with two methods, getcount

CLASS Counter
METHODS getcount : X -> Int

count : X -> X

ASSERTIONS
∀ x:X. getcount(count(x)) = getcount(x)+1

Figure 1. The class specification Counter.

and count. Methods always act on an object. This argument of a method, often
referred to as “this” or “self”, and usually left implicit, is made explicit here: all
methods get an argument of type X. This type X stands for the state space of
objects. Later, in Section 7, we will consider classes that not only have methods
but also have constructors. Note that coalgebras provide a purely functional – as
opposed to imperative – view of objects: Invoking a method such as count does
not mutate a object, leaving its “identity” intact, but simply provides a new object
with a mutated state.

In general, a class specification consists of:
• a signature of methods mi : X →Mi(X) with the Mi polynomial functors;
• a collection of assertions, properties of the methods.

66 E. POLL

Of course, the Mi can be combined into a single functor M(X) = M1(X) × . . .
×Mn(X). An implementation – or model – of a class specification then consists
of an M -coalgebra (S,m), with S giving a representation of the state space and
m giving an implementation of the methods that satisfies the assertions. For
example, the obvious implementation for the specification Counter above would
be (N, 〈id, Succ〉)

We want to impose some restrictions on the assertions that are allowed. First,
the assertions should be universal quantifications giving properties that all objects
have. Second, we do not want assertions to distinguish observationally equal im-
plementations. Here implementations are observationally equal if there exists a
total bisimulation between them. In particular, this requirement means that a
class specifications may not refer to the notion of equality on the state space, but
may only use the notion of bisimilarity ↔=. For example, we do not want to allow
∀x:X.count(x) 6=x as an assertion; this should be written as ∀x:X.count(x) 6↔=x
instead.

A way to impose these restrictions would be to give a precise syntax for asser-
tions. Such a syntax could rule out the use of = as relation on the state space, and
only allow ↔= to be used instead. Alternatively, we could allow the use of = but
define its interpretation to be bisimilarity. To keep things simple here we will not
go to all this trouble; instead we simply require that assertions are predicates on
the final coalgebra, i.e. predicates on object behaviours:

Definition 4.1. A class specification A is a pair (M,Φ) with M a polynomial
functor and Φ a predicate on νM , the state space of the final coalgebra.

For example, if M(X) = Int × X and the final M -coalgebra (νM,αM) =
(νM, 〈getcount, count〉), then the predicate Φ expressing the assertions of the spec-
ification Counter is simply Φ(x) = (getcount(count(x)) = getcount(x))).

We now use the mappings behaviourm from M -coalgebras (S,m) to the final
M -coalgebra to define the notion of model:

Definition 4.2. A model of a class specification A = (M,Φ) is a coalgebra (S,m),
such that ∀s : S. Φ(behaviourm(s)), i.e. behaviourm(S) ⊆ Φ.

The fact that (S,m) is a model of A is denoted by (S,m) |= A, and we write
(S,m) |= Φ for behaviourm(S) ⊆ Φ.

For example (N, 〈id, S〉) |= Counter. The restrictions on the shape of asser-
tions give some nice properties. Any submodel of a model is also a model, and
specifications do not distinguish between observationally equal models:

Lemma 4.3. Let (S′,m) and (S,m) be M -coalgebras.

1. If (S′,m) is a subcoalgebra of (S,m), then (S,m) |= A ⇒ (S′,m) |= A.
2. If there exists a total bisimulation ∼ between (S,m) and (S,m′) then (S,m) |=
A ⇔ (S′,m′) |= A.

Proof. Follows immediately from the definition of |=, using Lemma 3.1.

A COALGEBRAIC SEMANTICS OF SUBTYPING 67

The first property would not hold if there could for instance be existential
quantifications over the state space in class specifications. The second would not
hold if specifications could state (in)equalities on the state space.

5. Signature subtyping

A necessary condition for behavioural subtyping between classes is signature
subtyping: objects in a subclass should at least have all the methods that objects
in the superclass have.

Definition 5.1. Let A′ and A be class specifications. A′ is a signature subtype of
A iff A′ has at least all the methods that A has, with the same types.

For example, the class specification RCounter of “resetable” counters below is
a signature subtype of the specification Counter given earlier:

CLASS RCounter
METHODS getcount : X -> Int

count : X -> X
reset : X -> X.

We have omitted assertions, because these do not play a role in signature subtyp-
ing.

The definition of signature subtyping above is stronger than strictly necessary:
we could weaken it by only requiring that the type of a method in A′ is a subtype of
the type that this method has inA. In particular, by the standard contra/covariant
subtyping rule for function types (see for instance [6]), the input types of a method
in the subclass could be supertypes of the input types this method has in the
superclass. For simplicity we use the stronger definition above. Most existing
object-oriented languages use such a simple definition.

Semantics of signature subtyping

Semantically, signature subtyping between specifications results in a natural
transformation between their method signatures. Let M ′(X) =

∏
i∈I′Mi(X) and

M(X) =
∏
i∈IMi(X) be the method signatures of specifications A′ and A, with

A′ a signature subtype of A. Then I ′ ⊇ I, and there is an obvious natural
transformation,

η = 〈πi | i ∈ I〉 : M ′ →M,

namely the mapping that drops all components in M ′(X) that are not in M(X).
This natural transformation provides a way of turning any M ′-coalgebra into an
M -coalgebra:

Theorem 5.2 ([27], Th. 14.1). A natural transformation η : M ′ → M induces
a functor from the category of M ′-coalgebras to the category of M -coalgebras,
which maps an M ′-coalgebra (S′,m′) to the M -coalgebra (S′, ηS′ ◦ m′), and an

68 E. POLL

M ′-coalgebra homomorphism f simply to the M -coalgebra homomorphism f . This
functor preserves bisimulations.

There are two interesting points to note about the construction above.
First, because the functor induced by η preserves bisimulations, elements bisim-

ilar in (S′,m′) are also bisimilar in (S′, ηS′ ◦ m′). This is of course what you would
expect: on the signature subclass we may have more methods and hence a stronger
notion of “observational equivalence”. It is a useful property when comparing class
specifications that are signature subtypes and that therefore use different notions
of bisimilarity.

Second, the construction in the theorem above provides a semantics of the
implicit cast from sub- to superclass, as in [24]:

Definition 5.3. For η : M ′ →M ,

castη =def behaviourη◦αM′ : (νM ′, η ◦ αM′)→ (νM,αM).

Subscripts of η are typically omitted when they are clear from the context, e.g. in
ηνM′ ◦ αM′ above. A basic property of castη needed later is:

Lemma 5.4. For any M ′-coalgebra (S′,m′) and η : M ′ →M

castη ◦ behaviourm′ = behaviourη◦m′ .

Proof. By definition behaviourm′ : (S′,m′)→ (νM ′, αM′) is an M ′-coalgebra ho-
momorphism, so by Theorem 5.2 behaviourm′ : (S′, η ◦ m′) → (νM ′, η ◦ αM′) is
an M -coalgebra homomorphism. Since (S′, η ◦ m′) is an M -coalgebra, by defi-
nition behaviourη◦m′ : (S′,m′) → (νM ′, αM′) is an M -coalgebra homomorphism.
So in the category of M -coalgebras

(S′, η ◦ m′)
behaviourm′ //

behaviourη◦m′ ''NNNNNNNNNNN
(νM ′, η ◦ αM′)

castηwwnnnnnnnnnnnn

(νM,αM)

and then castη ◦ behaviourm′ = behaviourη◦m′ by the finality of (νM,αM).

The function castη is the unique function such that the diagram

νM ′
ηνM′◦αM′ //

castη

��

M(νM ′)

M(castη)

��
νM

αM // M(νM)

commutes. This diagram expresses precisely the condition that subsumption – the
implicit cast from sub- to superclass – does not introduce any ambiguities. For

A COALGEBRAIC SEMANTICS OF SUBTYPING 69

example, let (νM, 〈getcount, count〉) and (νM ′, 〈getcount′, count′, reset′〉) be the
final M - and M ′-coalgebras, with M(X) = Int×X and M ′(X) = Int×X ×X .
Then for the cast〈π1,π2〉 : νM ′ → νM we have

νM ′
〈getcount′,count′,reset′〉 //

cast〈π1,π2〉

��

Int× νM ′ × νM ′

〈π1,cast〈π1,π2〉◦π2〉
��

νM
〈getcount,count〉 // Int× νM

So, for instance, invoking the method count′ on a resetable counter and then
casting to the superclass gives the same result as first casting to the superclass
and then invoking the method count. In other words, leaving cast implicit and
not distinguishing between the subclass methods and the superclass methods, e.g.
between count and count′, in the syntax – as is done in all OO languages – does not
cause any ambiguities. The diagrams above express exactly the so-called coherence
conditions for subsumption discussed in [13,22,24].

6. Behavioural subtyping

We define two notions of behavioural subtyping. In Section 6.1, we define
behavioural subtyping between coalgebras, and in Section 6.2 we define behavioural
subtyping between class specifications. These two definitions correspond to the
two ways of characterising behavioural subtyping found in the literature that
were discussed in Section 2. We will prove that the latter notion of behavioural
subtyping is sound and complete with respect to the former.

6.1. Behavioural subtyping between coalgebras

We already mentioned Liskov’s substitution principle [18]: “A′ is a behavioural
subtype of A iff for every object a′ of type A′ there is an object a of type A
such that for all programs p that use a, the behaviour of p is unchanged when
a is replaced with a′”. This principle immediately translates to a definition of
behavioural subtyping between coalgebras, using the notion of bisimulation to
express that objects have the same behaviour:

Definition 6.1. Let (S,m) be an M -coalgebra, (S′,m′) an M ′-coalgebra, and
η : M ′ →M .

(S′,m′) is a behavioural subtype of (S,m), written (S′,m′) ≤η (S,m), iff there
exists an M -bisimulation ∼ ⊆ S′ × S between (S′, η ◦ m′) and (S,m) such that
∀s′ ∈ S′. ∃s ∈ S. s′ ∼ s.

Definitions of behavioural subtyping that use the notion of (bi)simulation can
already be found in the literature, e.g. [17, 20,25].

Basic properties of ≤η are “reflexivity” and “transitivity”:

Lemma 6.2. 1. (S,m) ≤id (S,m).

70 E. POLL

CLASS RCounter
METHODS getcount : X -> Int

count : X -> X
reset : X -> X

ASSERTIONS
∀x:X. getcount(count(x)) = getcount(x)+1
∀x:X. getcount(reset(x)) = 0

Figure 2. The class specification RCounter.

2. If (S1,m1) ≤η1 (S2,m2) and (S2,m2) ≤η2 (S3,m3)
then (S1,m1) ≤η2◦η1 (S3,m3).

Proof. Trivial.

An alternative definition of ≤η is given by the lemma below.

Lemma 6.3. Let (S′,m′) be an M ′-coalgebra, (S,m) an M -coalgebra, and η :
M ′ →M . Then

(S′,m′) ≤η (S,m) ⇐⇒ behaviourη◦m′(S′) ⊆ behaviourm(S).

Proof. It follows immediately from Lemma 3.1 that there exists anM -bisimulation
∼⊆ S′ × S between (S′, η ◦ m′) and (S,m) such that ∀s′ ∈ S′. ∃s ∈ S. s′ ∼ s iff
behaviourη◦m′(S′) ⊆ behaviourm(S).

Recall that, by Lemma 5.4, behaviourη◦m′(S′) = castη(behaviourm′(S′)). So
the lemma above states that a coalgebra C′ is a subtype of another coalgebra C iff
the set of possible behaviours of the objects in C′, viewed as objects with signature
M , i.e. after casting, is a subset of the set of possible behaviours of objects in
C. We believe that this accurately captures the intuition behind behavioural
subtyping. Informally subtypes are often explained as subsets; the result above
makes it precise in what way subtypes can be viewed as subsets.

In our opinion the coalgebraic characterisation of behavioural subtyping given
by Lemma 6.3 above is a lot simpler and more elegant than algebraic character-
isations of behavioural subtyping that have been proposed in the literature, e.g.
in [17] or [16].

6.2. Behavioural subtyping between class specifications

Many definitions of behavioural subtyping in the literature are given in terms of
specifications: behavioural subtypes then simply correspond to stronger specifica-
tions. This is the way behavioural subtyping is defined in for instance [2,3,9,19,21].
For example, consider the class specification RCounter given in Figure 2. It is easy
to see that any object that meets the specification RCounter also meets the weaker

A COALGEBRAIC SEMANTICS OF SUBTYPING 71

CLASS AlternativeCounter
METHODS getcount : X -> Int

count : X -> X

ASSERTIONS
∀ x:X. getcount(count(x)) = getcount(x)+1
∀ x:X. getcount(count(count(x))) = getcount(x)+2

Figure 3. The class specification AlternativeCounter.

specification Counter, since RCounter includes all the methods and assertions of
Counter. So RCounter can be regarded as a behavioural subtype of Counter.

In the OO literature, specifications are typically broken down into invariants,
preconditions, and postconditions, and behavioural subtypes are required to have
stronger invariants, stronger postconditions, but weaker preconditions4.

Definition 6.4. Let A = (M,Φ) and A′ = (M ′,Φ′) be class specifications.
A′ is a behavioural subtype of A – written A′ ≤ A – iff
1. A′ is a signature subtype of A, and
2. if (S′,m′) |= Φ′ then (S′, η ◦ m′) |= Φ, for any M ′-coalgebra (S′,m′),

where η : M ′ →M is given by the signature subtyping between the specifications.

Instead of condition (2) in the definition above, one could simply require that
Φ′ implies Φ, suitably translated via η, i.e. castη(Φ′) ⊆ Φ. This condition is in
fact strictly stronger:

Lemma 6.5. If castη(Φ′) ⊆ Φ then ∀(S′,m′). (S′,m′) |= Φ′ ⇒ (S′, η ◦ m′) |= Φ.

Proof. Assume castη(Φ′) ⊆ Φ, and (S′,m′) |= Φ′ i.e. behaviourm′(S′) ⊆ Φ′. Then
by Lemma 5.4 behaviourη◦m′(S′) = castη(behaviourm′(S′)) ⊆ castη(Φ′) ⊆ Φ.

The class specification AlternativeCounter in Figure 3 illustrates why we have
chosen condition (2) instead of the stronger condition castη(Φ′) ⊆ Φ in the def-
inition of ≤. It is not hard to see that the specification AlternativeCounter
is equivalent to the specification Counter given earlier. Any model for Counter
will also be a model for AlternativeCounter (and vice versa), and Counter ≤
AlternativeCounter. Still, the assertions of Counter do not imply those of
AlternativeCounter.

A condition equivalent to (2) in Definition 6.4 is given by the lemma below:

Lemma 6.6. Let (M ′,Φ′) be a class specification. Let Φ′ ⊆ νM ′ be the strongest
invariant contained in Φ′.

Then castη(Φ′) ⊆ Φ ⇐⇒ ∀(S′,m′). (S′,m′) |= Φ′ ⇒ (S′, η ◦ m′) |= Φ.

4As noted in [7, 9], the requirement that postconditions are stronger and preconditions are
weaker is stronger than necessary: the postcondition only has to be stronger in the cases where
the stronger precondition of the superclass holds.

72 E. POLL

Proof. To prove (⇒), assume castη(Φ′) ⊆ Φ, and let (S′,m′) |= Φ′ for some
M ′-coalgebra (S′,m′). Because behaviourm′(S′) is an invariant, it follows that
behaviourm′(S′) ⊆ Φ′ and hence behaviourη◦m′(S′) = castη(behaviourm′(S′)) ⊆
castη(Φ′) ⊆ Φ.

To prove (⇐), assume ∀(S′,m′). (S′,m′) |= Φ′ ⇒ (S′, η ◦ m′) |= Φ. As
(Φ′, αM′) is anM ′-coalgebra and (Φ′, αM′) |= Φ′, it then follows by the assumption
that (Φ′, η ◦ αM′) |= Φ, i.e. behaviourη◦αM′ (Φ

′) = castη(Φ′) ⊆ Φ.

For specifications that use the notion of bisimilarity ↔= we have to be care-
ful, because different specifications may use different notions of bisimilarity. By
Theorem 5.2, if A′ is a signature subtype of A, then the notion of bisimilarity used
in A′ is at least as strong as that used in A. This means that an assertion stating
a bisimilarity in A′ specifies a stronger property than the same assertion in A.
But the same does not hold for an assertion stating that certain elements are not
bisimilar. For example, an assertion ∀x:X.count(x) 6↔=x in a specification with the
signature of RCounter does not imply the same assertion in a specification with
the signature of Counter.

We have the following relation between ≤, subtyping between class specifica-
tions, and ≤η, subtyping between class implementations:

Theorem 6.7 (Soundness and Completeness). Let A′ = (M ′,Φ′) and A = (M,Φ),
and η : M ′ →M given by the signature subtyping between M ′ and M . Then

A′ ≤ A ⇐⇒ ∀(S′,m′) |= A′. ∃(S,m) |= A. (S′,m′) ≤η (S,m).

The right-hand side says that however we implement A′, there is an implementa-
tion of A that includes all the behaviour of this implementation, after casting.

Proof. To prove (⇒), assume A′ ≤ A and (S′,m′) |= A′. Then by the definition
of A′ ≤ A it follows that (S′, η ◦ m′) |= Φ, and clearly (S′, η ◦ m′) ≤η (S,m).

To prove (⇐), assume ∀(S′,m′) |= A′. ∃(S,m) |= A. (S′,m′) ≤η (S,m). We
must prove A′ ≤ A, i.e. (S′,m′) |= Φ′ ⇒ (S′, η ◦ m′) |= Φ for any M ′-coalgebra
(S′,m′). Let (S′,m′) |= Φ′. Now by assumption there exists some (S,m) |= A
such that (S′,m) ≤η (S,m), and then

behaviourη◦m′(S′) ⊆ behaviourm(S) since (S′,m′) ≤η (S,m)
⊆ Φ since (S,m) |= A

i.e. (S′, η ◦ m′) |= Φ.

The basic idea behind the combination of existential and universal quantifica-
tion in the theorem above – that for every model of the subtype there must exist
some corresponding model of the supertype – is also used in the definition of “cor-
rect behavioural subtyping” (Def. 5.1) in [16] and the definition of “legal subtype
relation” (Def. 4.1) in [17].

A COALGEBRAIC SEMANTICS OF SUBTYPING 73

One might expect a stronger property than given by the theorem above, namely
that if two specifications are related by ≤, then any implementations will be related
by ≤η, i.e.

A′ ≤ A ⇒ ∀(S′,m′) |= A′.∀(S,m) |= A. (S′,m′) ≤η (S,m).

However, we cannot expect this property to hold. For example, take A′ ≡ A some
trivially true specification, e.g. one with without any assertions. Clearly A′ ≤ A.
However, there are lots of models of this specification that are not related by ≤η
in any way, so the right-hand side of the implication above will not hold. (In fact,
if A′ ≡ A and A′ is any specification weak enough to allow observably different
implementations, then we cannot expect the property above to hold.)

7. Classes with constructors

We now consider classes that not only provide methods that can be invoked on
objects, but also constructors with which to create objects.

For simplicity, we assume that such classes have a single parameterless con-
structor called new. This restriction is not essential, and one could easily allow
classes with several constructors or constructors that take arguments, as is done
in CCSL [11,14].

In addition to assertions specifying properties of the methods, class specifi-
cations will now also include creation conditions that specify properties of the
constructor new. An example of such a specification is given in Figure 4.

CLASS Counter0
METHODS getcount : X -> Int

count : X -> X

ASSERTIONS
∀ x:X. getcount(count(x)) = getcount(x)+1

CREATION CONDITIONS
getcount(new Counter0) = 0

Figure 4. The class specification Counter0.

As for the assertions, we want to impose some restrictions on the creation condi-
tions that are allowed. Like assertions, creation conditions should not distinguish
observationally equal implementations. Also, creation conditions should only spec-
ify properties of the initial object new. As for the assertions, we will not go to
the trouble of defining a precise syntax for creation conditions, but we just take a
predicate on the final coalgebra to specify the creation conditions:

74 E. POLL

Definition 7.1. A specification of a class with a constructorA is a triple (M,Φ,Ψ)
with M a polynomial functor and Φ and Ψ predicates on νM , the state space of
the final coalgebra.

The predicates Φ and Ψ are the assertions and the creation conditions, respec-
tively. A model of a class specification with a constructor is a coalgebra together
an initial state c : S giving the implementation of the constructor new:

Definition 7.2. A model of a class specificationA = (M,Φ,Ψ) is a triple (S,m, c)
with (S,m) a coalgebra such that (S,m) |= Φ, and c : S such that Ψ(behaviourm(c)).

The fact that (S,m, c) is a model of A is denoted by (S,m, c) |= A.

In other words, all objects satisfy the assertions and the initial object satisfies
the creation conditions. A minor difference with the notion of model in [14] is that
we explicitly include the initial state c as part of the model.

Note that there may be elements in the state space S which are not “reachable”
from the constructor c using the methods m. For example (Z, 〈id, Succ〉, 0) |=
Counter0, even though the negative elements in Z cannot be reached from the
initial state 0.

7.1. Behavioural subtyping for classes with constructors

Constructors do not play any role as far as signature or behavioural subtyping is
concerned. Subtyping for specifications with creation conditions is simply defined
as follows:

Definition 7.3. (M ′,Φ′,Ψ′) ≤ (M,Φ,Ψ) iff (M ′,Φ′) ≤ (M,Φ).

In other words, (M ′,Φ′,Ψ′) ≤ (M,Φ,Ψ) iff, for all M ′-coalgebras (S′,m′),
(S′,m′) |= (M ′,Φ′) implies (S′, η ◦ m′) |= (M,Φ). Note that this definition of
subtyping only depends on the assertions (i.e. Φ and Φ′), and not on the creation
conditions (i.e. Ψ and Ψ′).

The fact that constructors and creation conditions do not play any role in
subtyping may need some explanation. As an example, consider the class spec-
ification Counter1 in Figure 5. It only differs from Counter0 in Figure 4 in its

CLASS Counter1
METHODS getcount : X -> Int

count : X -> X

ASSERTIONS
∀x:X. getcount(count(x)) = getcount(x)+1

CREATION CONDITIONS
getcount(new Counter1) = 1

Figure 5. The class specification Counter1.

A COALGEBRAIC SEMANTICS OF SUBTYPING 75

creation condition. By the definition above we have Counter1 ≤ Counter0. This
may seem strange, because there appears to be an observable difference between
the two specifications: their initial objects have different getcounts. But this is
not an observable difference between individual objects: if you give an object from
class Counter1 to someone who is expecting to receive an object of class Counter0,
there is no way this person can observe that this object is not from class Counter0,
because the only possible observations are invocations of the methods, count and
getcount. Unlike the methods, the constructor is not invoked on objects and is
not an observation.

Another way of explaining that creation conditions should not play a role in
behavioural subtyping is that behavioural subtyping is about substitutability of
individual objects, i.e. substituting objects of one class by objects of another class,
and not about substitutability of classes. One can consider a stronger notion of
behavioural subtyping, which also requires that the creation conditions of the
subclass imply those of the superclass. We will do this in Section 8, when we
discuss refinement.

Something else which may appear counterintuitive is that not only Counter1 ≤
Counter0, but also Counter0 ≤ Counter1. One might be tempted to conclude
from the specification of Counter1 that all objects in this class have a count of
at least 1. There is an object in class Counter0 that has a getcount0 equal to 0
(namely, the initial object), so that would mean that we can distinguish this object
in class Counter0 from all objects in class Counter1. However, we may not use
this form of inductive reasoning, sometimes called data induction, to reason about
classes. The motivation for this is that a class specification should offer as much
freedom as possible for further extensions of the class. E.g. we want to leave open
the possibility of adding a method negate with the specification

∀x:X. getcount(negate(x)) = -getcount(x)

unless this is explicitly ruled out by the assertions. So, if we want all objects in
class Counter1 to have a getcount of at least 1, it should be specified explicitly
as one of the assertions. (The semantic counterpart of this argument is that for
models (S,m, c) we do not require that all elements of S are “reachable” from c
by m.)

For classes with constructors we have the same relation between ≤ and ≤η as
before. Proving this requires the lemma below that says that, using a coproduct,
we can take the “union” of models:

Lemma 7.4. Let (S,m) and (T, n) be M -coalgebras, and A = (M,Φ,Ψ) some
class specification. Then if (S,m) |= Φ and (T, n, d) |= A then (S + T, p, inr(d)) |=
A, where p = [M(inl) ◦ m,M(inr) ◦ n] : S + T →M(S + T).

Proof. Follows easily from the fact that behaviourp(S + T) = behaviourm(S) ∪
behaviourn(T), and behaviourp(inr(d)) = behaviourn(d).

76 E. POLL

Theorem 7.5 (Soundness). Let A be a consistent specification (i.e. one with at
least one model). Then

A′ ≤ A ⇒ ∀(S′,m′, c′) |= A′. ∃(S,m, c) |= A. (S′,m′) ≤η (S,m)

with η given by the signature subtyping between the specifications.

Proof. Assume A′ ≤ A and (S′,m′, c′) |= A′, with A′ = (M ′,Φ′,Ψ′) and A =
(M,Φ,Ψ). To prove: ∃(S,m, c) |= A. (S′,m′) ≤η (S,m).

We know that (S′,m′) |= Φ′, and hence by A′ ≤ A it follows that (S′, η ◦
m′) |= Φ. Since A is a consistent specification, we may assume there is some
model (T, n, d) of A. By Lemma 7.4 now (S′ + T, p, inr(d)) |= A, where p =
[M(inl) ◦ η ◦ m′,M(inr) ◦ n], and it is simple to prove (S′,m′) ≤η (S′ + T, p).

The restriction to consistent specifications in the theorem above is really neces-
sary. For example, let A′ be a consistent specification and A a specification with
weaker assertions but an inconsistent creation condition, so that A is inconsistent.
Then A′ ≤ A, since A′ has stronger assertions, but clearly the right-hand side of
the implication in the theorem above does not hold, since A has no models.

Theorem 7.6 (Completeness). Let A′ be a consistent specification. Then

(∀(S′,m′, c′) |= A′. ∃(S,m, c) |= A. (S′,m′) ≤η (S,m)) ⇒ A′ ≤ A

with η given by the signature subtyping between the specifications.

Proof. Let A = (M,Φ,Ψ) and A′ = (M ′,Φ′,Ψ′) and suppose

∀(S′,m′, c′) |= A′. ∃(S,m, c) |= A. (S′,m′) ≤η (S,m). (i)

We must proveA′ ≤ A, i.e. (S′,m′) |= Φ′ ⇒ (S′, η ◦ m′) |= Φ for anyM ′-coalgebra
(S′,m′).

Let (S′,m′) |= Φ′. Since A′ is a consistent specification, we may assume some
model (T, n, d) of A′. By Lemma 7.4 then (S′ + T, p, inr(d)) |= A′, where p =
[M ′(inl) ◦ m′,M ′(inr) ◦ n]. Now by (i) there exists some (S,m, c) |= A such that
(S′ + T, p) ≤η (S,m), and then

behaviourη◦m′(S′) ⊆ behaviourη◦p(S′ + T) by def. p
⊆ behaviourm(S) since (S′ + T, p) ≤η (S,m)
⊆ Φ since (S,m, c) |= A

i.e. (S′, η ◦ m′) |= Φ.

Again, the restriction to consistent specifications in the theorem above is really
necessary. For example, suppose A′ is inconsistent because its creation condition
is in contradiction with its assertions. Then the left-hand side of the implication
in the theorem above is trivially true for any specification A, but clearly A′ ≤ A
will not hold for any A.

A COALGEBRAIC SEMANTICS OF SUBTYPING 77

CLASS RCounter
METHODS getcount : X -> Int

count : X -> X
reset : X -> X

ASSERTIONS
∀x:X. getcount(count(x)) = getcount(x)+1
∀x:X. getcount(reset(x)) = 0

CREATION CONDITIONS
getcount(new RCounter0) = 0

Figure 6. The class specification RCounter0.

8. Refinement

Refinement is a central notion in specification languages. Intuitively, a specifi-
cation A′ is a refinement of another specification A if any implementation of A′
can be “turned into” an implementation of A. There is a variety of definitions
of refinement in the literature, which differ as to what “turned into” is taken to
mean. For example, just in the field of algebraic specification there are already
different notions of refinement, e.g. see [28]. In [14] refinement for coalgebraic class
specifications is defined as follows:

Definition 8.1 (Refinement [14]). Let A′ and A be class specifications. A′ is a
refinement of A iff

∀(S′,m′, c′) |= A′. ∃(S, η ◦ m′, c) |= A. S ⊆ S′ ∧ c ∈ S,

with η given by the signature subtyping between the specifications.

The natural transformation η gives the definition of the abstract operations of
A in terms of the concrete ones of A′. Note that for refinement these natural
transformations can be much wilder than the very simple natural transformation
that occur in subtyping, which simply drop some components from a n-tuple.

For an example for refinement, consider the specifications RCounter0 in Figure 6
and Counter0 given earlier in Figure 4: RCounter0 is a refinement of Counter0.
Note that we do not really have to do anything to turn an implementation of
RCounter0 into an implementation of Counter0, because RCounter0 is also a
behavioural subtype of Counter0.

This example suggests a close connection between refinement and behavioural
subtyping. However, such a connection does not exist: there are refinements that
are not behavioural subtypes, and behavioural subtypes that are not refinements.
For example, consider the class specification DCounter in Figure 7. DCounter is

78 E. POLL

CLASS DCounter
METHODS getcount : X -> Int

count : X -> X
getdelta : X -> Int
setdelta : X × Int -> X

ASSERTIONS
∀x:X. getcount(count(x)) = getcount(x)+getdelta(x)
∀x:X. getdelta(count(x)) = getdelta(x)
∀x:X,n:Int. getdelta(setdelta(x,n)) = n
∀x:X,n:Int. getcount(setdelta(x,n)) = getcount(x)

CREATION CONDITIONS
getcount(new DCounter) = 0
getdelta(new DCounter) = 1

Figure 7. The class specification DCounter.

not a behavioural subtype of Counter0, because there are objects in this class for
which the Counter0 assertion

∀ x:X. getcount(count(x)) = getcount(x)+1

does not hold. Still, DCounter is a refinement of Counter0, and it is obvious how
we can implement Counter0 given any implementation of DCounter.

For an example of a behavioural subtype that is not a refinement, consider
Counter1 and Counter0. As explained earlier, the specification Counter1 is a
behavioural subtype of Counter0. However, it is not a refinement, because there
are models (S′,m′, c′) of Counter1 that do not provide a suitable initial state
c ∈ S′ for Counter0, i.e. one with a getcount equal to 0. This shows that for
refinement, unlike subtyping, the creation conditions do play a role.

The lemma below illustrates a fundamental difference between refinement and
subtyping. Refinements have more behaviour, whereas behavioural subtypes have
less:

Lemma 8.2. 1. If A′ is a refinement of A then

∀(S′,m′, c′) |= A′. ∃(S,m, c) |= A. behaviourη◦m′(S′) ⊇ behaviourm(S).

2. If A′ is a behavioural subtype of A and A is consistent then

∀(S′,m′, c′) |= A′. ∃(S,m, c) |= A. behaviourη◦m′(S′) ⊆ behaviourm(S).

Proof. To prove (1), it suffice to observe that if S ⊆ S′ and m = η ◦ m′ then
behaviourη◦m′(S′) ⊇ behaviourm(S). Part (2) follows immediately from sound-
ness, Theorem 7.5.

A COALGEBRAIC SEMANTICS OF SUBTYPING 79

For a stronger relation than behavioural subtyping, that does take the creation
conditions into account, we can define a clear relation with refinement:

Definition 8.3. Let A′ = (M ′,Φ′,Ψ′) and A = (M,Φ,Ψ) be class specifications.
Then A′ is a stronger specification than A, written A′ ⇒ A, iff
1. A′ is a signature subtype of A, and
2. if (S′,m′, c′) |= A′ then (S′, η ◦ m′, c′) |= A,

where η : M ′ →M is given by the signature subtyping between the specifications.

Note the subtle difference between (M ′,Φ′,Ψ′) ≤ (M,Φ,Ψ) and (M ′,Φ′,Ψ′)⇒
(M,Φ,Ψ): the latter requires that if (S′,m′, c′) |= (M ′,Φ′,Ψ′) then (S′, η ◦
m′, c′) |= (M,Φ,Ψ), the former only requires that if (S′,m′) |= (M ′,Φ′) then
(S′, η ◦ m′) |= (M,Φ).

Lemma 8.4. If A′ ⇒ A, then A′ is a refinement of A and A′ ≤ A.

Proof. Easy: if A′ ⇒ A and (S′,m′, c′) |= A′ then by the definition of ⇒ it
immediately follows that (S′, η ◦ m′, c′) |= A.

9. Conclusions

We have shown that the coalgebraic view of objects provides a natural in-
terpretation of behavioural subtyping, both for coalgebras (i.e. implementations
of classes) and for coalgebraic specifications (i.e. specifications of classes). The
“model-theoretic” subtyping relation between coalgebras is based on the notion
of substitutability, and uses the notion of bisimulation. The “proof-theoretic”
subtyping relation between coalgebraic specifications is based on the idea that be-
havioural subtypes correspond to stronger specifications. Both ways of character-
izing behavioural subtyping already exist in the OO literature. In the coalgebraic
setting we can formalize both and prove the correspondence between them.

Some definitions of behavioural subtyping between specifications in the litera-
ture involve the use of abstractions functions. For example, in [2,19] specifications
make use of abstraction functions that map objects to the abstract values they
represent. (The use of such abstraction functions dates back to [12]. Note that
every abstraction function defines a bisimulation relation, namely objects are re-
lated iff they have the same abstract value.) In our setting abstraction functions
are also used: the mappings behaviourm to the final coalgebras are the abstraction
functions.

It is interesting to compare our work with [16], which also investigates soundness
and completeness of different characterisations of behavioural subtyping, but in
an algebraic rather than a coalgebraic setting.

The setting of [16] is more general than ours. E.g. we only have one hidden
type X , whereas [16] allows an arbitrary number of invisible or hidden sorts. Also,
our coalgebraic setting only allows unary methods, whereas the algebraic setting
of [16] also allows binary methods in the sense of [5] (though their main result
only applies to cases with only unary methods).

80 E. POLL

By restricting ourselves to the slightly less general coalgebraic setting, our char-
acterisations and results become a lot simpler and more elegant than those in [16].
In the algebraic setting of [16] complicated definitions are needed to describe
notions which are essentially for free in the coalgebraic setting. In particular,
the existence of final coalgebras, which characterise observable behaviour, and the
existence of the canonical mappings behaviourm to these final coalgebras make
it possible to give the very simple model-theoretic characterisation of behavioural
subtyping of Lemma 6.3.

This paper started out with the question whether the coalgebraic semantics
of objects can explain subtyping. Another obvious question to ask is whether
the coalgebraic semantics can explain inheritance. But whereas the coalgebraic
semantics easily explains (behavioural) subtyping, we believe that it is does not
easily explain inheritance. As mentioned in Section 2, a crucial difference between
inheritance and behavioural subtyping is that the former concerns implementa-
tions of classes, whereas the latter only concerns the observable behaviour of these
implementations. This already suggests that in the coalgebraic setting, where
observability plays such a central role, it is easier to explain subtyping than in-
heritance. Indeed, it is a limitation of the coalgebraic view of objects that it does
not directly account for the self-references in method definitions, i.e. invocations
of methods on “self”. Modelling these would require similar tricks as used in [23].
As self-references play a central role in inheritance with late binding, we cannot
expect the coalgebraic object model to easily account for inheritance with late
binding.

Acknowledgements. I would like to thank the anonymous referees for many valuable

suggestions for improvements.

References

[1] M. Abadi and L. Cardelli, A Theory of Objects. Springer, Monogr. Comput. Sci. (1996).
[2] P. America, Inheritance and Subtyping in a Parallel Object-Oriented Language, in

ECOOP’87, edited by J. Bezivin et al.. Springer, Lecture Notes in Comput. Sci. 276 (1987)
232-242.

[3] P. America, Designing an Object-Oriented Languages with Behavioural Subtyping, in Foun-
dations of Object Oriented Languages, edited by J.W. de Bakker et al.. Springer, Lecture
Notes in Comput. Sci. 489 (1991) 60-90.

[4] H. Bowman, C. Briscoe–Smith, J. Derrick and B. Strulo, On Behavioural Subtyping in
LOTOS, in FMOODS’97, Second IFIP International Conference on Formal Methods for
Open Object-based Distributed Systems, edited by H. Bowman and J. Derrick. Chapman
and Hall (1997) 335-351.

[5] K.B. Bruce, L. Cardelli and G. Castagna, The Hopkins Objects Group (J. Eifrig, S. Smith,
V. Trifonov), in On Binary Methods, edited by G.T. Leavens and B.C. Pierce. Theory and
Practice of Object Systems 1 (1996) 221-242.

[6] L. Cardelli and P. Wegner, On understanding types, data abstraction and polymorphism.
Computing Surveys 17 (1985) 471-522.

A COALGEBRAIC SEMANTICS OF SUBTYPING 81

[7] Y. Chen and B.H.C. Cheng, A semantic foundation for specification matching, in Founda-
tions of Component-Based Systems, edited by G.T. Leavens and M. Sitaraman. Cambridge
University Press (2000) Chap. 5, 91-109.

[8] W.R. Cook, W.L. Hill and P.S. Canning, Inheritance is not subtyping, in Principles of
Programming Languages (POPL). ACM (1990) 125-135.

[9] K.K. Dhara and G.T. Leavens, Forcing behavioral subtyping through specification inheri-
tance, in Proc. 18th International Conference on Software Engineering, Berlin, Germany.
IEEE (1996) 258-267.

[10] C.A. Gunter and J.C. Mitchell, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design. The MIT Press (1994).

[11] U. Hensel, M. Huisman, B. Jacobs and H. Tews, Reasoning about classes in object-oriented
languages: Logical models and tools, in European Symposium on Programming (ESOP),
edited by Ch. Hankin. Springer, Lecture Notes in Comput. Sci. 1381 (1998) 105-121.

[12] C.A.R. Hoare, Proof of Correctness of Data Representations. Acta Informatica 1 (1972)
271-281.

[13] M. Hofmann and B.C. Pierce, A unifying type-theoretic framework for objects. J. Funct.
Programming 5 (1995) 593-635.

[14] B. Jacobs, Invariants, bisimulations and the correctness of coalgebraic refinements, in Alge-

braic Methodology and Software Technology (AMAST’97), edited by M. Johnson. Springer,
Lecture Notes in Comput. Sci. (1997) 276-291.

[15] B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction. EATCS Bull. 62
(1997) 222-259.

[16] G.T. Leavens and D. Pigozzi, A complete algebraic characterization of behavioral subtyping.
Acta Informatica 36 (2000) 617-663.

[17] G.T. Leavens and W.E. Weihl, Specification and verification of object-oriented programs
using supertype abstraction. Acta Informatica 32 (1995) 705-778.

[18] B.H. Liskov, Data abstraction and hierarchy. SIGPLAN Notices 23 (1988).
[19] B.H. Liskov and J.M. Wing, A behavioral notion of subtyping. TOPLAS 16 (1994) 1811-

1841.
[20] I. Maung, On simulation, subtyping and substitutability in sequential object systems.

Formal Aspects of Computing 7 (1995) 620-651.
[21] B. Meyer, Object-Oriented Software Construction. Prentice Hall, 2nd Rev. Edition (1997).
[22] J.C. Mitchell, Toward a typed foundation for method specialization and inheritance, in

Principles of Programming Languages (POPL). ACM (1990) 109-124.
[23] B.C. Pierce and D.N. Turner, Simple type-theoretic foundations for object-oriented

programming. J. Funct. Programming 4 (1994) 207-247.
[24] E. Poll, Subtyping and Inheritance for Categorical Datatypes, in Theories of Types and

Proofs (TTP-Kyoto). Kyoto University Research Insitute for Mathematical Sciences, RIMS
Lecture Notes 1023 (1997) 112-125.

[25] E. Poll, Behavioural subtyping for a type-theoretic model of objects, in Foundations of
Object-Oriented Languages (FOOL5) (1998).

[26] H. Reichel, An approach to object semantics based on terminal co-algebras. Math. Structures
Comput. Sci. 5 (1995) 129-152.

[27] J. Rutten, Universal co-algebra: A theory of systems, CWI Report 9652. CWI (1996).
[28] D. Sannella and A. Tarlecki, Essential concepts of algebraic specification and program

development. Formal Aspects of Computing 9 (1997) 229-269.
[29] A. Snyder, Encapsulation and inheritance in object-oriented programming languages. ACM

SIGPLAN 21 (1986) 38-45. OOPSLA ’86 Conference Proceedings, edited by N. Meyrowitz.
Portland, Oregon (1986).

Accepted March 9, 2001.

