
RAIRO-Inf. Theor. Appl. 38 (2004) 343-373

DOI: 10.1051/ita:2004017

COMPARING THE SUCCINCTNESS OF MONADIC
QUERY LANGUAGES OVER FINITE TREES ∗

Martin Grohe
1

and Nicole Schweikardt
1

Abstract. We study the succinctness of monadic second-order logic
and a variety of monadic fixed point logics on trees. All these languages
are known to have the same expressive power on trees, but some can ex-
press the same queries much more succinctly than others. For example,
we show that, under some complexity theoretic assumption, monadic
second-order logic is non-elementarily more succinct than monadic least
fixed point logic, which in turn is non-elementarily more succinct than
monadic datalog.

Succinctness of the languages is closely related to the combined and
parameterised complexity of query evaluation for these languages.

Mathematics Subject Classification. 03B70, 68P15, 68Q45.

Introduction

A central topic in finite model theory has always been a comparison of the
expressive power of different logics on finite relational structures. In particular,
the expressive power of fragments of monadic second-order logic and various fixed-
point logics has already been investigated in some of the earliest papers in finite
model theory [5, 9]. One of the main motivations for such studies was an interest
in the expressive power of query languages for relational databases.

In recent years, the focus in database theory has shifted from relational to semi-
structured data and in particular data stored as XML-documents. A lot of current
research in the database community is concerned with the design and implemen-
tation of XML query languages (see, for example, [10, 13, 18] or the monograph
[1] for a general introduction into semi-structured data and XML). The languages
studied in the present paper may be viewed as node-selecting query languages

∗ This research was performed while the second author was supported by a fellowship within
the Postdoc-Programme of the German Academic Exchange Service (DAAD).
1 Institut für Informatik, Humboldt-Universität Berlin, Germany;
e-mail: grohe@informatik.hu-berlin.de; schweika@informatik.hu-berlin.de

c© EDP Sciences 2004

344 M. GROHE AND N. SCHWEIKARDT

for XML. They all contain the core of the language XPath, which is an impor-
tant building block of several major XML-related technologies. Recently, monadic
datalog has been proposed as a node-selecting query language with a nice balance
between expressive power and very good algorithmic properties [13, 21].

XML-documents are best modelled by trees, or more precisely, finite labelled
ordered unranked trees. It turns out that when studying node-selecting query
languages for XML-documents, expressive power is not the central issue. Quite to
the contrary: Neven and Schwentick [23] proposed to take the expressive power of
monadic second-order logic (MSO) as a benchmark for node-selecting XML-query
languages and, in some sense, suggested that such languages should at least have
the expressive power of MSO. However, even languages with the same expressive
power may have vastly different complexities. For example, monadic datalog and
MSO have the same expressive power over trees [13]. However, monadic datalog
queries can be evaluated in time linear both in the size of the datalog program and
the size of the input tree [13], and thus the combined complexity of monadic datalog
is in polynomial time, whereas the evaluation of MSO queries is PSPACE complete.
The difference becomes even more obvious if we look at parameterised complexity:
Unless PTIME �= NP, there is no algorithm evaluating a monadic second-order
query in time f(size of query) · p(size of tree) for any elementary function f and
polynomial p [11]. Similar statements hold for the complexity of the satisfiability
problem for monadic datalog and MSO over trees. The reason for this different
behaviour is that even though the languages have the same expressive power on
trees, in MSO we can express queries much more succinctly. Indeed, there is
no elementary translation from a given MSO-formula into an equivalent monadic
datalog program. We also say that MSO is non-elementarily more succinct than
monadic datalog. Just to illustrate the connection between succinctness and com-
plexity, let us point out that if there was an elementary translation from MSO to
monadic datalog, then there would be an algorithm evaluating a monadic second-
order query in time f(size of query) · p(size of tree) for an elementary function f
and a polynomial p.

In this paper, we study the succinctness of a variety of monadic logics on finite
trees. We prove two types of results:

• Upper bounds on succinctness, which may also be called translation results:
formulas ϕ1 of a logic L1 can be translated into equivalent formulas ϕ2 of
a logic L2 such that the size ||ϕ2|| of ϕ2 is bounded by f(||ϕ1||) for some
function f from some class F of functions.
In our terminology, such a result will be phrased as: L1 is F -succinct
in L2.
For example, we prove that the 2-variable fragment MLFP2 of monadic
least fixed-point logic is 2poly(m)-succinct in the full modal µ-calculus FLµ.
That is, every formula ϕ1 of MLFP2 can be translated into an equivalent
FLµ-formula ϕ2 such that ||ϕ2|| ≤ 2poly(||ϕ1||).
(Definitions of the logics will of course be given later.)

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 345

• Lower bounds on succinctness, which may also be called separation results:
formulas ϕ1 of a logic L1 cannot be translated into equivalent formulas ϕ2

of a logic L2 such that ||ϕ2|| is bounded by f(||ϕ1||) for some function f
from some class F of functions.
In our terminology, such a result will be phrased as: L1 is not F -succinct
in L2.

For example, we prove that MLFP2 is not 2o(m)-succinct in FLµ.

Our results are displayed in Figure 1. The left side (upward arrows) is concerned
with translations from the lower to the upper logics, the right side (downward
arrows) with translations from the upper to the lower logics. Most arrows are
labelled with two rows: the first is our best upper bound, the second our best
lower bounds. Trivial o(m) lower bounds are not displayed (therefore the O(m)
upper bounds have no counterparts). Question marks indicate the absence of
non-trivial lower bounds.

Of course we are a not the first to study the succinctness of logics with the same
expressive power. Most known results are about modal and temporal logics. The
motivation for these results has not come from database theory, but from auto-
mated verification and model-checking. The setting, however, is very similar. For
example, Kamp’s well-know theorem states that first-order logic and linear time
temporal logic have the same expressive power on strings [20], but there is no ele-
mentary translation from first-order logic to linear time temporal logic on strings.
Even closer to our results, monadic second-order logic and the modal µ-calculus
have the same expressive power on (ordered) trees, but again it is well-known that
there is no elementary translation from the former to the latter. Both of these
results can be proved by simple automata theoretic arguments. More refined re-
sults are known for various temporal logics [3, 4, 8, 26]. Adler and Immerman [3]
proposed a nice game theoretical approach for proving lower bounds. Building on
some of their ideas, we recently established succinctness results on finite variable
fragments of first-order logic [17].

In the present paper, however, we mostly rely on automata theoretic arguments.
An exception is the, complexity theoretically conditioned, result that MSO is non-
elementarily more succinct than MLFP. To prove this result, we are building on
a technique introduced in [11].

The paper is organised as follows: in Section 1 we fix the basic notations used
throughout the paper. Section 2 concentrates on the translation from MSO to
MLFP. In Section 3 we present our results concerning the two-variable fragment
of MLFP and the full modal µ-calculus. Section 4 compares MLFP with its exten-
sion by simultaneous least fixed point operators. In Section 5 we concentrate on
monadic datalog, stratified monadic datalog, and their relations to finite automata
and to MLFP. Finally, Section 6 concludes the paper by pointing out several open
questions.

The present paper is the full version of the conference contribution [15].

346 M. GROHE AND N. SCHWEIKARDT

MSO

O(m)

�
� Tower(O(m))

not Tower(o(m)) unless SAT ∈ DTIME(nlg lgn)

MLFP

O(m)

�
� Tower(O(m))

not Tower(o(m))

MLFP2

O(m)

�
� 2poly(m)

not 2o(m)

full modal
µ-calculus

2poly(m)

?

�
� 2O(m)

?

stratified monadic
datalog

O(m)

�
� 2O(m)

?

monadic datalog

2poly(m)

?

�
� 2O(m)

not 2o(m)

finite automata
(STAs)

Figure 1. Schematic overview over our results.

1. Preliminaries

1.1. Basic notations

Given a set Σ we write Σ∗ to denote the set of all finite strings over Σ, and
we use ε to denote the empty string. We use N to denote the set {0, 1, 2, ...}
of natural numbers. We use lg to denote the logarithm with respect to base 2.
With a function f that maps natural numbers to real numbers we associate the

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 347

corresponding function from N to N defined by n �→ �f(n)�. For simplicity we
often simply write f(n) instead of �f(n)�.

The function Tower : N → N is inductively defined via Tower(0) := 1 and
Tower(h+1) = 2Tower(h), for all h ∈ N. I.e., Tower(h) is a tower of 2s of height h.

We say that a function f : N→ N has bound f(m) � Tower
(
o(h(m)

)
, for some

function h : N→ N, if there is a function g ∈ o(h) and a m0 ∈ N such that for all
m � m0 we have f(m) � Tower

(
g(m)

)
.

Note that, in particular, every elementary function f has bound
f(m) � Tower

(
o(m)

)
. Indeed, for every elementary function f there is a h ∈ N

such that, for all n ∈ N, f(n) is less than or equal to the tower of 2s of height h
with an n on top.

1.2. Structures

A signature τ is a finite set of relation symbols and constant symbols. Each
relation symbol R ∈ τ has a fixed arity ar(R). A τ -structure A consists of a set
UA called the universe of A, an interpretation cA ∈ UA of each constant symbol
c ∈ τ , and an interpretation RA ⊆ (UA)ar(R) of each relation symbol R ∈ τ . All
structures considered in this paper are assumed to have a finite universe.

The main focus of this paper lies on the class Trees of finite binary trees. Pre-
cisely, finite binary trees are particular structures over the signature

τTrees := {Root, 1stChild, 2ndChild, Has-No-1stChild, Has-No-2ndChild },

where Root, Has-No-1stChild, Has-No-2ndChild are unary relation symbols and
1stChild, 2ndChild are binary relation symbols. We define Trees to be the set of
all τTrees-structures T that satisfy the following conditions:

(1) UT ⊂ {1, 2}∗ and for every string si ∈ UT with i ∈ {1, 2} we also have
s ∈ UT .

(2) RootT consists of the empty string ε.
(3) 1stChildT consists of the pairs

(
s, s1

)
, for all s1 ∈ UT .

(4) 2ndChildT consists of the pairs
(
s, s2

)
, for all s2 ∈ UT .

(5) Has-No-1stChildT consists of all strings s ∈ UT with s1 �∈ UT .
(6) Has-No-2ndChildT consists of all strings s ∈ UT with s2 �∈ UT .

For T ∈ Trees and t ∈ UT we write Tt to denote the subtree of T with root t.
A schema σ is a set of unary relation symbols each of which is distinct from

Has-No-1stChild, Has-No-2ndChild, Root. A σ-labelled tree is a (τTrees ∪ σ)-
structure consisting of some T ∈ Trees and additional interpretations PT ⊆ UT for
all symbols P ∈ σ. We sometimes write label(t) to denote the set {P ∈ σ : t ∈ PT }
of labels at vertex t in T .

We identify a string w = w0 · · ·wn−1 of length |w| = n � 1 over an alpha-
bet Σ with a σ-labelled tree Tw in the following way: We choose σ to consist
of a unary relation symbol Pa for each letter a ∈ Σ, we choose Tw to be the
(unique) element in Trees with universe UTw

= {ε, 1, 11, ..., 1n−1}, and we choose

348 M. GROHE AND N. SCHWEIKARDT

PT
w

a := {1i : wi = a}, for each a ∈ Σ. This corresponds to the conventional rep-
resentation of strings by structures in the sense that 〈UTw

, 1stChild, (PT
w

a)a∈Σ〉
is isomorphic to the structure 〈{0, ..., n−1},Succ, (Pwa)a∈Σ〉 where Succ denotes
the binary successor relation on {0, ..., n−1} and Pwa consists of all positions of w
that carry the letter a. When reasoning about strings in the context of first-order
logic, we sometimes also need the linear ordering < on {0, ..., n−1} (respectively,
the transitive closure of the relation 1stChild). In these cases we explicitly write
FO(<) rather than FO to indicate that the linear ordering is necessary.

XML-documents are usually modelled as ordered unranked trees and not as
binary trees. Here ordered refers to the fact that the order of the children of a
vertex is given. However, a standard representation of ordered unranked trees as
relational structures uses binary relations 1stChild,Next-Sibling and unary rela-
tions Root, Leaf, Last-Sibling (for details, see [13]) and thus essentially represents
ordered unranked trees as binary trees. Therefore, all our results also apply to
ordered unranked trees.

1.3. Logics and queries

We assume that the reader is familiar with first-order logic, for short: FO,
and with monadic second-order logic, for short: MSO (cf., e.g., the textbooks
[7, 19]). We use FO(τ) and MSO(τ), respectively, to denote the class of all first-
order formulas and monadic second-order formulas, respectively, of signature τ .
We write ϕ(x1, ..., xk,X1, ..., X�) to indicate that the free first-order variables of
the formula ϕ are x1, ..., xk and the free set variables are X1, ..., X�. Sometimes we
use x and X as abbreviations for sequences x1, ..., xk and X1, ..., X� of variables.

A formula ϕ(x) of signature τ defines the unary query which associates with
every τ -structure A the set of elements a ∈ UA such that A |= ϕ(a), i.e., A
satisfies ϕ when interpreting the free occurrences of the variable x by the element a.
A sentence ϕ of signature τ (i.e., a formula that has no free variables) defines the
Boolean query that associates the answer “yes” with all τ -structures that satisfy ϕ
and the answer “no” with all other τ -structures.

Apart from FO and MSO we will also consider monadic least fixed point logic
MLFP (cf., e.g., [7]) which is the extension of first-order logic by unary least fixed
point operators, defined as follows: let τ be a signature and let ϕ(x,X) be a formula
of signature τ which is positive in the variable X , i.e., every atom of the form X(z)
occurs in ϕ within an even number of negation symbols. ϕ defines for every
τ -structureA a monotone operator1 FA,ϕ : 2U

A → 2U
A

via FA,ϕ(A) := {a ∈ UA :
A |= ϕ(a,A)}, for every A ⊆ UA. A set A is called a fixed point (respectively, pre
fixed point, respectively, post fixed point) of ϕ in A iff FA,ϕ(A) = A (respectively,
FA,ϕ(A) ⊆ A, respectively, FA,ϕ(A) ⊇ A).

For all s ∈ N we define L0
A,ϕ := ∅, Ls+1

A,ϕ := FA,ϕ(LsA,ϕ), and G0
A,ϕ := UA,

Gs+1
A,ϕ := FA,ϕ(GsA,ϕ). Since FA,ϕ is monotone we have LsA,ϕ ⊆ Ls+1

A,ϕ and GsA,ϕ ⊇
Gs+1

A,ϕ, for all s ∈ N. Since UA is finite, a fixed point will be reached eventually, i.e.,

1 An operator F : 2M → 2M is monotone iff F (A) ⊆ F (B) for all A ⊆ B ⊆ M .

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 349

there is a s0 such that Ls0A,ϕ = Ls0+1
A,ϕ =: L∞

A,ϕ and Gs0A,ϕ = Gs0+1
A,ϕ =: G∞

A,ϕ. We
define L∞

A,ϕ to be the least fixed point and G∞
A,ϕ to be the greatest fixed point of ϕ

in A. It is straightforward to see that L∞
A,ϕ is indeed contained in every pre fixed

point of ϕ in A, and that every post fixed point of ϕ in A is contained in G∞
A,ϕ.

The sets LsA,ϕ, for s ∈ N, are called the stages of the least fixed point of ϕ in A.
The logic MLFP(τ) is the extension of FO(τ) by least and greatest fixed point

operators. I.e.: MLFP(τ) contains FO(τ) and is closed under Boolean connectives
and first-order quantifications; and if ϕ(x,X, y, Y) is an
MLFP(τ)-formula which is positive in the variable X then [LFPx,X ϕ](z) and
[GFPx,X ϕ](z) are MLFP(τ)-formulas such that for every

(
τ ∪ {y, Y })-structure

A and every element a ∈ UA we have A |= [LFPx,X ϕ](a) iff a ∈ L∞
A,ϕ, and

A |= [GFPx,X ϕ](a) iff a ∈ G∞
A,ϕ .

It is well-known that the greatest fixed point is the dual of the least fixed point,
i.e., that the formula [GFPx,Xϕ](z) is equivalent to the formula ¬[LFPx,X¬ϕ′](z),
where ϕ′ is obtained from ϕ by replacing every atom of the form X(u) by the lit-
eral ¬X(u). Therefore, every MLFP-formula Ψ can easily be transformed into
an equivalent MLFP-formula Ψ′ in negation normal form, where negation sym-
bols “¬” only occur directly in front of atomic subformulas.

1.4. Formula size and succinctness

In a natural way, we view formulas as finite trees, where leaves correspond to
the atoms of the formulas and inner vertices correspond to Boolean connectives,
quantifiers, and fixed-point operators. We define the size ||ϕ|| of a formula ϕ to
be the number of vertices of the tree that corresponds to ϕ.

Note that this measure of formula size is a uniform cost measure in the sense
that it accounts just 1 cost unit for each variable and relation symbol appearing
in a formula, no matter what its index is. An alternative is to define the size of
a formula as the length of a binary encoding of the formula. Such a logarithmic
cost measure is, for example, used in [11]. Switching between a uniform and a
logarithmic measure usually involves a logarithmic factor.

Definition 1.1 (Succinctness). Let L1 and L2 be logics, let F be a class of
functions from N to N, and let C be a class of structures.
We say that L1 is F -succinct in L2 on C iff there is a function f ∈ F such that for
every formula ϕ1 ∈ L1 there is a formula ϕ2 ∈ L2 of size ||ϕ2|| � f(||ϕ1||) which
is equivalent to ϕ1 on all structures in C.

Intuitively, a logic L1 being F -succinct in a logic L2 means that F gives an upper
bound for the size of L2-formulas needed to express all of L1. This definition
may seem slightly at odds with the common use of the term “succinctness” in
statements such as “L1 is exponentially more succinct than L2” meaning that there
is some L1-formula that is not equivalent to any L2-formula of subexponential
size. In our terminology, we would rephrase this last statement as “L1 is not
2o(n)-succinct in L2” (here we interpret subexponential as 2o(n), but of course this
is not the issue). The reason for defining F -succinctness the way we did is that

350 M. GROHE AND N. SCHWEIKARDT

it makes the formal statements of our results much more convenient. We will
continue to use statements such as “L1 is exponentially more succinct than L2”
in informal discussions.

Example 1.2. MLFP is O(m)-succinct in MSO on the class of all finite struc-
tures, because every formula [LFPx,Xϕ(x,X, y, Y)](z) is equivalent to ∀X (Xz ∨
∃x¬Xx ∧ ϕ(x,X, y, Y)

)
.

Example 1.3. MLFP is O(m)-succinct in the fragment of MLFP whose formulas
are in negation normal form on the class of all structures. This allows us to usually
work with formulas in negation normal form.

2. From MSO to MLFP

By the standard translation from MSO-logic to tree automata (cf., e.g., [24])
one knows that every MSO-sentence Φ can be translated into a nondeterministic
tree automaton with Tower

(O(||Φ||)) states that accepts exactly those labelled
trees that satisfy Φ. This leads to

Theorem 2.1 (Folklore). MSO-sentences are Tower
(O(m)

)
-succinct in MLFP

on the class of all labelled trees.

To show that we cannot do essentially better, i.e., that there is no translation
from MSO to MLFP of size Tower

(
o(m)

)
we need a complexity theoretic assump-

tion that, however, does not seem to be too far-fetched. Let SAT denote the
NP-complete satisfiability problem for propositional formulas in conjunctive nor-
mal form. Until now, all known deterministic algorithms that solve SAT have
worst-case complexity 2Ω(n) (cf., [6]). Although not answering the P vs. NP ques-
tion, the exposition of a deterministic algorithm for SAT with worst-case complex-
ity �nlgn would be a surprising and unexpected breakthrough in the SAT-solving
community.

In the following, we write lg(i) to denote the i times iterated logarithm, in-
ductively defined by lg(1)(n) := lg(n) and lg(i+1)(n) := lg(lg(i)(n)). Moreover,
we write lg∗ to denote the “inverse” of the Tower function, that is, the (unique)
integer valued function with Tower(lg∗(n)−1) < n � Tower(lg∗(n)).

Theorem 2.2. Unless SAT is solvable by a deterministic algorithm that has, for
every i ∈ N, time bound ||γ||lg(i)(n) (where γ is the input formula and n the number
of propositional variables occurring in γ), MSO is not Tower

(
o(m)

)
-succinct in

MLFP on the class of all finite strings.

The overall proof idea is to assume that the function f specifies the size of the
translation from MSO to MLFP and to exhibit a SAT-solving algorithm which

• constructs a string w that represents the SAT-instance γ;
• constructs an MSO-formula Φ(z) of extremely small size that, when evalu-

ated in w, specifies a canonical satisfying assignment for γ (if γ is satisfiable
at all);

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 351

• tests, for all MLFP-formulas Ψ(z) of size � f(||Φ||), whether Ψ specifies
a satisfying assignment for γ.

Before presenting the proof in detail we provide the necessary notations and
lemmas:

It is straightforward to see

Lemma 2.3. There is an algorithm that, given an MLFP-formula Ψ(z), a string
w, and a position p in w, decides in time |w|O(||Ψ||) whether w |= Ψ(p).

Proof. It is straightforward to exhibit an algorithm A with time bound |w|O(||Ψ||)

such that, given k, � ∈ N, an MLFP-formula Ψ(x1, ..., xk, X1, ..., X�), a string w, a
sequence p1, ..., pk of positions in w, and sets P1, ..., P� of positions in w, A decides
whether w |= Ψ(p1, ..., pk, P1, ..., P�):
A operates by recursion on the construction of Ψ. The only non-trivial case is

when Ψ is of the form [LFPy,YΨ′(y, Y, x1, ..., xk, X1, ..., X�)](xi). In this case, A
computes the stages of the least fixed point of Ψ′. I.e., A performs the following
operations:

(1) Initialise the set L0 := ∅.
(2) For s := 1 to |w| do

(a) Initialise the set Ls := ∅.
(b) For q := 0 to |w|−1 do

check whether w |= Ψ′(q, Ls−1, p1, ..., pk, P1, ..., P�);
if so, then insert q into Ls.

(3) Check whether pi belongs to L|w|;
if so, then STOP with output “yes”, otherwise STOP with output “no”.

This computation takes O(|w|2 · |w|O(||Ψ′||)) = |w|O(||Ψ||) steps. �

Let us now concentrate on the construction of a string w that represents a
SAT-instance γ and of an MSO-formula Φ(z) that specifies a canonical satisfying
assignment of γ (provided that γ is satisfiable at all). Since we want Φ to be ex-
tremely short, we cannot choose w to be the straightforward string-representation
of γ. Instead, we use the following, more complicated, representation of [11]:

For all h � 1 let Σh :=
{
0, 1, <1>, </1>, ..., <h>, </h>

}
. The “tags” <i> and </i>

represent single letters of the alphabet and are just chosen to improve readability.
For every n � 1 let L(n) be the length of the binary representation of the number
n−1, i.e., L(0) = 0, L(1) = 1, and L(n) = �lg(n−1)�+1, for all n � 2. By bit(i, n)
we denote the i-th bit of the binary representation of n, i.e., bit(i, n) is 1 if

⌊
n
2i

⌋
is odd, and bit(i, n) is 0 otherwise.

We encode every number n ∈ N by a string µh(n) over the alphabet Σh, where
µh(n) is inductively defined as follows: µ1(0) := <1></1>, and

µ1(n) := <1>bit(0, n−1) bit(1, n−1) · · · bit(L(n)−1, n−1) </1> ,

352 M. GROHE AND N. SCHWEIKARDT

for n � 1. For h � 2 we let µh(0) := <h></h> and
µh(n) := <h>

µh−1(0) bit(0, n−1)
µh−1(1) bit(1, n−1)

...
µh−1(L(n)−1) bit(L(n)−1, n−1)

</h> ,

for n � 1. Here empty spaces and line breaks are just used to improve readability.
To encode a CNF-formula γ by a string we use the alphabet

Σ′
h := Σh ∪

{+, −, <lit>, </lit>, <clause>, </clause>, <cnf>, </cnf>} ∪
{ � , <ass>, </ass>, <val>, </val>} .

Let i ∈ N and let Xi be a propositional variable. The literal Xi is encoded by the
string

µh(Xi) := <lit>µh(i)+ </lit>,

and the literal ¬Xi is encoded by µh(¬Xi) := <lit>µh(i)− </lit>.
A clause δ := λ1 ∨ · · · ∨ λr of literals is encoded by

µh(δ) := <clause>µh(λ1) · · ·µh(λr) </clause>.

A CNF-formula γ := δ1 ∧ · · · ∧ δm is encoded by the string

µh(γ) := <cnf>µh(δ1) · · ·µh(δm) </cnf> .

We write CNF(n) to denote the class of all CNF-formulas the propositional vari-
ables of which are among X0, ..., Xn−1. To provide the “infrastructure” for speci-
fying a truth assignment to the variables X0, ..., Xn−1, we use the string

µh(X0, ..., Xn−1) := <ass>
<val>µh(0) � </val>
<val>µh(1) � </val>

...
<val>µh(n−1) � </val>

</ass> .

Remark 2.4. There is a 1–1-correspondence between assignments
α : {X0, ..., Xn−1} → {true, false}, on the one hand, and sets P of positions of
µh(X0, ..., Xn−1) that carry the letter �, on the other hand: such a set P specifies
the assignment αP that, for each i < n, maps the variable Xi to the value true iff
the �-position directly after the substring µh(i) in µh(X0, ..., Xn−1) belongs to P .
Conversely, a given assignment α specifies the set Pα consisting of exactly those
�-positions of µh(X0, ..., Xn−1) that occur directly after a substring µh(i) where
α(Xi) = true.

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 353

Finally, we encode a formula γ ∈ CNF(n) by the string

µh(γ, �) := µh(γ)µh(X0, ..., Xn−1).

µh(γ, �) is the string w that we will further on use as the representative of a
SAT-instance γ. We use the following result of [11]:

Lemma 2.5.
(a) There is an algorithm that, given h ∈ N and γ ∈ CNF(n), computes (a binary

representation of) the string µh(γ, �) in time O(h · (lg h) · (lg n)2 · (||γ||+ n)
)

(cf., [11], Lem. 9).
The string µh(γ, �) has length |µh(γ, �)| = O

(
h · (lg n)2 · (||γ||+ n)

)
.

(b) There is an algorithm that, given h ∈ N, computes (the binary representation
of) a FO(<)-formula ϕh(Z) in time O(h·lg h), such that for all n � Tower(h),
for all γ ∈ CNF(n), and for all sets P of �-positions in the string µh(γ, �) we
have

µh(γ, �) |= ϕh(P) iff αP is a satisfying assignment for γ

(cf., [11], Lem. 10). The formula ϕh(Z) has size2 ||ϕh(Z)|| = O(h).

Given a CNF(n)-formula γ and its representative µh(γ, �), we now specify a canon-
ical satisfying assignment of γ, provided that γ is satisfiable at all. As observed in
Remark 2.4, every assignment α : {X0, ..., Xn−1} → {true, false} corresponds to a
set Pα of positions in µh(γ, �) that carry the letter �. Pα, again, can be identified
with the 0-1-string of length |µh(γ, �)| that carries the letter 1 exactly at those posi-
tions that belong to Pα. Now, the lexicographic ordering of these strings gives us a
linear ordering on the set of all assignments α : {X0, ..., Xn−1} → {true, false}. As
the canonical satisfying assignment of γ we choose the lexicographically smallest
satisfying assignment.

Lemma 2.6. There is an algorithm that, given h ∈ N, computes (the binary
representation of) an MSO-formula Φh(z) in time O(h · lg h), such that for all
n � Tower(h), for all γ ∈ CNF(n), and for all positions p of µh(γ, �) that carry
the letter �, we have

µh(γ, �) |= Φh(p) iff in the lexicographically smallest satisfying assign-
ment for γ, the propositional variable corresponding
to position p is assigned the value true.

The formula Φh(z) has size ||Φh|| = O(h).

Proof. First, use the algorithm of Lemma 2.5 (b) to construct the FO(<)-formula
ϕh(Z). It is straightforward to verify that the following formula has the desired

2 In [11], an additional factor lg h occurs because there a logarithmic cost measure is used
for the formula size, whereas here we use a uniform measure (cf., Sect. 1.4).

354 M. GROHE AND N. SCHWEIKARDT

properties:

Φh(z) := ∃Z
(
(∀x Zx → P�x) ∧ Zz ∧ ϕh(Z) ∧
∀Z′ ((∀x Z′x → P�x) ∧ ϕh(Z′)

) → Z �lex Z′
)

,

where Z �lex Z
′ is an abbreviation for the FO(<)-formula

(∀x Zx ↔ Z′x) ∨ ∃y
(
¬Zy ∧ Z′y ∧ ∀x

(
x<y → (Zx ↔ Z′x)

))
.

Afterwards, we replace every occurrence of an atom of the form x < y in Φh(z) by
the MSO-formula ∃Y (Y y ∧ ¬Y x ∧ ∀z1∀z2 (Succ(z1, z2) ∧ Y z1)→ Y z2

)
. �

Finally, we are ready for the Proof of Theorem 2.2:

Proof of Theorem 2.2. Let f : N→ N be a function such that there is, for every
MSO-formula Φ(z), a MLFP-formula Ψ(z) of size ||Ψ|| � f(||Φ||) which defines
the same query as Φ on the class of all finite strings (recall that such an f does
indeed exist, because MSO and MLFP have the same expressive power over the
class of finite strings).

Consider the algorithm displayed in Figure 2, which decides if the input for-
mula γ is satisfiable.

The correctness of this algorithm directly follows from Lemma 2.6 and from the
fact that at least one of the formulas Ψ(z) of size � f(||Φh||) defines the same
query as Φh(z).

It remains to determine the worst-case running time of the algorithm. Let γ
be an input CNF-formula for the algorithm, let n be the number of propositional
variables of γ, and let h := lg∗(n).

The steps 1–4 of the algorithm will be performed within a number of steps
polynomial in ||γ||, and the MSO-formula Φh(z) produced in step 4 will have size
||Φh|| � c · h, for a suitable constant c ∈ N (cf., Lems. 2.5 (a) and 2.6).

The loop in step 5 will be performed for at most 2c1·f(||Φh||)·lg(f(||Φh||)) times,
for a suitable constant c1 ∈ N. To see this, note that formulas of length � f(||Φh||)
use at most f(||Φh||) different first-order variables and at most f(||Φh||) different
set variables. I.e., these formulas can be viewed as strings of length f(||Φh||) over
an alphabet of size c2 + 2 · f(||Φh||), for a suitable constant c2 ∈ N. Therefore, the
number of such formulas is � (c2 + 2·f(||Φh||))f(||Φh||) � 2c1·f(||Φh||)·lg(f(||Φh||)).

Each performance of the loop in step 5 will take a number of steps polynomial in

|µh(γ, �)|O(f(||Φh||)) �
(
c3 · h · (lgn)2 · ||γ||)c4·f(c·h)

,

for suitable constants c3, c4 ∈ N (cf., Lems. 2.3 and 2.5 (a)). Altogether, for
suitable constants c, d ∈ N, the algorithm will perform the steps 1–6 within
||γ||d·f(c·h)·lg(f(c·h)) steps.

Now let us suppose that f has bound f(m) � Tower
(
o(m)

)
. From Lemma 2.7

below we then obtain that our SAT-solving algorithm has, for every i ∈ N, time
bound ||γ||lg(i)(n). This finally completes the proof of Theorem 2.2. �

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 355

Input: a SAT-instance γ in CNF
(1) Count the number n of propositional variables occurring in γ, and

modify γ in such a way that only the propositional variables
X0, ..., Xn−1 occur in it.

(2) Compute h := lg∗(n), i.e., choose h ∈ N such that Tower(h−1) < n �
Tower(h).

(3) Construct the string µh(γ, �) that represents γ (see Lem. 2.5 (a)).
(4) Construct an MSO-formula Φh(z) that has the following property:

Whenever p is a position in µh(γ, �) that carries the letter �, we have

µh(γ, �) |= Φh(p) iff in the lexicographically smallest satisfying as-
signment for γ, the propositional variable cor-
responding to position p is assigned the value
true

(cf., Lem. 2.6).
(5) For all MLFP-formulas Ψ(z) of size ||Ψ|| � f(||Φh||) do:

(a) Initialise the assignment α := ∅.
(b) For all positions p in µh(γ, �) that carry the letter � do

check whether µh(γ, �) |= Ψ(p);
if so, then insert the propositional variable corresponding to p

into α.
(c) Check whether α is a satisfying assignment for γ;

if so, then STOP with output “γ is satisfiable via assignment α”.
(6) STOP with output “γ is not satisfiable”.

Figure 2. A SAT-solving algorithm.

Lemma 2.7. Let f : N→ N be a function with bound f(m) � Tower
(
o(m)

)
, and

let c, d ∈ N. For every i ∈ N there is an n0 ∈ N such that for all n � n0 we have

d · f (c · lg∗(n)) · lg (f(c · lg∗(n))) � lg(i)(n).

Proof. Since f has bound f(m) � Tower
(
o(m)

)
, we know that there is a m0 ∈ N

and a function g : N → N with g ∈ ω(1) such that f(m) � Tower
(

m
g(m)

)
, for all

m � m0. Therefore, for h := lg∗(n) and m := c · h we have

d·f(m)·lg(f(m)) � d·Tower
(

m

g(m)

)
·Tower

(
m

g(m)
− 1
)

� Tower
(

m

g(m)
+ 1
)
.

On the other hand, n � Tower(h−1), and thus lg(i)(n) � Tower(h−(i+1)). It
therefore suffices to show that m

g(m) + 1 � h−(i+1), i.e., that m
g(m) � h−(i+2).

Since g ∈ ω(1), there is some m1 � m0 such that for all m � m1 we have

356 M. GROHE AND N. SCHWEIKARDT

g(m) � c · (i+3). Hence,

m

g(m)
=
c · (h−(i+3)

)
g(m)

+
c · (i+3)
g(m)

� h−(i+3) + 1 = h−(i+2).

This completes the proof of Lemma 2.7. �

3. The two-variable fragment of MLFP and the full

modal µ-calculus

Defining the 2-variable fixed-point logics requires some care: MLFP2 is the
fragment of MLFP consisting of all formulas with just 2 first-order variables
and no parameters in fixed point operators, i.e., for all subformulas of the form
[LFPx,Xϕ](y), x is the only free first-order variable of ϕ (note, however, that ϕmay
have several free monadic second-order variables). This is the monadic fragment of
the standard 2-variable least fixed-point logic (cf. [14]). Without the restriction on
free first-order variables in fixed-point operators we obtain full MLFP even with
just two individual variables (we prove this in [16]).

We first note that MLFP2, and actually FO2, the two variable fragment of first-
order logic, is doubly exponentially more succinct than nondeterministic automata
on the class of all finite strings:

Example 3.1. Let σ := {L,R, P1, ..., Pn} and

ϕn := ∀x

(
Lx → ∃y

(
Ry ∧

n∧
i=1

(Pix ↔ Piy)
))

.

We claim that every nondeterministic finite automaton accepting precisely those
strings over alphabet 2σ that satisfy ϕ has at least 22n

states. To see this, for
every S ⊆ 2{1,...,n}, we define strings Xn(S) and Yn(S) such that

• LXn(S) = UXn(S) and RYn(S) = UYn(S).
• For all x ∈ UXn(S) we have {i | x ∈ PXn(S)

i } ∈ S, and
for all y ∈ UYn(S) we have {i | y ∈ PYn(S)

i } ∈ S.
• For all s ∈ S there exists an x ∈ UXn(S) and an y ∈ UYn(S) such that
s = {i | x ∈ PXn(S)

i } = {i | y ∈ PYn(S)
i }.

For S, T ⊆ 2{1,...,n} let Wn(S, T) := Xn(S)Yn(T) be the concatenation of Xn(S)
and Yn(T). Then Wn(S, T) |= ϕ ⇐⇒ S ⊆ T. Clearly, a nondeterministic finite
automaton accepting precisely those strings Wn(S, T) with S ⊆ T needs at least
22n

states.

Let us return to binary trees now. Following Vardi [25], we define the full modal
µ-calculus FLµ on binary trees as follows:

Definition 3.2 (FLµ). For each schema σ, an FLµ-formula of schema σ is either:
• true, false, P , or ¬P , where P ∈ σ ∪ {Root, Has-No-1stChild,

Has-No-2ndChild};

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 357

• Φ1 ∧ Φ2 or Φ1 ∨Φ2, where Φ1 and Φ2 are FLµ-formulas of schema σ;
• X , where X is a propositional variable;
• 〈R〉Φ or [R] Φ, where R ∈ {1stChild, 2ndChild, 1stChild−1, 2ndChild−1}

and Φ is an FLµ-formula of schema σ;
• µX.Φ or νX.Φ, where X is a propositional variable and Φ is an

FLµ-formula of schema σ.

Instead of formally defining the semantics of FLµ, we just give a translation of FLµ
into MLFP2. For a σ-labelled tree T and a node t ∈ UT , we write (T, t) |= Φ to
denote that the FLµ-formula Φ holds at t in T . We identify propositional variables
in FLµ-formulas and set variables in MLFP2-formulas. For every FLµ-formula Φ
we define an MLFP2-formula ϕ(x) in such a way that for all trees T and nodes
t ∈ UT we have (T, t) |= Φ ⇐⇒ T |= ϕ(t).

• If Φ = true then ϕ(x) := (x = x). If Φ = false then ϕ(x) := ¬(x = x).
If Φ = P then ϕ(x) := P (x). If Φ = ¬P then ϕ(x) := ¬P (x).

• If Φ = X then ϕ(x) := X(x).
• If Φ = Φ1 ∨Φ2 then ϕ(x) := ϕ1(x) ∨ ϕ2(x).

If Φ = Φ1 ∧Φ2 then ϕ(x) := ϕ1(x) ∧ ϕ2(x).
• If Φ := 〈R〉.Ψ for R ∈ {1stChild, 2ndChild} then ϕ(x) := ∃y(R(x, y) ∧
ψ(y)

)
, where ψ(y) is obtained from ψ(x) by simultaneously replacing all

occurrences of x by y and vice versa. Similarly, if Φ := 〈R−1〉.Ψ for
R ∈ {1stChild, 2ndChild} then ϕ(x) := ∃y(R(y, x) ∧ ψ(y)

)
.

• If Φ := [R].Ψ for R ∈ {1stChild, 2ndChild} then ϕ(x) := ∀y(R(x, y) →
ψ(y)

)
. Similarly, if Φ := [R−1].Ψ for R ∈ {1stChild, 2ndChild} then

ϕ(x) := ∀y(R(y, x)→ ψ(y)
)
.

• If Φ := µX.Ψ then ϕ(x) := [LFPx,Xψ(x)](x).
If Φ := νX.Ψ then ϕ(x) := [GFPx,Xψ(x)](x).

What we have seen above is that FLµ is O(m)-succinct in MLFP2. Our next result
is that there also is a reverse translation from MLFP2 to FLµ which only incurs
an exponential blow-up in size:

Theorem 3.3. MLFP2 is 2poly(m)-succinct in FLµ on the class of labelled trees.
More precisely: There is a number c ∈ N such that for every MLFP2-formula ϕ(x)
there is an FLµ-formula Φ of size ||Φ|| � 2(||ϕ||c) such that for all labelled trees T
and all nodes t ∈ UT , T |= ϕ(t) iff (T, t) |= Φ.

Proof. Let the arity of a formula be the number of free variables it has.
We say that an MLFP2-formula ϕ(x,X) of the form ∃y ψ(x, y,X) is in normal

form if it is in negation normal form and ψ(x, y,X) is a disjunction of formulas of
the form α ∧ θ satisfying the following conditions:

358 M. GROHE AND N. SCHWEIKARDT

(i) θ is a conjunction of at most unary formulas.
(ii) α is one of the following five basic binary formulas:

α1 = 1stChild(x, y),
α2 = 2ndChild(x, y),
α3 = 1stChild(y, x),
α4 = 2ndChild(y, x),
α5 = ¬1stChild(x, y) ∧ ¬2ndChild(x, y) ∧ ¬1stChild(y, x) ∧ ¬2ndChild(y, x).

Similarly, a formula of the form ∀y ψ(x, y,X) is in normal form if it is a conjunction
of formulas δ of the form α→ θ, where

(i’) θ is a disjunction of at most unary formulas.
(ii’) α is one of the basic binary formulas α1, ..., α5.

Finally, an arbitrary MLFP2-formula is in normal form if all its subformulas of
the form ∃y ψ and ∀y ψ are.

Step 1: For every MLFP2-formula ϕ we construct an equivalent MLFP2-formula
ϕ′ in normal form.

The construction is by induction on ϕ, the only interesting cases being sub-
formulas of the form ∃y ψ and ∀y ψ. We only consider the universal case; the
existential case can be treated similarly.

So let ϕ(x,X) = ∀y ψ(x, y,X). We may view ψ as a Boolean combination of
atomic formulas and at most unary formulas. We bring this Boolean combination
into conjunctive normal form; let ψ′ be the resulting formula. Let us consider a
clause γ of ψ′. Let θ be the disjunction of all at most unary literals in γ, and let α′

be the conjunction of the negations of the remaining literals. Then, γ is equivalent
to (α′ → θ), and therefore we may replace γ with (α′ → θ).
α′ is a conjunction of literals of the form (¬)R(x, y) and (¬)R(y, x), where

R ∈ {1stChild, 2ndChild}. If α′ is not satisfiable in any tree, then we may simply
discard it from ψ′, because (α′ → θ) always holds. If this makes ψ′ empty, we
replace the whole formula ϕ by (x=x). So let us assume that α′ is satisfiable in
some tree. Then α′ is equivalent to a disjunction α′′ of some of the five basic binary
formulas. Say, α′ is equivalent to

∨�
j=1 α

ij , for some � � 5. Then we replace γ by
the clauses (αi1 → θ), ..., (αi� → θ).

We do this for all clauses of ψ′ and obtain a formula ψ′′ equivalent to ψ that
has the desired form. This completes step 1.

Before we translate MLFP2-formulas in normal form into FLµ-formulas, we
define a few auxiliary MLFP2-formulas. Recall that for a tree T and a node
t ∈ UT , by Tt we denote the subtree of T with root t.

Step 2: For every FLµ-formula Φ we construct FLµ-formulas ∃Φ, ∃↓Φ, and ∃↑Φ
of size O(||Φ||) such that for all labelled trees T and nodes t ∈ UT ,

(1) (T, t) |= ∃Φ if, and only if, there exists a u ∈ UT such that (T, u) |= Φ.
(2) (T, t) |= ∃↓Φ if, and only if, there exists a u ∈ UTt such that (T, u) |= Φ.

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 359

(3) (T, t) |= ∃↑Φ if, and only if, there exists a u ∈ UT \ UTt such that
(T, u) |= Φ.

Similarly, there are formulas ∀Φ, ∀↓Φ, and ∀↑Φ with the obvious meaning.
It is an easy exercise to construct such formulas. Note, however, that we make

crucial use of the fact that we are working on trees.

Step 3: For every MLFP2-formula ϕ in normal form we construct an
FLµ-formula Φ such that for all labelled trees T and all nodes t ∈ UT , T |=
ϕ(t) ⇐⇒ (T, t) |= Φ.

The construction is by induction on ϕ.
For all unary subformulas that do not start with an existential or universal

quantifier, we can simply revert the translation from FLµ to MLFP2.
For 0-ary formulas ϕ = ∃xψ, suppose Ψ is the FLµ-formula already constructed

for ψ. We let Φ = ∃Ψ. Similarly, for 0-ary ϕ = ∀xψ, we let Φ = ∀Ψ.
As the first interesting case, let us assume that ϕ(x,X) = ∃y ψ(x, y,X) is

in normal form. Suppose that ψ =
∨�
i=1(αi ∧ θi), where θi and αi satisfy the

conditions (i) and (ii) for all i. For every i we define a formula Γi equivalent to
∃y (αi ∧ θi), and then we let Φ =

∨�
i=1 Γi.

So let 1 ≤ i ≤ �. Let θx be the conjunction of all at most unary formulas
of (αi ∧ θi) that either do not have any free first-order variables or whose only
free first-order variable is x, and let θy be the conjunction of all at most unary
subformulas of (αi ∧ θi) whose only free first-order variable is y. If αi = R(x, y)
for R ∈ {1stChild, 2ndChild}, we let Γi := Θx ∧ 〈R〉Θy, where Θx and Θy are the
FLµ-formulas already constructed for θx and θy. Similarly, if αi = R(y, x), we let
Γi := Θx ∧ 〈R−1〉Θy. If αi = ¬1stChild(x, y)∧¬2ndChild(x, y)∧¬1stChild(y, x)∧
¬2ndChild(y, x), we let

Γi := Θx ∧
(〈1stChild〉〈1stChild〉 ∃↓Θy ∨ 〈1stChild〉〈2ndChild〉 ∃↓Θy ∨
〈2ndChild〉〈1stChild〉 ∃↓Θy ∨ 〈2ndChild〉〈2ndChild〉 ∃↓Θy ∨
〈1stChild−1〉 ∃↑Θy ∨ 〈2ndChild−1〉 ∃↑Θy.

The case ϕ(x,X) = ∀y ψ(x, y,X) can be treated similarly. This completes step 3.

It remains to prove that the size of Φ is at most exponential in the size of ϕ.
The (operator) depth of a formula is naturally defined as the height of its parse
tree.

By induction on d, we prove that for every at most unary subformula ψ of ϕ of
depth d we have

||Ψ|| ∈ 2O(d·||ψ||).
Again, the only critical cases are unary subformulas of the form ∃y χ or ∀y χ.
So suppose that ψ has either of these forms. Let ξ1, . . . , ξm be the at most
unary subformulas of χ that are not atoms such that χ can be written as a
Boolean combination of ξ1, . . . , ξm and atomic subformulas. Let Ξ1, . . . ,Ξm be the
FLµ-formulas corresponding to ξ1, . . . , ξm. By induction hypothesis, for 1 ≤ i ≤ m
we have

||Ξi|| ≤ 2O((d−1)·||ξi||) ≤ 2O((d−1)·||ψ||).

360 M. GROHE AND N. SCHWEIKARDT

An inspection of our construction shows that

||Ψ|| ≤ 2O(||ψ||) · max
1≤i≤m

||Ξi|| ≤ 2O(||ψ||) · 2O((d−1)·||ψ||) = 2O(d·||ψ||).

Finally, this completes the proof of Theorem 3.3. �

Theorem 3.4 (Vardi [25]). For every formula Φ of the full modal µ-calculus FLµ
there is a nondeterministic tree automaton of size 2poly(||Φ||) that accepts exactly
those labelled trees in which Φ holds at the root.

As a matter of fact, Vardi [25] proved a stronger version of this theorem for
infinite trees and parity tree automata. But on finite trees, a parity acceptance
condition can always be replaced by a normal acceptance for finite tree automata.

The Theorems 3.3 and 3.4 directly imply the following:

Corollary 3.5. For every MLFP2-formula ϕ(x) there is a nondeterministic tree
automaton of size 22poly(||ϕ||)

that accepts exactly those labelled trees in which ϕ
holds at the root.

On the other hand, Theorem 3.4 and Example 3.1 directly imply the following:

Corollary 3.6. MLFP2 is not 2o(m)-succinct in FLµ.

4. Simultaneous least fixed point logic

In this section we consider the simultaneous least fixed point operator which is
defined as follows (cf., e.g., the textbook [7]):

Let τ be a signature and let ϕ1(x1, X1, ..., Xn), ..., ϕn(xn, X1, ..., Xn) be formu-
las over the signature τ , each of which is positive in all the variables X1, ..., Xn.
For every τ -structure A, every formula ϕi defines a monotone operator FA,ϕi :(
2U

A)n → 2U
A

via FA,ϕi(A1, ..., An) := {a ∈ UA : A |= ϕi(a,A1, ..., An)}. A
tuple (A1, ..., An) is called a simultaneous fixed point of (ϕ1, ..., ϕn) in A iff, for all
i � n, FA,ϕi(A1, ..., An) = Ai.

For all i � n and s ∈ N we define L0
A,ϕi

:= ∅ and Ls+1
A,ϕi

:= FA,ϕi

(
LsA,ϕ1

, ...,

LsA,ϕn

)
. Since FA,ϕi is monotone we have LsA,ϕi

⊆ Ls+1
A,ϕi

for all s ∈ N; and
since A is finite a fixed point will be reached eventually, i.e., there is a s0 such
that Ls0A,ϕi

= Ls0+1
A,ϕi

=: L∞
A,ϕi

for all i � n. We define
(
L∞
A,ϕ1

, ..., L∞
A,ϕn

)
to be

the simultaneous least fixed point of (ϕ1, ..., ϕn) in A. It is straightforward to
see that the simultaneous least fixed point is included in every simultaneous fixed
point (A1, ..., An) of (ϕ1, ..., ϕn) in A, i.e., L∞

A,ϕi
⊆ Ai, for all i � n (cf., e.g., [7],

Lem. 8.1.17).
The logic Sim-MLFP(τ) is the extension of MLFP(τ) by simultaneous least

fixed point operators. I.e.: Sim-MLFP(τ) contains MLFP(τ) and is closed under
Boolean connectives and first-order quantifications; and if n ∈ N and ϕ1(x1, X1, ...,
Xn, y, Y), ..., ϕn(xn, X1, ..., Xn, y, Y) are Sim-MLFP(τ)-formulas each of which is

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 361

positive in the variables X1, ..., Xn then, for every i � n,

[Sim-LFPx1,X1,...,xn,Xnϕ1, ..., ϕn]Xi(x)

is a Sim-MLFP(τ)-formula such that for every
(
τ ∪{y, Y })-structure A and every

element a ∈ UA we have A |= [Sim-LFPx1,X1,...,xn,Xnϕ1, ..., ϕn]Xi(a)iffa ∈ L∞
A,ϕi

.

Remark 4.1. It is straightforward to see that Sim-MLFP is O(m)-succinct in
MSO.

Every simultaneous least fixed point can be expressed by an MLFP-formula of
exponential size:

Proposition 4.2. Let τ be a signature, let n, s ∈ N, and let, for each i �
n, ϕi(xi, X1, ..., Xn) be an MLFP(τ)-formula of size ||ϕi|| � s and positive in
X1, ..., Xn. For every i � n there is a MLFP(τ)-formula ΦXi(x) of size ||ΦXi || �
sn such that, for all τ-structures A, A |= ∀x ΦXi(x)↔ [Sim-LFPx1,X1,...,xn,Xnϕ1,
..., ϕn]Xi(x).

Furthermore, if ϕ1, ..., ϕn are in MLFP2, then also ΦXi is, for every i � n.

Proof. The proof is by induction on n. The base case n=1 is trivial. For n > 1
and a fixed i � n, the induction hypothesis gives us for every j ∈ {1, ..., n} \ {i}
a MLFP(τ ∪ {Xi})-formula Φ̃Xj (x) of size � sn−1 such that, for all τ ∪ {Xi}-
structures B, B |= ∀x Φ̃Xj (x)↔

[Sim-LFPx1,X1,...,xi−1,Xi−1,xi+1,Xi+1,...,xn,Xnϕ1, ..., ϕi−1, ϕi+1, ...ϕn]Xj (x).

Define ϕ̃i(xi, Xi) to be the MLFP-formula obtained from ϕi(xi, X1, ..., Xn) by
replacing every atom of the form Xj(x), for j �= i, with the formula Φ̃Xj (x). It
should be clear that ||ϕ̃i|| < sn. To complete the proof of Proposition 4.2 it
therefore suffices to show the following

Claim 4.3. For all τ-structures A we have
A |= ∀x [LFPxi,Xiϕ̃i](x)↔ [Sim-LFPx1,X1,...,xn,Xnϕ1, ..., ϕn]Xi(x).

For proving this claim let, for every S ⊆ UA and every j �= i,

Aj(S) := {a ∈ UA : 〈A, S〉 |= Φ̃Xj (a) },
A

(�)
i := {a ∈ UA : A |= [LFPxi,Xi ϕ̃i](a) },

A
(r)
i := {a ∈ UA : A |= [Sim-LFPx1,X1,...,xn,Xnϕ1, ..., ϕn]Xi(a) },

A
(r)
j := {a ∈ UA : A |= [Sim-LFPx1,X1,...,xn,Xnϕ1, ..., ϕn]Xj (a) }.

Our aim is to show that A(�)
i = A

(r)
i .

Since A(�)
i is a fixed point of ϕ̃i, we have A

(�)
i ={

a ∈ UA : A |= ϕi

(
a, A1

(
A

(�)
i

)
, ..., Ai−1

(
A

(�)
i

)
, A

(�)
i , Ai+1

(
A

(�)
i

)
, ..., An

(
A

(�)
i

)) }
.

362 M. GROHE AND N. SCHWEIKARDT

From the definition of Φ̃Xj we furthermore know that Aj(A
(�)
i) ={

a ∈ UA : A |= ϕj

(
a, A1

(
A

(�)
i

)
, ..., Ai−1

(
A

(�)
i

)
, A

(�)
i , Ai+1

(
A

(�)
i

)
, ..., An

(
A

(�)
i

)) }
.

I.e.,
(
A1(A

(�)
i), ..., Ai−1(A

(�)
i), A(�)

i , Ai+1(A
(�)
i), ..., An(A

(�)
i

)
is a simultaneous fixed

point of the formulas
(
ϕ1, ..., ϕn

)
in A, the least fixed point of which is(

A
(r)
1 , ..., A

(r)
n

)
. In particular, this implies that A(�)

i ⊇ A(r)
i .

On the other hand,
(
A

(r)
1 , ..., A

(r)
i−1, A

(r)
i+1, ..., A

(r)
n

)
is a simultaneous fixed point of(

ϕ1, ..., ϕi−1, ϕi+1, ..., ϕn
)

in 〈A, A(r)
i 〉, the least fixed point of which is(

A1(A
(r)
i), ..., Ai−1(A

(r)
i), Ai+1(A

(r)
i), ..., An(A(r)

i)
)
.

Therefore, Aj(A
(r)
i) ⊆ A(r)

j , for all j �= i, and hence

{
a ∈ UA : 〈A, A(r)

i 〉 |= ϕ̃i(a)
}

={
a ∈ UA : A |= ϕi

(
a,A1(A

(r)
i), ..., Ai−1(A

(r)
i), A(r)

i , Ai+1(A
(r)
i), ..., An(A(r)

i)
)}
⊆{

a ∈ UA : A |= ϕi

(
a,A

(r)
1 , ..., A

(r)
i−1, A

(r)
i , A

(r)
i+1, ..., A

(r)
n

)}
= A

(r)
i .

I.e., A(r)
i is a pre fixed point3 of ϕ̃i on A, and therefore A(�)

i ⊆ A(r)
i .

This completes the proof of the above claim and of Proposition 4.2. �
Using Proposition 4.2 one easily obtains the following result by induction on

the construction of Sim-MLFP-formulas:

Corollary 4.4. Sim-MLFP is 22O(m)
-succinct in MLFP on the class of all finite

structures.

Together with Theorem 2.2 this leads to

Corollary 4.5. Unless SAT is solvable by a deterministic algorithm that has, for
every i ∈ N, time bound ||γ||lg(i)(n) (where γ is the input formula and n the number
of propositional variables occurring in γ), MSO is not Tower

(
o(m)

)
-succinct in

Sim-MLFP on the class of all finite strings.

5. Monadic datalog and stratified monadic datalog

We assume that the reader is familiar with datalog, which may be viewed as
logic programming without function symbols (cf., e.g., the textbook [2]). A datalog
program is monadic if all its IDB-predicates (i.e., its intensional predicates that
appear in the head of some rule of the program) are unary. In this paper we restrict
attention to monadic datalog programs that are interpreted over labelled trees. A
monadic datalog program of schema σ may use as EDB-predicates (i.e., extensional
predicates which are determined by the structure the program is interpreted over)

3 Recall that a pre fixed point of a monotone operator F : 2M → 2M is a set A ⊆ M with
F (A) ⊆ A, and that the least fixed point of F is the intersection of all pre fixed points of F .

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 363

the predicates in τTrees, the predicates in σ, and a predicate ¬P for every P ∈ σ
which is interpreted as the complement of P . We use IDB(P) to denote the set of
IDB-predicates of P , and we write MonDatalog to denote the class of all monadic
datalog programs.

More formally, a monadic datalog program P of schema σ is a finite set of rules
of the form X(x)← γ(x, y), where γ is a conjunction of atomic formulas over the
signature τTrees ∪σ ∪{¬P : P ∈ σ}∪ IDB(P). We define the size ||P|| of P in the
same way as we defined the size of formulas.

Instead of formally defining the semantics of MonDatalog, we just give a trans-
lation of MonDatalog into Sim-MLFP on the class of all labelled trees:

Given a MonDatalog-program P of schema σ with IDB(P) = {X1, ..., Xn}, we
can assume w.l.o.g. that there is a unique first-order variable x such that every rule
in P is of the form Xi(x) ← γ(x, y), for some i � n. Let γi,1(x, y), ..., γi,�i(x, y)
be a list of all bodies of rules with head Xi(x) in P . Of course, the FO-formula
ϕi(x,X1, ..., Xn) :=

∨�i
j=1 ∃y γi,j(x, y) is positive in all the variables X1, ..., Xn.

When evaluated in a σ-labelled tree T , the program P defines the unary relations
(Xi)∞P (T), for i � n, to be the simultaneous least fixed point of (ϕ1, ..., ϕn) in T .

A MonDatalog-program P of schema σ, together with a designated goal pred-
icate X ∈ IDB(P), defines the unary query which yields, for every σ-labelled
tree T , the set X∞

P (T) of vertices of T . We say that “T belongs to the Boolean
query defined by (P , X)” iff the root of T belongs to X∞

P (T).
Let us sum up what we have seen above:

Lemma 5.1. For every MonDatalog-program P with IDB(P) = {X1, ..., Xn} there
are FO-formulas ϕi(x,X1, ..., Xn), for every i ∈ {1, ..., n}, positive in
X1, ..., Xn, such that ||ϕ1|| + · · · + ||ϕn|| � ||P|| and [Sim-LFPx,X1,...,x,Xnϕ1, ...,
ϕn]Xi(x) defines the same unary query as (P , Xi) on the class of all labelled trees.

Gottlob and Koch [13] proposed the following useful normal form for monadic
datalog:

Definition 5.2 (TMNF). A MonDatalog-program P of schema σ is in tree mark-
ing normal form (TMNF, for short) iff each rule is of one of the four forms

1. X(x)← S(x),
2. X(x)← X ′(x) ∧X ′′(x),
3. X(x)← R(x, y) ∧X ′(y),
4. X(x)← R(y, x) ∧X ′(y), where

X,X ′, X ′′ ∈ IDB(P), R ∈ {1stChild, 2ndChild}, and
S ∈ σ ∪ {¬P : P ∈ σ} ∪ {Root,Has-No-1stChild,Has-No-2ndChild}.
Theorem 5.3 [13] (Th. 4.11). For every MonDatalog-program P and every X ∈
IDB(P) there is a TMNF-program PX of size O(||P||) with X ∈ IDB(PX) such
that (PX , X) defines the same unary query as (P , X) on the class of labelled trees.

One way of adding negation to datalog is to consider stratified datalog (cf.,
[2]): a stratified monadic datalog program P of schema σ is a finite set of rules
of the form X(x) ← γ(x, y), where γ is a conjunction of atomic formulas over

364 M. GROHE AND N. SCHWEIKARDT

the signature τTrees ∪ σ ∪ {¬P : P ∈ σ} ∪ IDB(P) ∪ {¬X : X ∈ IDB(P)} that
has the following property: There is a partition of P into sets P1, ...,Pn, for some
n ∈ N, such that each Pi is a MonDatalog-program of schema σ ∪⋃j<i IDB(Pj).
The programs P1, ...,Pn are called the strata of P , and (P1, ...,Pn) is called a
decomposition of P into strata.

We write S-MonDatalog to denote the class of all stratified monadic datalog
programs.

In [13] it was shown that MonDatalog can define the same unary queries on
the class of labelled trees as monadic second-order logic. In the remainder of this
section we will compare the succinctness of MonDatalog, S-MonDatalog, FLµ,
MLFP, and a particular kind of tree automaton.

5.1. From MonDatalog to finite automata

Several mechanisms have been proposed in the literature for specifying unary
queries by finite automata operating on labelled trees (cf., [23]). One such mech-
anism, introduced in [22] and further investigated in [12, 21], is the selecting tree
automaton:

Definition 5.4 (STA). Let σ be a schema. A selecting σ-tree automaton (σ-STA,
for short) is a tuple A = (Q, 2σ, F, δ, S), where S ⊆ Q is the set of selecting states
and (Q, 2σ, F, δ) is a conventional nondeterministic bottom-up tree automaton (cf.,
e.g., [24]) with finite state space Q, input alphabet 2σ, accepting states F ⊆ Q,
and transition function

δ : 2σ ∪ ({1} ×Q× 2σ
) ∪ ({2} ×Q× 2σ

) ∪ (Q×Q× 2σ
) → 2Q .

A run of A on a σ-labelled tree T is a mapping ρ : UT → Q that has the fol-
lowing properties, for all vertices t, t1, t2 ∈ UT : if t has no children then ρ(t) ∈
δ(label(t)); if 1stChild(t, t1)∧Has-No-2ndChild(t) then ρ(t) ∈ δ(1, ρ(t1), label(t)); if
2ndChild(t, t2) ∧ Has-No-1stChild(t) then ρ(t) ∈ δ

(
2, ρ(t2), label(t)

)
; if

1stChild(t, t1) ∧ 2ndChild(t, t2) then ρ(t) ∈ δ(ρ(t1), ρ(t2), label(t)).
A run ρ of A on T is said to be accepting if it maps the root of T to a state in F .

The unary query defined by A is the query which maps every σ-labelled tree T to
the set of those vertices t ∈ UT that satisfy the following condition: ρ(t) ∈ S for
every accepting run ρ of A on T .

It was shown in [12, 22] that STAs can define exactly those unary queries on
the class of labelled trees that are definable in monadic-second order logic.

Theorem 5.5 [12, 13]. MonDatalog is 2O(m)-succinct in STAs on the class of
labelled trees. More precisely: let P be a MonDatalog-program of schema σ, and
let X ∈ IDB(P). There is a σ-STA A with 2O(||P||) states that defines the same
unary query as (P , X) on the class of labelled trees. Given P , the STA A can be
computed in time 2O(||P||).

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 365

Proof. From Theorem 5.3 we know that P can be translated in time O(||P||) into a
TMNF-program P ′ of size O(||P||) such that (P ′, X) defines the same unary query
as (P , X) on the class of labelled trees. Let � be the number of IDB-predicates
of P ′. In [12, Ex. 20], a σ-STA with 2� states was constructed, defining the same
unary query as (P ′, X) on the class of labelled trees. �

The next example shows that, asymptotically, the above construction is optimal:

Example 5.6. For every k ∈ N there is a MonDatalog-program of size O(k) that
defines a query not definable by an STA with less than 2k states:

Restricting attention to conventional nondeterministic finite automata (NFAs)
that operate on finite strings, it is straightforward to see that there is no NFA A
with less than 2k states such that, for all w1, w2 ∈ {0, 1}k, A accepts the string
w12w2 if and only if w1 = w2. On the other hand, the following MonDatalog-
program Pk has size O(k) and has the property that, for all w1, w2 ∈ {0, 1}k,
(Xok)∞Pk

(w12w2) contains the maximum position of the string w12w2 if and only
if w1 = w2. The program Pk consists of the following rules:

X transfer
0 (x) ← P0(y1) ∧ Succ(y1, y2) ∧ · · · ∧ Succ(yk−1, yk) ∧ Succ(yk, x)

X transfer
1 (x) ← P1(y1) ∧ Succ(y1, y2) ∧ · · · ∧ Succ(yk−1, yk) ∧ Succ(yk, x)

Xcompare(x) ← P0(x) ∧X transfer
0 (x)

Xcompare(x) ← P1(x) ∧X transfer
1 (x)

Xok(x) ← P2(x)
Xok(x) ← Xok(y) ∧ Succ(y, x) ∧Xcompare(x) .

5.2. From S-MonDatalog to MonDatalog

In this section we show that S-MonDatalog-programs can be translated into
MonDatalog-programs of at most exponential size. It remains open if the expo-
nential size is indeed necessary or if, on the contrary, for every S-MonDatalog-
program P there exists an equivalent MonDatalog-program P ′ of size polynomial
in ||P||.
Lemma 5.7. For every σ-STA A = (Q, 2σ, F, δ, S) there is a MonDatalog-program
P of size O(|Q|3 · |2σ| + |σ| · |2σ|) and a designated goal predicate X ∈ IDB(P)
such that (P , X) defines the complement of the query defined by A on the class of
all σ-labelled trees.

Proof. The program P operates according to the following evaluation algorithm
of [12] (Prop. 21): in a bottom-up pass of the input tree T , the set Reach(t) is
computed for every vertex t of T , where Reach(t) consists of all states q such that
there is a partial run ρ of A on T with ρ(t) = q. Afterwards, in a top-down pass
the set Acc(t) is computed for every t ∈ UT , where Acc(t) consists of all states q
such that there is an accepting run ρ of A on T with ρ(t) = q. Clearly, t does not
belong to the query defined by A if and only if Acc(t) contains a state in Q \ S.

To store the sets Reach(·) and Acc(·), respectively, the program P will use
predicates XReach

q and XAcc
q , respectively, for every q ∈ Q. The intended meaning

366 M. GROHE AND N. SCHWEIKARDT

of these predicates is, that for all σ-labelled trees T , t ∈ UT , and q ∈ Q we shall
have t ∈ (XReach

q)∞P (T) iff q ∈ Reach(t), and t ∈ (XAcc
q)∞P (T) iff q ∈ Acc(t).

P has one further predicate, Xno for storing the vertices that do not belong to
the query defined by A. Now, the definition of P is straightforward:

(1) For every a ∈ 2σ, P contains the rule Inputa(x)←
∧
P∈a

P (x) ∧
∧

P∈σ\a
¬P (x).

(2) For every q ∈ Q \ S, P contains the rule Xno(x)← XAcc
q (x).

(3) For all q ∈ F , P contains the rule XAcc
q (x)← XReach

q (x) ∧ Root(x).

(4) For all a ∈ 2σ and p ∈ δ(a), P contains the rule XReach
p (x)← Inputa(x) ∧

Has-No-1stChild(x) ∧ Has-No-2ndChild(x).

(5) For all q ∈ Q, a ∈ 2σ, and p ∈ δ(1, q, a), P contains the rules XReach
p (x)←

Inputa(x) ∧ 1stChild(x, y) ∧ Has-No-2ndChild(x) ∧ XReach
q (y), and

XAcc
q (y)← XReach

q (y)∧1stChild(x, y)∧ Inputa(x)∧Has-No-2ndChild(x)∧
XAcc
p (x).

(6) For all q ∈ Q, a ∈ 2σ, and p ∈ δ(2, q, a), P contains the rules XReach
p (x)←

Inputa(x) ∧ Has-No-1stChild(x) ∧ 2ndChild(x, y) ∧ XReach
q (y), and

XAcc
q (y)← XReach

q (y)∧2ndChild(x, y)∧ Inputa(x)∧Has-No-1stChild(x)∧
XAcc
p (x).

(7) For all q1, q2 ∈ Q, a ∈ 2σ and p ∈ δ(q1, q2, a), P contains the rules
XReach
p (x)← Inputa(x) ∧ 1stChild(x, y1) ∧XReach

q1 (y1) ∧ 2ndChild(x, y2) ∧
XReach
q2 (y2), XAcc

q1 (y1) ← XReach
q1 (y1) ∧ 1stChild(x, y1) ∧ 2ndChild(x, y2) ∧

Inputa(x) ∧XAcc
p (x) ∧XReach

q2 (y2),
XAcc
q2 (y2) ← XReach

q2 (y2) ∧ 1stChild(x, y1) ∧ 2ndChild(x, y2) ∧ Inputa(x) ∧
XAcc
p (x) ∧XReach

q1 (y1).

One can easily verify that (P , Xno) defines the complement of the query de-
fined by A on the class of σ-labelled trees. Furthermore, ||P|| = O(|Q|3 · |2σ|+
|σ| · |2σ|). �

Using Theorem 5.5 and Lemma 5.7 one easily obtains

Proposition 5.8. For every MonDatalog-program P there is a MonDatalog-
program P ′ of size 2O(||P||) with IDB(P ′) ⊇ {X,X : X ∈ IDB(P)} such that,
for every X ∈ IDB(P), (P ′, X) defines the same unary query as (P , X), and
(P ′, X) defines the complement of the unary query defined by (P , X) on the class
of labelled trees.

Proof. Let σ be the schema of P , and let X ∈ IDB(P). From Theorem 5.5
we obtain a σ-STA AX with |Q| = 2O(||P||) states defining the same query as
(P , X). Lemma 5.7 gives us a MonDatalog-program PX and a predicate X ∈
IDB(PX) such that (PX , X) defines the complement of the query defined by AX ;
and ||PX || = O

(|Q|3 · |2σ|+ |σ| · |2σ|) = 2O(||P||).

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 367

After an appropriate renaming of IDB-predicates we can assume w.l.o.g. that
IDB(PX) ∩ IDB(P) = ∅ and IDB(PX) ∩ IDB(PY) = ∅, for all distinct X,Y ∈
IDB(P).

Obviously, P ′ := P ∪⋃X∈IDB(P) PX is the desired MonDatalog-program of size
||P ′|| � ||P||+ |IDB(P)| · 2O(||P||) = 2O(||P||). �

Using the above proposition, it is not difficult to prove

Theorem 5.9. S-MonDatalog is 2O(m)-succinct in MonDatalog on the class of
labelled trees. More precisely: For every S-MonDatalog-program P there is a
MonDatalog-program P ′ of size 2O(||P||) such that IDB(P ′) ⊇ IDB(P) and, for
every X ∈ IDB(P), (P ′, X) defines the same unary query as (P , X) on the class
of all labelled trees.

Given P , the program P ′ can be computed in time 2O(||P||).

Proof. Let P be a S-MonDatalog-program of schema σ. Let (P1, ...,Pn) be a
decomposition of P into strata. I.e., P = P1∪· · ·∪Pn, and each Pi can be viewed
as a MonDatalog-program of schema σi := σ ∪⋃j<i IDB(Pj). For each i, let P̃i
be the MonDatalog-program of schema σ̃i := σ ∪ {X,X : X ∈ ⋃j<i IDB(Pj)},
obtained from Pi by replacing every occurrence of a literal of the form ¬X(y)
by the literal X(y). Let P̃ ′

i be the MonDatalog-program of size 2O(||Pi||) that
Proposition 5.8 provides for P̃i. After an appropriate renaming we can assume
w.l.o.g. that, viewed as programs of schema σ̃i and σ̃j , respectively, P̃ ′

i and P̃ ′
j

have no IDB-predicates in common (for distinct i, j � n).
It is straightforward to check that the program P ′ :=

⋃n
i=1 P̃ ′

i, viewed as
a MonDatalog-program of schema σ, has the desired property that IDB(P ′) ⊇
IDB(P) and (P ′, X) defines the same query as (P , X), for every X ∈ IDB(P).

Furthermore, ||P ′|| � ∑n
i=1 2O(||Pi||) � 2O(||P||).

It is straightforward to see that P ′ can be computed in time 2O(||P||). �

5.3. S-MonDatalog VS. FLµ

From Theorem 3.4 and Lemma 5.7 one directly obtains

Theorem 5.10. FLµ is 2poly(m)-succinct in S-MonDatalog on the class of labelled
trees. More precisely: For every FLµ-formula Φ there is an S-MonDatalog-program
P of size 2poly(||Φ||) and a predicate X ∈ IDB(P), such that, for all labelled trees
T , the root of T belongs to the unary query defined by (P , X) if, and only if, the
root of T satisfies Φ.

Conversely, using Theorem 5.3, Lemma 5.1, and Proposition 4.2 one can show
the following

Theorem 5.11. S-MonDatalog is 2O(m·lgm)-succinct in FLµ on the class of
labelled trees. More precisely: For every S-MonDatalog-program P and every
X ∈ IDB(P), there is a FLµ-formula ΦX of size 2O(||P||·lg ||P||) that defines the
same unary query as (P , X) on the class of labelled trees.

368 M. GROHE AND N. SCHWEIKARDT

Proof. The proof proceeds in 2 steps.

Step 1: Let us first consider the special case where P is a MonDatalog-program.
For every X ∈ IDB(P) let PX be a TMNF-program of size O(||P||) with X ∈
IDB(PX) such that (PX , X) defines the same unary query as (P , X) on the class
of labelled trees (cf., Th. 5.3). Let n be the number of IDB-predicates of PX .
Lemma 5.1 and Proposition 4.2 give us a MLFP2-formula ΨX(x) of size ||ΨX || �
||PX ||n � ||PX ||||PX || � 2O(||P||·lg ||P||) which defines the same unary query as
(P , X) on the class of labelled trees. Moreover, a close look at the proofs of
Lemma 5.1 and Proposition 4.2 for the special case where PX is in TMNF shows
that ΨX(x) is equivalent to a FLµ-formula ΦX of size O(||ΨX ||).
Step 2: Now consider the case where P is an S-MonDatalog-program. Let σ be
the schema of P , and let (P1, ...,Pn) be a decomposition of P into strata. I.e.,
P = P1∪· · ·∪Pn, and each Pi can be viewed as a MonDatalog-program of schema
σi := σ ∪⋃j<i IDB(Pj). Step 1 gives us, for every i � n and every X ∈ IDB(Pi),
a FLµ-formula ΦX of size ||ΦX || = 2O(||Pi||·lg ||Pi||) that defines the same unary
query on the class of σi-labelled trees as (Pi, X).

By induction on i we define, for every X ∈ IDB(Pi), the FLµ–formula Φ̂X of
size

||Φ̂X || = 2O(||P1||·lg ||P1||+···+||Pi||·lg ||Pi||)

as follows: for every X ∈ IDB(Pi) let Φ̂X be the formula obtained from ΦX by
replacing every occurrence of an Y ∈ ⋃j<i IDB(Pj) by the formula Φ̂Y . It is
straightforward to verify for every X ∈ IDB(P) that Φ̂X defines the same unary
query as (P , X) on the class of σ-labelled trees. �

It remains open whether the above bounds are optimal.

5.4. From MLFP to S-MonDatalog

Similarly to Theorem 2.1 one easily obtains

Theorem 5.12 (Folklore). MLFP-sentences are Tower
(O(m)

)
-succinct in

S-MonDatalog on the class of labelled trees.

The aim of this section is to show that there are no essentially smaller trans-
lations from MLFP to S-MonDatalog. We will use the following well-known
observation:

Proposition 5.13 (Folklore). There is no function f : N→ N with bound f(m) �
Tower

(
o(m)

)
such that for every FO(<)-sentence ϕ there is a nondeterministic

finite automaton A with at most f(||ϕ||) states that accepts exactly those strings
that satisfy ϕ.

Proof. Let the alphabet Σh and the strings µh(n) be chosen in the same way as
in Section 2. We use the following result of [11]:

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 369

Lemma 5.14 [11] (Lem. 8). For every h ∈ N there is a FO(<)-formula χh,1 of
size4 ||χh,1|| = O(h) such that the following is true for all strings w over alpha-
bet Σh, for all positions a, b in w, and for all numbers m,n ∈ {0, ...,Tower(h)}:
if a is the first position of a substring u of w that is isomorphic to µh(m) and
if b is the first position of a substring v of w that is isomorphic to µh(n), then
w |= χh,1(a, b) if and only if m = n.

For every h ∈ N let H := Tower(h). For a0 · · · aH−1 ∈ {0, 1}H define the string

wh,a0···aH−1 := <h+1> µh(0) a0 µh(1) a1 · · · µh(H−1) aH−1 </h+1> .

We define the string-language

Lh :=
{
wh,a0···aH−1 : a0 · · · aH−1 ∈ {0, 1}H

}∗
,

and we choose a designated string wh ∈ Lh via

wh := wh,BINH(0) wh,BINH(1) · · · wh,BINH(2H−1) ,

where BINH(n) denotes the reverse binary representation of length H of n. For
example, BIN4(2) = 0100 and BIN4(5) = 1010. It is straightforward to see the
following:

Lemma 5.15. For h ∈ N let H := Tower(h). There is no nondeterministic finite
automaton Ah with less than 2H = Tower(h+1) states such that the following is
true for every w ∈ Lh: Ah accepts w if and only if w = wh.

Lemma 5.16. For every h ∈ N there is a FO(<)-sentence ϕh of size O(h) such
that the following is true for all w ∈ Lh: w |= ϕh if and only if w = wh.

Proof. To simplify notation, we write Succ(x) to denote the successor of a position
x in a string w.

Using the formula χh,1 of Lemma 5.14, it is straightforward to build a FO(<)-
sentence ϕh stating for every input string w ∈ Lh that

• the leftmost substring of w of the form <h+1> · · ·</h+1> contains no posi-
tion x with P</h>(x) ∧ P1(Succ(x));
• the rightmost substring of w of the form <h+1> · · · </h+1> contains no

position y with P</h>(y) ∧ P0(Succ(x));
• for every two successive substrings u and v ofw of the form <h+1> · · · </h+1>,

there is a position x1 in u with P<h>(x1) and a position y1 in v with P<h>(y1)
such that χh,1(x1, y1) is true and

– every position x0 in u to the left of x1 satisfies P</h>(x0) →
P1(Succ(x0));

4 In [11], an additional factor lg h occurs because there a logarithmic cost measure is used
for the formula size, whereas here we use a uniform measure (cf., Sect. 1.4).

370 M. GROHE AND N. SCHWEIKARDT

– every position y0 in v to the left of y1 satisfies P</h>(y0) →
P0(Succ(y0));

– the first position x′1 to the right of x1 in u with P</h>(x′1) satisfies
P0(Succ(x′1));

– the first position y′1 to the right of y1 in v with P</h>(y′1) satisfies
P1(Succ(y′1));

– for all positions x2 to the right of x′1 in u and for all positions y2 to the
right of y′1 in v such that P<h>(x2)∧P<h>(y2)∧χh,1(x2, y2) is true, also
P1(Succ(x′2))↔ P1(Succ(y′2)) is true, where x′2 is the first position to
the right of x2 in u with P</h>(x′2) and y′2 is the first position to the
right of y2 in v with P</h>(y′2).

It is straightforward to check that the string wh is the unique string in Lh that
satisfies ϕh, and that ϕh has size O(||χh,1||). Together with the bound ||χh,1|| =
O(h) of Lemma 5.14, this completes the proof of Lemma 5.16. �

From Lemmas 5.15 and 5.16 we obtain, for every h ∈ N, a FO(<)-sentence ϕh
of size O(h) that defines a string-language not definable by a nondeterministic
finite automaton with less than Tower(h+1) states. This, in particular, completes
the proof of Proposition 5.13. �

Using Proposition 5.13 and the results of the Sections 5.1 and 5.2, one obtains
the following:

Theorem 5.17. There is no function f : N→ N with bound f(m) � Tower
(
o(m)

)
such that for every FO(<)-sentence ϕ there is a S-MonDatalog-program P of size
||P|| � f(||ϕ||) and a designated goal predicate X ∈ IDB(P) such that (P , X)
defines the same Boolean query as ϕ on the class of all finite strings.

Proof. By contradiction. Assume that the translation from FO(<) to
S-MonDatalog can be established by a function f with bound f(m)�Tower

(
o(m)

)
.

I.e., there is a m0 ∈ N and a function g ∈ ω(1) such that f(m) � Tower
(

m
g(m)

)
,

for all m � m0; and for every FO(<)-sentence ϕ there is a S-MonDatalog-
program P of size ||P|| � f(||ϕ||) � Tower

(||ϕ||
g(||ϕ||)

)
and an X ∈ IDB(P) such

that (P , X) defines the same Boolean query as ϕ on the class of all finite strings.
According to Theorem 5.9, P is equivalent to a MonDatalog-program P ′ of size
||P ′|| = 2O(||P||) � Tower

(||ϕ||
g(||ϕ||)+c

)
, for a suitable constant c ∈ N. From Theo-

rem 5.5 we obtain an STA A that defines the same unary query on the class of
labelled trees as (P ′, X) and that has |Q| � 2O(||P′||) � Tower

(||ϕ||
g(||ϕ||) + d

)
states,

for a suitable constant d ∈ N. Restricting attention to strings again, it is straight-
forward to transform the STA A into a nondeterministic finite automaton A′ that
accepts exactly those strings that belong to the Boolean query defined by A and
that has at most 2|Q| different states. I.e., every FO(<)-sentence ϕ can be trans-
lated into a nondeterministic finite automaton that defines the same Boolean query
as ϕ on the class of all finite strings and that has at most Tower(h(||ϕ||)) states,

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 371

where the function h is defined via h(m) := m
g(m) + d+1. Obviously, h ∈ o(m),

contradicting Proposition 5.13 and completing the proof of Theorem 5.17. �

Since FO(<) is included in MLFP, the above theorem directly implies the fol-
lowing:

Corollary 5.18. MLFP is not Tower
(
o(m)

)
-succinct in S-MonDatalog on the

class of all finite strings.

It remains open if this result remains valid when replacing MLFP with MLFP2.
Note, however, that for the proof of Proposition 5.13 a small number k of first-order
variables suffices. I.e., Proposition 5.13 remains valid when replacing FO(<) with
FOk(<), and Corollary 5.18 remains valid when replacing MLFP with MLFPk.

Together with Corollary 3.5 and Lemma 5.7, the above Corollary 5.18 implies

Corollary 5.19. MLFP is not Tower
(
o(m)

)
-succinct in MLFP2 on the class of

all finite strings.

6. Conclusion

We studied the succinctness of a number of fixed point logics on trees. We
believe that the analysis of succinctness, which may be viewed as a refined, “quan-
titative” analysis of expressive power, is a very interesting topic that deserves
much more attention.

Even though we were able to get a good overall picture of the succinctness of
monadic fixed point logics on trees, a number of questions remain open. Let us
just mention a few of them:

• The exact relationship between monadic datalog, stratified monadic dat-
alog, and the full modal µ-calculus remains unclear. In particular: Is the
class of all queries whose complements can be defined by monadic datalog
programs polynomially succinct in monadic datalog, or is there an expo-
nential lower bound? (Recall that in Prop. 5.8 we prove an exponential
upper bound.)
• Our proof that MSO is not Tower(o(m))-succinct in MLFP relies on a

complexity theoretic assumption. Is it possible to prove this result without
such an assumption?
• We have only considered the 2-variable fragment of MLFP here. What

about the k-variable fragments, for k � 3? Do they form a strict hierarchy
with respect to succinctness?

372 M. GROHE AND N. SCHWEIKARDT

References

[1] S. Abiteboul, P. Buneman and D. Suciu, Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann (1999).

[2] S. Abiteboul, R. Hull and V. Vianu, Foundations of databases. Addison-Wesley (1995).
[3] M. Adler and N. Immerman, An n! lower bound on formula size. ACM Trans. Comput.

Logic 4 (2003) 296–314.
[4] N. Alechina and N. Immerman, Reachability logic: An efficient fragment of transitive closure

logic. Logic Journal of the IGPL 8 (2000) 325–338.
[5] A. Chandra and D. Harel, Structure and complexity of relational queries. J. Comput. Syst.

Sci. 25 (1982) 99–128.
[6] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P.

Raghavan and U. Schöning, A deterministic (2− 2/(k + 1))n algorithm for k-SAT based on
local search. Theor. Comput. Sci. 289 (2002) 69–83. Revised version of: Deterministic algo-
rithms for k-SAT based on covering codes and local search, ICALP’00. Lect. Notes Comput.
Sci. 1853.

[7] H.-D. Ebbinghaus and J. Flum, Finite Model Theory. Springer-Verlag, 2nd edition (1999).
[8] K. Etessami, M.Y. Vardi and T. Wilke, First-order logic with two variables and unary

temporal logic. Inform. Comput. 179 (2002) 279–295.
[9] R. Fagin, Monadic generalized spectra. Zeitschrift für mathematische Logik und Grundlagen

der Mathematik 21 (1975) 89–96.
[10] M.F. Fernandez, J. Siméon and P. Wadler, An algebra for XML query, in Proc. of the

20th Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’00), edited by S. Kapoor and S. Prasad, Springer-Verlag. Lect. Notes Comput.
Sci. 1974 (2000) 11–45.

[11] M. Frick and M. Grohe, The complexity of first-order and monadic second-order logic revis-
ited. Ann. Pure Appl. Logic, accepted (2004).

[12] M. Frick, M. Grohe and C. Koch, Query evaluation on compressed trees, in Proc. of the
18th IEEE Symposium on Logic in Computer Science (LICS’03) (2003) 188–197.

[13] G. Gottlob and C. Koch, Monadic datalog and the expressive power of web information
extraction languages. J. ACM 51 (2004) 74–113.

[14] E. Grädel and M. Otto, On Logics with Two Variables. Theor. Comput. Sci. 224 (1999)
73–113.

[15] M. Grohe and N. Schweikardt, Comparing the succinctness of monadic query languages
over finite trees, in Proc. of the 17th International Workshop on Computer Science Logic
(CSL’03), Springer-Verlag. Lect. Notes Comput. Sci. 2803 (2003) 226–240.

[16] M. Grohe and N. Schweikardt, Comparing the succinctness of monadic query languages
over finite trees. Technical Report EDI-INF-RR-0168, School of Informatics, University of
Edinburgh, Scotland, UK (2003).

[17] M. Grohe and N. Schweikardt, The succinctness of first-order logic on linear orders, in Proc.
of the 19th IEEE Symposium on Logic in Computer Science (LICS’04) (2004) 438–447.

[18] H. Hosoya and B.C. Pierce, XDuce: A typed XML processing language (preliminary report),

in International Workshop on the Web and Databases, edited by D. Suciu and G. Vossen
(2000). Reprinted in The Web and Databases, Selected Papers, Springer. Lect. Notes Com-
put. Sci. 1997 (2001).

[19] N. Immerman, Descriptive Complexity. Springer-Verlag (1999).
[20] H. Kamp, Tense Logic and the theory of linear order. Ph.D. Thesis, University of California,

Los Angeles (1968).
[21] C. Koch, Efficient processing of expressive node-selecting queries on XML data in secondary

storage: A tree-automata based approach, in VLDB’03: 29th Conference on Very Large
Databases, Berlin, September (2003) 249-260.

[22] F. Neven, Design and Analysis of Query Languages for Structured Documents – A Formal
and Logical Approach. Ph.D. Thesis, Limburgs Universitair Centrum (1999).

SUCCINCTNESS OF MONADIC QUERY LANGUAGES 373

[23] F. Neven and T. Schwentick, Query automata over finite trees. Theor. Comput. Sci. 275
(2002) 633–674.

[24] W. Thomas, Languages, automata, and logic, in Handbook of formal languages 3 (1996),
edited by G. Rozenberg and A. Salomaa, Springer, New York.

[25] M.Y. Vardi, Reasoning about the past with two-way automata, in 25th International Col-
loquium on Automata, Languages and Programming (ICALP’98), edited by K.G. Larsen,
S. Skyum and G. Winskel, Springer-Verlag. Lect. Notes Comput. Sci. 1443 (1998) 628–641.

[26] T. Wilke, CTL+ is exponentially more succinct than CTL, in Proc. of the 19th Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’99),
Springer-Verlag. Lect. Notes Comput. Sci. 1738 (1999) 110–121.

To access this journal online:
www.edpsciences.org

