
Theoretical Informatics and Applications
Theoret. Informatics Appl. 35 (2001) 565–577

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY ∗

F. Mignosi
1
, A. Restivo

1
and M. Sciortino

1

Abstract. In this paper methods and results related to the notion of
minimal forbidden words are applied to the fragment assembly prob-
lem. The fragment assembly problem can be formulated, in its simplest
form, as follows: reconstruct a word w from a given set I of substrings
(fragments) of a word w. We introduce an hypothesis involving the set
of fragments I and the maximal length m(w) of the minimal forbid-
den factors of w. Such hypothesis allows us to reconstruct uniquely
the word w from the set I in linear time. We prove also that, if w
is a word randomly generated by a memoryless source with identical
symbol probabilities, m(w) is logarithmic with respect to the size of
w. This result shows that our reconstruction algorithm is suited to
approach the above problem in several practical applications e.g. in
the case of DNA sequences.

Mathematics Subject Classification. 68Q45, 68R15.

Introduction

Let w be a word over the alphabet A and let L(w) denote the set of factors
of w. A word v is a minimal forbidden factor of w if v 6∈ L(w) and all proper
factors of v belong to L(w). Denote by M(w) the set of minimal forbidden factors
of the word w. The notion of minimal forbidden factors is a very basic one in com-
binatorics on words: some relevant information on the structure of a word w can
be detected by looking at the set M(w) (cf. [6,13]). This leads to some important
applications in Data Compression (cf. [7]) and Symbolic Dynamics (cf. [2]).

Keywords and phrases: Factor automaton, minimal forbidden factor, fragment assembly.

∗ Partially supported by MURST projects: “Modelli di calcolo innovativi: metodi sintattici e
combinatori” and “Bioinformatica e Ricerca Genomica”.
1 University of Palermo, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34,
90123 Palermo, Italy; e-mail: {mignosi,restivo,mari}@math.unipa.it

c© EDP Sciences 2002

566 F. MIGNOSI, A. RESTIVO AND M. SCIORTINO

In a previous paper (cf. [13]) we derived sharp upper and lower bounds for two
parameters related to the size of M(w): c(w) that counts the minimal forbidden
factors of w and m(w) that gives the maximal length of minimal forbidden factors
of w. Moreover we described a linear algorithm that reconstructs the word w
from M(w). Such an algorithm uses a close relation between M(w) and the factor
automaton of w, i.e. the minimal deterministic automaton recognizing L(w).

Now we show that, in general, the size of words in M(w) is “very small” with
respect to the size of w: we prove that, for a word w randomly generated by a
memoryless source with identical symbol probabilities, the maximal length m(w)
of words in M(w) is O(logd(|w|)) where d is the cardinality of the alphabet.

These results lead to an interesting application to the fragment assembly prob-
lem (cf. [16,21]). In Section 5 we introduce the general problem and then consider
a simplified version of the fragment assembly problem that can be formulated as
follows: given a set I of substrings (fragments) of a word w, i.e. I ⊆ L(w), recon-
struct w from I. It is obvious that, without any additive hypothesis on I and w, it
is not in general possible to infer w from I, indeed in general, given I, there exist
several different words w compatible with I, i.e. such that I ⊆ L(w). We further
introduce an hypothesis concerning the set of fragments I and the size of the set of
minimal forbidden words M(w). Such hypothesis allows us to reconstruct uniquely
the word w from the set I in linear time. The basic idea is the following. From
the results on the size of M(w), it is very reasonable to suppose that, in several
practical applications (as for instance in the case of DNA sequences) the set of
fragments I is such that any factor of w of length m(w) is “covered” by at least
one element of I. Under such hypothesis, one can detect the minimal forbidden
factors of the whole word w only by looking at its “fragments” in I. By using
the reconstruction algorithm one can recover in linear time the word w from its
fragments. Further details on the assembly algorithm here described and a dis-
cussion on its adequacy to biological sequences can be found in [14], which also
contains another linear-time assembly algorithm based on a more classic approach.
In [4], by using the notions of special and univalent factor, an assembly algorithm
is proposed, which presents some analogies with that ones of the present paper.
A preliminary version of this paper without proofs has been presented in DLT’01
(cf. [12]).

1. Preliminaries

Let A be a finite alphabet and let A∗ be the set of finite words over the alphabet
A, the empty word ε included. Let L ⊆ A∗ be a factorial language, i.e. a language
satisfying ∀u, v ∈ A∗, uv ∈ L ⇒ u, v ∈ L. From an algebraic point of view we
observe that the complement language Lc = A∗ \L is a two-sided ideal of the free
monoid A∗. Denote by M(L) the base of this ideal, i.e. Lc = A∗M(L)A∗. The
set M(L) is called the set of minimal forbidden words for L. A word v ∈ A∗ is
forbidden for the factorial language L if v /∈ L, which is equivalent to say that v
occurs in no word of L. In addition, v is minimal if it has no proper factor that is

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY 567

forbidden. From the minimality of its words follows that M(L) is an antifactorial
language, i.e. ∀u, v ∈ M(L), u 6= v ⇒ u is not a factor of v.

Remark 1.1. One can note that the set M(L) uniquely characterizes L, just
because

L = A∗ \ A∗M(L)A∗. (1)

Conversely the following remark shows that L also uniquely characterizes M(L).

Remark 1.2. A word v = a1a2 · · · an belongs to M(L) if and only if the two
conditions hold:

• v is forbidden, (i.e. v /∈ L);
• both a1a2 · · · an−1 ∈ L and a2a3 · · · an ∈ L (the prefix and the suffix of v of

length n − 1 belong to L).
Hence we have that

M(L) = AL ∩ LA ∩ (A∗ \ L). (2)

From the equalities (1) and (2) it follows that M(L) uniquely characterizes L and
L uniquely characterizes M(L) respectively. Recall that a language L ⊂ A∗ is
rational if it is recognized by a finite state automaton. From the equalities (1)
and (2), one also derives that L and M(L) are simultaneously rational, i.e. L is
rational if and only if M(L) is a rational language. By using the classical algo-
rithms of automata theory, in the case L is rational, one can effectively construct
M(L) from L, and conversely.

In this paper we are interested in the language L(w) of factors of a single word w
and consequently on the set M(L(w)), which is here denoted simply by M(w) and
is called the set of minimal forbidden factors of the word w.

Example 1.3. Let us consider the word w = acbcabcbc on the alphabet {a, b, c}.
One has that

M(w) = {aa, ba, bb, cc, aca, cac, cbcb, abca, bcbca}·

It is obvious that M(w) is a finite set uniquely characterizing the word w.

2. M(w) and Factor automaton

In this section we report some results of [6] showing that there is a close relation
between the set M(w) and the factor automaton of the word w, i.e. the minimal
deterministic automaton recognizing L(w).

Given the antifactorial set M(w), the finite automaton A(w) = (Q, A, i, T, F)
is defined, where

• the set Q of states is {v | v is a prefix of a word in M(w)};
• A is the current alphabet;

568 F. MIGNOSI, A. RESTIVO AND M. SCIORTINO

• the initial state i is the empty word ε;
• the set T of terminal states is Q \ M(w).

States of A(w) that are words of M(w) are sink states. The set F of transitions
is partitioned into the three (pairwise disjoint) sets F1, F2, and F3 defined by:

• F1 = {(u, a, ua) | ua ∈ Q, a ∈ A} (forward edges or tree edges);
• F2 = {(u, a, v) | u ∈ Q \ M(w), a ∈ A, ua /∈ Q, v longest suffix of ua

in Q} (backward edges);
• F3 = {(u, a, u) | u ∈ M(w), a ∈ A} (loops on sink states).

Theorem 2.1. For any w ∈ A∗, the automaton obtained from A(w) by removing
its sink states is the factor automaton of w (i.e. the minimal deterministic finite
automaton F(w) accepting the language L(w)).

Note that, as it is showed in [6], the previous construction is possible even
for an antifactorial language M and in this case it provides an automaton A(M)
recognizing the corresponding language L. However, in the general case, A(M)
is not minimal. In [6] the above definition of A(M) is turned into an algorithm,
called L-automaton that builds the automaton from a finite antifactorial set of
words. The input is the trie T representing M . The procedure can be adapted
to test whether T represents an antifactorial set, or even to generate the trie of
the antifactorial language associated with a set of words. In [6] it is proved that
this algorithm runs in time O(|Q| × |A|), where Q and A are respectively the set
of states and the alphabet of the input trie where the transition functions are
implemented by transition matrices.

Recall also that there are some interesting results (cf. [3, 5]) about the size of
factor automaton of a word w. Indeed, by denoting with Q and E the set of states
and edges respectively, it is proved that the size of F(w) is linear with the length
of the word w. In particular, if |w| ≤ 2 then |Q| = |w|+1 and |w| ≤ |E| ≤ 2|w|−1.
If |w| ≥ 3 then |w| + 1 ≤ |Q| ≤ 2|w| − 2 and |w| ≤ |E| ≤ 3|w| − 4. These bounds
will be useful in next sections.

3. On the size of M(w)

In this section we are interested in a valuation of the size of M(w). Given a
finite word w, we consider the following parameters:

c(w) = Card(M(w))

m(w) = max{|v|, v ∈ M(w)}·

Example 1.3. (continued) Let w = acbcabcbc. We have c(w) = 9, m(w) = 5.

We report (cf. [13]) two results on the bounds for these parameters. The first
one states in particular an upper bound of c(w), which linearly depends on the
length of the word w. Remark that the cardinality of L(w), the set of factors
of w, is O(|w|2). Denote by d the cardinality of the alphabet A and by d(w)

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY 569

the number of the letters of A occurring in w, i.e. d(w) = Card(alph(w)), where
alph(w) denotes the set of letters occurring in w.

Theorem 3.1. Let w = a1 . . . an be a finite word over the alphabet A. The fol-
lowing inequalities hold:

d ≤ c(w) ≤ (d(w) − 1)(|w| − 1) + d.

Moreover previous inequalities are sharp.

The next theorem gives lower and upper bounds on the parameter m(w). We
consider d > 1, because if A has just one element, it is trivial that m(w) = |w|+1.
Recall that, for any real number α, dαe denotes the smallest integer greater than
or equal to α.

Theorem 3.2. Let w be a finite word over the alphabet A with at least two ele-
ments. The following inequalities hold:

dlogd(|w| + 1)e ≤ m(w) ≤ |w| + 1.

Furthermore the bounds are actually attained.

We now evaluate this parameter for a word w which is randomly generated
by a memoryless source with identical symbol probabilities. For simplicity we
consider sources over a binary alphabet. All the results presented here can be
easily generalized to alphabets of more letters.

Remark 3.3. It is easy to prove that k < m(w) − 1 if and only if there exists a
factor of the word w of length k having at least two occurrences.

Theorem 3.4. Let w be a word over a binary alphabet which is randomly gen-
erated by a memoryless source with identical symbol probabilities. The probability
that there exists a word v of length k that appears at least twice as factor of w is
smaller than (n− k + 1)(k− 1)2−k + (n− 2k + 1)22−k, where n is the length of w.

Proof. Let us evaluate the probability that a word v = a1a2 . . . ak of length k
appears at least twice as factor of w. We consider two cases. Case 1: the position
of the second occurrence of v in w appears at a distance smaller than k from the
position of the first occurrence. Case 2: the position of the second occurrence of v
in w appears at a distance greater than or equal to k from the position of the first
occurrence. The reason of considering the second case is evident. Since the source
is memoryless, the probability of the event of a second occurrence of v in Case 2,
is independent of the fact that there was a first occurrence of v, and this allows
an easy computation of the probability. In the first case instead, the last letters
of v must coincide with the first letters of v, i.e. the word v self-overlaps and must
be periodic with period smaller than or equal to k (cf. [11]). Let us analyze now
the first case. Suppose now that a word v of length k appears at position i and
that it has its second occurrence at position i + 1. Therefore it must be either the
word 1k or the word 0k, i.e. just one symbol repeated k times. The probability

570 F. MIGNOSI, A. RESTIVO AND M. SCIORTINO

that this event happens at position i is the sum of the probability that in position i
there are k + 1 consecutive zeroes or ones, i.e. 2−(k+1) + 2−(k+1) = 2−k. Suppose
now that a word v of length k appears at position i and that it has its second
occurrence at position i + 2. Word v cannot be the word 1k nor the word 0k,
because in this case the second occurrence would have appeared earlier. Therefore
it must be either the word (10)k/2 or the word (01)k/2. The probability that this
event happens at position i is the sum of the probabilities that at position i there
are k + 2 consecutive letters from the sequence 101010 . . . , i.e. the probability is
2−(k+2)+2−(k+2) = 2−(k+1). If we ask the same as above at position i and i+3 we
get 6 words, each of them has probability 2−k, and the event has probability for
each of them 2−(k+3). For positions i and i + j with j ≤ k − 1 we have in general
that v could be one word among at most 2j words (the one having as smallest
period the number j), and for each of them the event has probability 2−(k+j),
for a global probability of at most 2−k. Adding up all those probabilities for j
running from 1 to k−1 we obtain that Case 1 happens when the first position of v
is i with probability smaller than (k − 1)2−k. The overall probability of Case 1 is
smaller than (n−k +1)(k−1)2−k, where n is the number of symbols in the string
w. A simple exercise shows that the overall probability of Case 2 is smaller than
(n − 2k + 1)22−k, and this concludes the proof.

From Remark 3.3 and previous theorem we have the following:

Corollary 3.5. The probability that m(w) is no more than 3 log2 n + 1 is about 1
for large enough values of n.

For a memoryless source where the symbols have fixed probabilities different
from 1/2, analogous computation can be done. From previous corollary easily
follows that, for a word w randomly generated by a memoryless source, the pa-
rameter m(w) is O(logd(n)) where n is the length of w and d is the cardinality of
the alphabet.

4. Reconstruction algorithm

In a previous paper (cf. [13]) a linear algorithm that reconstructs the word w
from the set M(w) is proposed. Such an algorithm uses a close relation between
M(w) and factor automaton F(w) of w (cf. [6] and also Sect. 2) and the linear
size of F(w) (cf. [5] and also Sect. 2). Now we report this algorithm because
it represents the core of the Assembly algorithm described in Section 5. The
algorithm involves, besides factor automaton, another known construction that is
topological sort of a directed acyclic graph (cf. [1]). The main procedures used in
the algorithm are L-automaton (cf. [6] and see also Sect. 2), TopologicalSort

(cf. [1]) and Buildword. We will give a description of the algorithm, dwelling
upon the procedure Buildword.

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY 571

Procedure L-automaton takes as input the trie of the set M(w) and returns a
complete deterministic automaton accepting L(w). Recall that from this automa-
ton it is possible, by removing its sink states, to obtain the minimal deterministic
automaton F(w) (see Th. 2.1).

Procedure Buildword, that is related to the search for the longest path in a
directed acyclic graph, works as follows: it first calls Procedure Topological-

Sort that produces a linear ordering of all vertices of the transition graph G(w)
of the factor automaton F(w) by using a depth first search procedure. If G(w)
contains an edge (q, p), then q appears before p in the ordering. Recall that the
transition graph of a factor automaton is a directed acyclic graph (if the graph is
not acyclic, then no linear ordering is possible).

Then in Procedure Buildword we create the precedence-lists B of the factor
automaton F(w) = (Q, A, q0, T, δ). If n is the number of states of F(w) then B
consists of an array of n lists, one for each state. For each state q the precedence-list
B(q) contains (pointers to) all states s such that δ(s, a) = q for some a ∈ A:

B(q) = {s| ∃a ∈ A such that δ(s, a) = q}·

Moreover we define a function π : Q 7→ N such that, for each state q, π(q) is the
length of the longest path from q0 to q in the transition graph G(w) of the factor
automaton F(w). A recursive definition of the function π is the following:

π(q0) = 0
π(q) = max{π(s)|s ∈ B(q)} + 1

where q0 is the initial state. Remark that, if s ∈ B(q) then s < q in the topological
sort.

We also remark that the factor automaton F(w) satisfies the property that if
x and y are respectively the label of two paths from state q to the state p, then
|x| 6= |y|. From this property it follows that, for any q ∈ Q \ {q0}, there exists
a unique state sq ∈ B(q) such that π(sq) = max{π(s)|s ∈ B(q)}. Moreover,
according to the previous property, we can define the following partial function
l : Q × Q 7→ A such that

l(p, q) = a if δ(p, a) = q.

Finally, if q = qn−1 is the last state in the linear ordering produced by Procedure
TopologicalSort, the word is built by taking the letter l(sq, q), by setting q
equal to sq and updating it by concatenating on the left the letter l(sq, q). This
cycle has to be carried out while q is different from the initial state.

572 F. MIGNOSI, A. RESTIVO AND M. SCIORTINO

Buildword (factor automaton F(w) = (Q,A, i, T, δ))
1. {q0, q1, . . . , qn−1} ← TopologicalSort(G(w));
2. for each state qi, 0 ≤ i ≤ n− 1, create the precedence-list B(qi);
3. π(q0)← 0;

for each state qi, 1 ≤ i ≤ n− 1
Find the maximum mi of the set {π(s), s ∈ B(qi)};
return the unique state sqi such that π(sqi) = mi;

π(qi)← mi + 1;
4. w ← ε;
5. q ← qn−1;

6. while q 6= q0 do
a← l(sq, q);
w ← aw;

q ← sq;

7. return w;

The following proposition, by using the fact that
∑n−1

i=0 |B(qi)| = |E|, establishes
an upper bound on the time required for Procedure Buildword.

Proposition 4.1. The execution time of Procedure Buildword is O(|Q| + |E|),
where Q and E are respectively the set of the states and the set of the edges of
factor automaton F(w) of a word w over a fixed alphabet A.

w-Reconstruction (Trie T (w) representing the set M(w))
1. A(w)← L-automaton(T (w));
2. F(w)← removing sink states of A(w);
3. w← Buildword(F(w));
4. return w;

From Proposition 4.1, from linear size of factor automaton and since L-auto-

maton procedure runs in time O(|Q| × |A|), we can conclude that:

Proposition 4.2. Given the set M(w) of minimal forbidden factors of a word w
over a fixed alphabet A, it is possible to reconstruct w in linear time with respect
to the size of the trie representing the set M(w).

5. Applications to fragment assembly

The fragment assembly problem or sequence reconstruction problem (cf. [16,21])
consists in finding, given a set of words F (called the fragment set) and an error
rate ε ∈ [0, 1), a word w such that for all fi ∈ F there is a factor v of w such that

max
i

{min{d(v, fi), d(v, f r
i)}} ≤ ε|v|,

where d is the edit distance (cf. [15]) and f r
i is the Watson–Crick complement of

the fragment fi (cf. [16]).

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY 573

Classically the set of fragments is obtained by a shotgun sequencing approach, in
which a random sampling of short factors of a DNA segment is acquired. This tech-
nique must account for the following essential characteristic of the data (cf. [16])
that are incomplete coverage, sequencing errors, unknown orientation. Almost all
computational architectures for fragment assembly follow a general outline first
formalized in [18] and [17] (cf. [9], Sect. 16.15). That outline contains three dis-
crete steps: overlap detection, fragment layout and deciding the consensus. The
third step is also called final multiple alignment (cf. [21], Sect. 7.1.3). While
shotgun sequencing infers a DNA sequence given the sequences of overlapping
fragments, a complementary method, called sequencing by hybridization (SBH),
infers a DNA sequence given the set of oligomers that represents all factors of
some fixed length k. Such an approach can be recast as an Eulerian path problem
(cf. [8, 20] and references therein). However, since experimental reality keeps k
small and implies that the data will be error prone, most sequencing is done using
variations of the method of the shutgun approach. In [10] and [19] are proposed
algorithms for sequence assembly that combine techniques of both shotgun and
SBH methods.

In this paper we restrict our attention to the case where the error rate is equal
to zero, the coverage is complete and the orientation of the sequences is known.
We feel confident that we will be able to use variations of our algorithm to settle
the general case. Therefore in this paper the fragment assembly problem can
be formulated as follows: given a set I of substrings (fragments) of a word w,
i.e. I ⊆ L(w), reconstruct w from I. It is obvious that, without any additive
hypothesis on I and w, it is not in general possible to infer w from I, indeed in
general, given I, there exist several different words w compatible with I, i.e. such
that I ⊆ L(w). In this paper we introduce an hypothesis concerning the set
of fragments I and the size of the set of minimal forbidden words M(w). Such
hypothesis allows us to reconstruct uniquely the word w from the set I. The basic
idea of the algorithm is the following. In Section 4 we showed that, given the
set M(w), it is possible to reconstruct in linear time the word w. We can obtain
this set from the set of minimal forbidden factors of another word w1 obtained by
concatenating all fragments in I. Indeed, if the set of fragments is such that any
factor of w of length m(w) is “covered” by at least one element of I, we show that
one can obtain all minimal forbidden factors of the original word w from those
of w1. Actually the estimate of the parameter m(w) in previous section shows
that the minimal forbidden factors are “short enough” with respect to the length
of w. So the previous hypothesis on fragments is appropriate in some practical
applications. We broach now these arguments more rigorously.

Definition 5.1. A set of substrings I of a word w is a k-cover for w if every
substring of length k of w is a substring of at least one string in I. The covering
index of I, denoted C(I), is the largest value of k such that I is a k-cover for w.

Clearly, I is a k-cover for w for all k ≤ C(I). We can now state the following
theorem that will be proved in the following. Recall that we use the notation ||I||
to denote the sum of the lengths of all words in I.

574 F. MIGNOSI, A. RESTIVO AND M. SCIORTINO

Theorem 5.2. Let w be a word over a fixed alphabet A and let I be a set of
substrings of w such that

m(w) ≤ C(I).

Then the word w can be uniquely reconstructed by the set I and this reconstruction
can be done in linear time O(||I||).

We note that in the previous theorem we do not need to know the length of
the string w to recover it. The “linear time” has to be considered under the usual
standard assumption that we can store, add and compare integers in constant
time. Note also that the condition m(w) ≤ C(I) in previous theorem is tight in
the sense that, if there exists a substring v that occurs in w at least twice and such
that v never appears as a proper factor of any element of I, then the reconstruction
can be ambiguous, i.e. there could exist several words w compatible with I.

In this section we present an algorithm, called Assembly, that, under the
hypothesis of Theorem 5.2, solves the fragment assembly problem in linear time.

In the first step the following easy Concat algorithm is used. Its input is the
set of fragments I and a symbol $ that is not in the alphabet A of all fragments
in I. The output is a word w1 over the alphabet A∪{$} that is the concatenation
of all strings in I interspersed with the symbol $, i.e. between two consecutive
strings there is one symbol $. The set I is structured as a simple stack. The
operation of concatenation between words is denoted by a simple dot “.” and the
empty word is denoted by ε.

Concat (set I, symbol $)
1. w1 ← ε;
2. while I 6= ∅
3. extract v from I;
4. w1 ← w1.v.$;
5. return (w1);

The second goal of the Assembly algorithm consists in the construction of
the trie of the minimal forbidden factors of w1 having length smaller than or
equal to m(w) and not containing the symbol $. We first construct the factor
automaton F(w1) of the word w1 by using the FactorAutomaton algorithm
given in [5]. Recall that such a construction can be implemented to work on the
input word w1 in time O(|w1|× log |A|) within O(|w1|) space if one uses adjacency
lists. It produces also a suffix function that is a failure function defined on the
states of the automaton. Then we use the Create trie algorithm that is a light
variation of the MF-trie algorithm described in [6], where the trie of all minimal
forbidden factors of a word was obtained by its factor automaton. The input of
Create trie algorithm is the factor automaton F(w1) of word w1. It includes the
suffix function produced by the FactorAutomaton algorithm (cf. [5]). The time-
complexity of Create trie algorithm, as in the case of MF-trie, is O(|w1|×|A|)
on input F(w1) if transition functions are implemented by transition matrices. The
result is a consequence of the linear size of F(w1). Moreover the correctness of the

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY 575

Create trie algorithm is a simple consequence of the correctness of MF-trie

algorithm, together with the fact, stated in next Proposition 5.3, that the set of
minimal forbidden factors of original string w is exactly the set of words that are
found by Create trie algorithm. Note that the hypothesis of next proposition
is essential to its proof.

Proposition 5.3. Let w be a word over a fixed alphabet A and let I be a set of
substrings of w such that

m(w) ≤ C(I).

Then the set of minimal forbidden factors of the word w is exactly the set of all the
minimal forbidden factors of w1 that do not contain the symbol $ and that have
length smaller than or equal to m(w), i.e.

M(w) = M(w1) ∩ A≤m(w).

Proof. Any minimal forbidden substring m = avb of w1 of length at most m(w)
that does not contain the symbol $ is also a minimal forbidden substring of w.
Indeed av and vb are substrings of w1 and consequently of w. The word m = avb
is not a substring of w1. Since m(w) ≤ C(I), it is a forbidden substring of w too,
otherwise it would have appeared in w1. Hence m = avb is a minimal forbidden
substring of w.

Conversely suppose that m = avb is a minimal forbidden substring of w, where
a and b are letters. The substrings av and vb have length at most m(w) − 1. As
C(I) > m(w)−1 each of them must appear in some position of w1. The substring
m = avb cannot be a substring of w1 and the thesis follows.

CreateTrie (factor automaton F(w1) = (Q, A ∪ {$}, i, T, δ),
suffix function h)

1. for each state p ∈ Q in breadth-first search from i and each a ∈ A
2. if δ(p, a) undefined and (p = i or δ(h(p), a) defined)

3. δ′(p, a)← new sink;

4. else
5. if δ(p, a) = q and q is distant from i more than p
6. δ′(p, a)← q;
7. In a depth-first search with respect to δ′ prune all branches of

trie T (w) not ending in a state that is sink and has depth

smaller than or equal to m(w);
8. return T (w) = (Q′, A, i, {sinks}, δ′);

Recall that the suffix function h is defined as follows. Let u ∈ (A ∪ {$})+ and
p = δ(i, u). Then h(p) = δ(i, u′) where u′ is the longest suffix of u for which
δ(i, u) 6= δ(i, u′).

Note that, at line 6, not all the states of F(w1) are reachable starting from the
root i, because δ′ does not represent edges labeled by $. All states and edges that
are not reachable from i are implicitly pruned in T (w). The implicit and explicit

576 F. MIGNOSI, A. RESTIVO AND M. SCIORTINO

pruning operations at line 6 obviously change the set of states, the set of sinks and
the function δ′.

Remark 5.4. It is easy to see that the elements of M(w1)∩A∗ that do not belong
to M(w) (i.e. having length greater than m(w)) are of the form avb, where av$
and $vb are factors of the word w1. By using this remark it is possible to modify
the Create trie algorithm in order to obtain the elements of M(w), without the
explicit knowledge of the value of m(w).

The final step of algorithm Assembly consists in recovering the word w from
T (w). This is done by w-Reconstruction algorithm showed in Section 4
(cf. also [13]).

The overall Assembly algorithm is thus

Assembly (set of fragments I)
1. w1 ← Concat (set I, $);
2. F(w1) = (Q, A ∪ {$}, i, T, δ)← FactorAutomaton (w1);
3. T (w) = (Q′, A, i, {sinks}, δ′)← CreateTrie (F(w1), h);
4. w← w-Reconstruction (T (w));
5. return w;

From Propositions 5.3 and from the linear time complexity of all the procedures
used in the previous algorithm the proof of Theorem 5.2 follows.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms. Addison Wesley,
Reading, Mass (1983).

[2] M.-P. Béal, F. Mignosi, A. Restivo and M. Sciortino, Forbidden Words in Symbolic Dynam-
ics. Adv. in Appl. Math. 25 (2000) 163-193.

[3] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen and J. Seiferas, The smallest
automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40 (1985) 31-55.

[4] A. Carpi, A. de Luca and S. Varricchio, Words, univalent factors, and boxes. Acta Inform.
(to appear).

[5] M. Crochemore and C. Hancart, Automata for matching patterns, in Handbook of Formal
Languages, Vol. 2, Chap. 9, edited by G. Rosenberg and A. Salomaan. Springer (1997)
399-462.

[6] M. Crochemore, F. Mignosi and A. Restivo, Automata and forbidden words. Inform. Pro-
cess. Lett. 67 (1998) 111-117.

[7] M. Crochemore, F. Mignosi, A. Restivo and S. Salemi, Data compression using antidic-
tionaries, in Proc. of the IEEE, Special Issue on Lossless Data Compression, Vol. 88, edited
by J.A. Storer (2000) 1756-1768.

[8] A. Frieze and B.V. Halldórsson, Optimal Sequencing by Hybridization in Rounds, in Proc. of
RECOMB 2001, edited by T. Lengauer, D. Sankoff, S. Istrail, P. Pevzner and M. Waterman.
ACM Press (2001) 141-148

[9] D. Gusfield, Algorithms on strings, trees, and sequences: Computer science and computa-
tional biology. Cambridge University Press (1997).

[10] R. Idury and M. Waterman, A new algorithm for DNA sequence assembly. J. Comput. Biol.
2 (1995) 291-306.

FORBIDDEN FACTORS AND FRAGMENT ASSEMBLY 577

[11] F. Mignosi and A. Restivo, Periodicity, in M. Lothaire, Algebraic Combinatorics on
Words, Chap. 8. Cambridge University Press (to appear) 237-274. Also available at url:
http://www-igm.univ-mlv.fr/~berstel/Lothaire/index.html

[12] F. Mignosi, A. Restivo and M. Sciortino, Forbidden Factors and Fragment Assembly. Lecture
Notes in Comput. Sci. (2001). Proceedings of DLT’01.

[13] F. Mignosi, A. Restivo and M. Sciortino, Words and Forbidden Factors. Theoret. Comput.
Sci. 273 (2002) 99-117.

[14] F. Mignosi, A. Restivo, M. Sciortino and J. Storer, On Sequence Assembly, Technical Report
cs-00-210. Brandeis University (2000).

[15] S. Muthukrishnan and S.C. Sahinalp, Approximate nearest neighbors and sequence compar-
ison with block operations. ACM Press (2000). Proceedings of STOC 2000.

[16] G. Myers, Whole-Genome DNA Sequencing, IEEE Comput. Engrg. Sci. 3 (1999) 33-43.
[17] H. Peltola, H. Soderlund and E. Ukkonen, SEQAID: A DNA Sequence Assembly Program

Based on a Mathematical Model. Nucl. Acids Res. 12 (1984) 307-321.
[18] M. Peltola, H. Soderlund, J. Tarhio and E. Ukkonen, Algorithms for some string matching

problems arising in molecular genetics, in Proc. of the 9th IFIP World Computer Congress
(1983) 59-64.

[19] P.A. Pevzner, H. Tang and M. Waterman, A New Approach Fragment Assembly in DNA

Sequencing, in Proc. of RECOMB 2001, edited by T. Lengauer, D. Sankoff, S. Istrail, P.
Pevzner and M. Waterman. ACM Press (2001) 141-148.

[20] R. Shamir and D. Tsur, Large Scale Sequencing by Hybridization, in Proc. of RECOMB
2001, edited by T. Lengauer, D. Sankoff, S. Istrail, P. Pevzner and M. Waterman. ACM
Press (2001) 269-278.

[21] M.S. Waterman, Introduction to computational biology: Maps, sequences and genomes.
Chapman & Hall (1995).

Received June 26, 2001. Revised February 21, 2002.

To access this journal online:
www.edpsciences.org

