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Abstract. A subgraph H of a graph G is conformal if G− V (H)
has a perfect matching. An orientation D of G is Pfaffian if, for
every conformal even circuit C, the number of edges of C whose
directions in D agree with any prescribed sense of orientation of
C is odd. A graph is Pfaffian if it has a Pfaffian orientation.
Not every graph is Pfaffian. However, if G has a Pfaffian orienta-
tion D, then the determinant of the adjacency matrix of D is the
square of the number of perfect matchings of G. (See the book
by Lovász and Plummer [Matching Theory. Annals of Discrete
Mathematics, vol. 9. Elsevier Science (1986), Chap. 8.] A match-
ing covered graph is a nontrivial connected graph in which every
edge is in some perfect matching. The study of Pfaffian orien-
tations of graphs can be naturally reduced to matching covered
graphs. The properties of matching covered graphs are thus help-
ful in understanding Pfaffian orientations of graphs. For example,
say that two orientations of a graph are similar if one can be ob-
tained from the other by reversing the orientations of all the edges
in a cut of the graph. Using one of the theorems we proved in
[M.H. de Carvalho, C.L. Lucchesi and U.S.R. Murty, Optimal ear
decompositions of matching covered graphs. J. Combinat. The-
ory B 85 (2002) 59–93] concerning optimal ear decompositions, we
show that if a matching covered graph is Pfaffian then the number
of dissimilar Pfaffian orientations of G is 2b(G), where b(G) is the
number of “bricks” of G. In particular, any two Pfaffian orienta-
tions of a bipartite graph are similar. We deduce that the problem
of determining whether or not a graph is Pfaffian is as difficult as
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the problem of determining whether or not a given orientation is
Pfaffian, a result first proved by Vazirani and Yanakakis [Pfaffian
orientation of graphs, 0,1 permanents, and even cycles in digraphs.
Discrete Appl. Math. 25 (1989) 179–180]. We establish a simple
property of minimal graphs without a Pfaffian orientation and use
it to give an alternative proof of the characterization of Pfaffian
bipartite graphs due to Little [A characterization of convertible
(0, 1)-matrices. J. Combinat. Theory B 18 (1975) 187–208].
Mathematics Subject Classification. 05C70

1. Introduction

Let A = (aij) be an n × n skew-symmetric matrix. When n is odd, then it
is easy to see that det(A) = 0. On the other hand, when n is even, there is a
polynomial P := P (A) in the aij such that detA = P 2. This polynomial is called
the Pfaffian of A and is defined as follows:

P :=
∑

sgn(M) ai1j1ai2j2 ...aikjk
, (1)

where the sum is taken over the set of all partitions M = (i1j1, i2j2, ..., ikjk) of
{1, 2, ..., n} into k unordered pairs, and sgn(M) is the sign of the permutation:

π(M) :=
(

1 2 3 4 . . . 2k − 1 k
i1 j1 i2 j2 . . . ik jk

)
.

It can be seen that the definition of the Pfaffian of A given above is independent
of the order in which the constituent pairs in a partition M are listed, as also of
the order in which the elements in a pair are listed. Since A is skew-symmetric,
for each pair (i, j) of indices, either aij or aji is nonnegative.

Now suppose that G is a graph, D is an orientation of G, and A is the adjacency
matrix of D. Then each nonzero term in the expansion of the Pfaffian of A
corresponds to a perfect matching M of G. Thus, if D is such that all sgn(M) are
the same, then |P | is the number of perfect matchings of G.

An orientation D of a graph G is a Pfaffian orientation of G if all perfect
matchings of G have the same sign. (We shall see below that this is equivalent
to the definition given in the abstract.) An undirected graph G is Pfaffian if it
admits a Pfaffian orientation.

1.1. Parities of circuits

The parity of a circuit C of even length in a directed graph is the parity of
the number of its edges that are directed in agreement with a specified sense of
orientation of C. As C has an even number of edges, the parity is the same in
both senses and thus is well defined. For any two sets X and Y , we denote by
X ⊕ Y the symmetric difference of X and Y .
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Theorem 1.1 (see [12], Lem. 8.3.1). Let D be an arbitrary orientation of an undi-
rected graph G. Let M1 and M2 be any two perfect matchings of G and let k denote
the number of even parity circuits of G[M1 ⊕ M2]. Then, M1 and M2 have the
same sign if and only if k is even.

Recall that an even circuit C of G is conformal if G − V (C) has a perfect
matching. The following theorem may be derived from the above theorem.

Theorem 1.2 (see [12], Th. 8.3.2). Let G be a graph, M a perfect matching of G
and D an orientation of G. Then the following properties are equivalent:

• D is a Pfaffian orientation of G.
• Every M -alternating circuit of G has odd parity.
• Every conformal circuit of G has odd parity.

1.2. Changing orientations along cuts

For any graph G and any set X of vertices of G, we denote by ∂(X) the cut
of G having X as one of its shores, that is, the set of edges of G that have precisely
one end in X . The following simple result is fundamental for most of our results
in this paper.

Proposition 1.3. In any graph G, a set R of edges of G is a cut of G if and only
if |R ∩ E(Q)| is even, for each circuit Q of G.

If D is an orientation of a graph G and S ⊂ E(G), we denote by D revG S the
orientation of G obtained from D by reversing the orientation of the edges of S.
When G is understood, we only write D rev S instead of D revG S. We say that
two (not necessarily Pfaffian) orientations of a graph are similar if one may be
obtained from the other by reversing the edges of some cut of the graph. Observe
that changing the direction of an edge corresponds to changing the parity of each
circuit of even length containing it. Since every circuit and every cut have an even
number of edges in common, it follows that changing the orientations along a cut
(that is, reversing the directions of all the arcs in a cut) preserves the parities of
the circuits of even length. The following property is a direct consequence of this
observation.

Proposition 1.4. Let D be a Pfaffian orientation of a graph G. Then, any
orientation of G that is similar to D is also Pfaffian.

One might wonder whether the converse of the above proposition is also true;
that is, given two Pfaffian orientations of a graph G, is it possible to start from one
of them and reach the other by changing orientations of the edges of some cut?
In Section 3, we answer this question affirmatively for bipartite graphs. More
precisely, we shall show that any two Pfaffian orientations of a bipartite graph
differ by exactly a cut (that is, they are similar). In fact, we show that for any
Pfaffian matching covered graph G, the number of dissimilar Pfaffian orientations
of G is equal to 2b(G), where b(G) denotes the number of bricks of G.
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Figure 1. The Petersen graph. (a) two disjoint pentagons Q
and Q′, and 5-cut C; (b) conformal octagon R(e); (c) a conformal
octagon containing four edges in C.

We remark that it follows, by Proposition 1.4, that an orientation of any span-
ning tree can be extended to a Pfaffian orientation of a Pfaffian graph. Using this
observation, plus the fact that every circuit of K3,3 is conformal, it is easy to prove
that K3,3 is non-Pfaffian. To illustrate the role of changing orientations along cuts
in this theory, we shall now use Proposition 1.4 to show that the Petersen graph
is non-Pfaffian.

We say that two orientations D′ and D′′ of an uv-path P have the same parity
if the parity of the number of edges directed forward coincide in D′ and D′′ when
traversing P from u to v (or from v to u). The following property is easy to be
verified.

Proposition 1.5. Let P := (v0, v1, . . . , vk) be a v0vk-path, D1 and D2 two orien-
tations of P that have the same parity. Then, for some subset X of {v1, . . . , vk−1},
D2 = D1 rev ∂(X).

Proposition 1.6. The Petersen graph P is non-Pfaffian.

Proof. Let Q be any pentagon of P . Then, V (P )− V (Q) spans another pentagon
of P , say Q′ (see Fig. 1a).

Assume, to the contrary, that P has a Pfaffian orientation. We shall now make
use of Proposition 1.4 in order to show that P has a Pfaffian orientation such that
each of Q and Q′ is a directed circuit.

Indeed, given an orientation D of any graph G and a circuit Q of G of odd
length, it is easy to see that there exists a set X ⊂ V (Q) such that reversal of the
edges of cut C := ∂(X) yields an orientation D′ of G that renders Q a directed
circuit. To see this, consider orientation D of G and note that as Q has odd
length, one sense of orientation of Q contains an odd number of forward edges
and an even number of reverse edges. Let e be a forward edge of Q, u and v its
ends. As T := Q − e is a path having an even number of forward edges in D, it
follows by Proposition 1.5 that there exists a set X ⊂ V (Q) − u − v such that
reversal of the edges of cut C := ∂(X) in D produces an orientation D′ of G that
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renders T a directed path, in the same sense of orientation of Q. We conclude
that Q is a directed circuit in D′. We remark that the shore X of C is a subset
of V (Q)− u− v. Therefore, we may in fact apply this reasoning for each member
of a collection of vertex-disjoint odd circuits of G. In particular, in the case of the
Petersen graph, the pentagons Q and Q′ are disjoint. We may thus assume that P
has a Pfaffian orientation D such that Q and Q′ are both directed circuits.

Note that C := ∂(V (Q)) is a 5-cut of P (see Fig. 1a). We now show that C
is a directed cut in D. For this, observe first that for any edge e = {uv} of P ,
P − u − v contains an octagon, which is thus conformal. In particular, for each
edge e = {uv} of Q′, P − u− v contains an octagon, R(e), that contains precisely
two edges in C, plus two edges in Q′, and four edges in Q (see Fig. 1b). Moreover,
the restriction of R(e) to each of Q and Q′ is a directed path, or the reverse
of a directed path. Since R(e) must have odd parity, it follows that both edges
of R(e) in C are directed away from V (Q) or both directed away from V (Q′). This
conclusion holds for each edge e of Q′. By applying this reasoning for any four
edges e of Q′, we conclude that C is a directed cut in D.

Finally, consider a conformal octagon S that contains four edges in C and two
edges in each of Q and Q′ (see Fig. 1c). The edges of S in Q are traversed
in opposite directions, relative to any sense of orientation of Q. Therefore, Q
contributes to the parity of S with an odd number of forward edges. Likewise, so
does Q′. Finally, of the four edges of S in C, as C is directed, two are traversed
in a forward manner, two in reverse manner. We deduce that S has precisely four
forward edges, whence it has even parity. As S is conformal, this is a contradiction.
As asserted, P is non-Pfaffian. �

The idea of using Pfaffians in matching theory is due to Tutte. In his book
“Graph Theory As I Have Known It” [15], he describes how he came to the idea of
using Pfaffians to find a formula for the number of perfect matchings of a graph.
Although he did not succeed in finding such a formula, Tutte was able to use
Pfaffian identities to prove his famous theorem characterizing graphs that have a
perfect matching. This was the genesis of the theory of Pfaffian orientations. Sur-
prisingly, the Pfaffian orientation problem is related to a number of fundamental,
and seemingly unrelated, problems in graph theory. For example, the problem of
deciding whether a given directed graph has an even directed circuit is equivalent
to deciding if a related bipartite graph has a Pfaffian orientation [16].

Kasteleyn [8] showed that every planar graph has a Pfaffian orientation and pre-
sented a polynomial-time algorithm to find such an orientation. The graph K3,3

is the smallest non-Pfaffian graph. Little [9] showed that a bipartite graph is
non-Pfaffian if and only if it contains a conformal subgraph that is an even subdi-
vision of K3,3. Thus, the problem of deciding whether a given bipartite graph is
Pfaffian is in co − NP. This gave rise to the natural question whether this class
of graphs is in NP . Vazirani and Yanakakis [16] showed that it is no easier to
decide whether a given orientation of a graph is Pfaffian than deciding that the
graph is Pfaffian and finding a Pfaffian orientation if it is. (As we shall see, for
bipartite graphs this result follows from the fact that, up to similarity, there is
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only one Pfaffian orientation of a Pfaffian bipartite matching covered graph.) We
give an alternate proof of this result and show that for general graphs, each of the
two problems is polynomially reducible to the other. Finally, Robertson, Seymour
and Thomas [14], and independently McCuaig [13], discovered a polynomial-time
algorithm for deciding whether or not a bipartite graph has a Pfaffian orientation.
The complexity status of the Pfaffian orientation problem for general graphs is
still very much open.

2. Matching covered graphs

A graph is matching covered if it has at least two vertices, is connected and
each of its edges lies in a perfect matching. For instance, K3,3, K4, C6 and the
Petersen graph are examples of matching covered graphs. We have seen that in the
study of Pfaffian orientations we may restrict our attention to matching covered
graphs. There is an extensive theory of matching covered graphs, see [11, 12].
We shall assume that the reader is familiar with the basic concepts and results
concerning matchings and matching covered graphs. However, we shall review a
few basic definitions and results that are relevant to this work. For notation and
terminology not defined here, see [3, 4, 11].

2.1. Tight cuts

Let G be a matching covered graph. A cut C is trivial if either of its shores is
a singleton. A cut C is odd (even) if both its shores have odd (even) cardinality.
As |V | is even, then every cut C is either odd or even, and if C is odd, then
|C ∩ M | is odd for every perfect matching M of G. A cut C of G is a tight cut if
|C ∩M | = 1 for every perfect matching M of G. Trivial cuts are simple examples
of tight cuts. The following result is a characterization of tight cuts in matching
covered bipartite graphs.

Proposition 2.1. Let G = (A, B) be a bipartite matching covered graph and C
a cut of G. Then, C is tight if and only if there is a partition (A1, A2) of A,
partition (B1, B2) of B, where |B1| = |A1|+1 and |A2| = |B2|+1, such that every
edge of C joins a vertex of B1 to a vertex of A2.

There are matching covered graphs which are free of nontrivial tight cuts: for
example, K3,3, K4, C6 and the Petersen graph. Nonbipartite matching covered
graphs free of nontrivial tight cuts are called bricks and bipartite matching covered
graphs free of nontrivial tight cuts are called braces.

2.2. Tight cut decomposition

Let G be a connected graph and C a cut of G. We shall refer to the graph
obtained from G by contracting a shore of C to a single vertex as a C-contraction
of G. The following property is straightforward from the definition of tight cuts.
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Figure 2. Tight cut in bipartite graph.

Proposition 2.2. Let G be a matching covered graph, C a tight cut of G. Then,
the C-contractions G1 and G2 of G are both matching covered. Moreover, for any
set R ⊆ E(G), if G1 −R and G2−R are both matching covered then G−R is also
matching covered and C − R is a tight cut of G − R.

Thus, given any matching covered graph G and a nontrivial tight cut C of G,
we can obtain two smaller matching covered graphs G1 and G2 which are the two
C-contractions of G. If either G1 or G2 has a nontrivial tight cut, we can take
its cut-contractions, in the same manner as above, and obtain smaller matching
covered graphs. Thus, by repeatedly applying cut-contractions with respect to
tight cuts, we can obtain a list of graphs which do not have nontrivial tight cuts
(bricks and braces). This procedure is known as tight cut decomposition.

Theorem 2.3 (see [11]). Any two applications of the tight cut decomposition
procedure on a matching covered graph G produce the same list of bricks and braces,
except possibly for the multiplicities of edges.

In particular, the numbers of bricks and braces resulting from a tight cut de-
composition of a matching covered graph G is independent of the tight cut decom-
position; we shall call these the numbers of bricks and braces of G respectively.
We shall let b(G) denote the number of bricks of G, and p(G) denote the number
of bricks whose underlying simple graphs are Petersen graphs. The number b(G)
plays an important role in this paper. We remark that in view of Proposition 2.1,
if G is a bipartite matching covered graph then b(G) = 0.

The next result shows the importance of tight cuts in the study of Pfaffian
orientations.

Theorem 2.4 (see [10]). Let G be a matching covered graph and C := ∂(X) a
tight cut of G. Then G is Pfaffian if and only if the two C-contractions of G are
Pfaffian.

It follows that once we have characterized Pfaffian bricks and braces, we have
characterized all Pfaffian graphs. Thus, in the study of the Pfaffian orientation
problem, we may restrict our attention to bricks and braces. Another important
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remark is that by Theorem 2.4 and Proposition 1.6, if a matching covered graph G
has p(G) > 0 then G is non-Pfaffian.

2.3. Minors

Recall that a subgraph H of a graph G is a conformal subgraph of G if G−V (H)
has a perfect matching. The property of being a conformal subgraph is transitive,
that is, if G′′ is a conformal subgraph of G′ and G′ is a conformal subgraph of G
then G′′ is also a conformal subgraph of G. Observe that a graph is a conformal
subgraph of itself. By Theorem 1.2, we immediately deduce that a graph G is
Pfaffian if and only if every conformal subgraph of G is Pfaffian.

Let G be a matching covered graph, let u and v be two adjacent vertices of
degree two in G, and let w be the neighbor of v different from u. Then ∂(X),
where X := {u, v, w}, is a tight cut of G. One of the ∂(X)-contractions is a brace
on four vertices; let H denote the other ∂(X)-contraction. Since a brace on four
vertices is Pfaffian, it follows from Theorem 2.4 that G is Pfaffian if and only if H
is Pfaffian. A graph G is an even subdivision of a graph H if G can be obtained
from H by even subdivisions of its edges. It follows from the above observation
that a graph is Pfaffian if and only if each of its even subdivisions is Pfaffian.

A graph H is a conformal minor (or simply a minor) of G if there exists an even
subdivision of H that is a conformal subgraph of G. From the above observations
one can deduce directly that:

Proposition 2.5. A graph G is Pfaffian if and only if every minor of G is Pfaffian.

Little [9] proved that a bipartite matching covered graph is Pfaffian if and only
if it does not contain K3,3 as a minor. In Section 4 we present an alternative proof
of this result.

2.4. Ear decompositions

Let G be a connected graph. A single ear of G is a path P of odd length in
G whose internal vertices (if any) have degree two in G. If P is a single ear of
G then we denote by G − P the graph obtained from G by deleting the edges
and internal vertices of P . The following theorem provides a decomposition of
bipartite matching covered graphs.

Theorem 2.6 (see[12], Th. 4.1.6). Given any bipartite matching covered graph G,
there exists a sequence

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

of conformal matching covered subgraphs of G where (i) G1 = K2, and (ii) for
2 ≤ i ≤ r, Gi−1 = Gi − Ri, where Ri is a single ear of Gi.

Such decompositions do not exist for non-bipartite matching covered graphs.
For example, K4 and C6 have no ear decomposition as in Theorem 2.6. However,
every matching covered graph has an ear decomposition with a slight relaxation
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of the above definition. To describe that decomposition, we require the notion of
a double ear.

A double ear of G is a pair (R1, R2), where R1 and R2 are two vertex-disjoint
single ears of G. An ear of G is either a single ear or a double ear of G. If R is
an ear of G then we denote by G − R the graph obtained from G by deleting the
edges and internal vertices of the constituent paths of R.

A single ear R of G is removable if the graph G − R is matching covered. A
removable single ear of length one is a removable edge. A double ear R = (R1, R2)
of G is removable if G−R is matching covered. In this case, it is to be understood
that neither R1 nor R2 is a removable single ear. A removable ear of G is either
a single or a double ear which is removable. A removable double ear in which
both constituent paths have length one is a removable doubleton. Observe that a
removable ear of a brick is either a singleton or a doubleton.

An ear decomposition of a matching covered graph G is a sequence

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

of subgraphs of G where (i) G1 = K2, and (ii) for 2 ≤ i ≤ r, Gi−1 = Gi − Ri,
where Ri is a removable ear of Gi. Note that each term of an ear decomposition
of G is a conformal matching covered subgraph of G. The following fundamental
theorem was established by Lovász and Plummer.

Theorem 2.7 (the two-ear theorem [12], Th. 5.4.2). Every matching covered graph
has an ear decomposition.

A removable ear R of a matching covered graph G is b-removable if either (i) R
is a single ear and b(G−R) = b(G) or (ii) R is a double ear and b(G−R) = b(G)−1.
An ear decomposition of a matching covered graph is optimal if it uses the least
possible number of double ears. In [5], Theorem 1.3, we proved that in every
matching covered graph G the optimal number of double ears is b(G) + p(G). For
this we used a result [5], Theorem 6.2, that implies the following statement:

Theorem 2.8. Every matching covered graph distinct from K2 and such that
p(G) = 0 contains a b-removable ear.

3. Number of dissimilar Pfaffian orientations

We say that two orientations D′ and D′′ of a graph G are similar if there is a
cut C such that D′′ = D′ rev C. We start with a very simple observation.

Proposition 3.1. Similarity is an equivalence relation on the set of all orienta-
tions of a graph.

3.1. A lower bound on the number of dissimilar Pfaffian orientations

of matching covered graphs

Let G be a matching covered graph and let D be a Pfaffian orientation of G. We
shall proceed to describe how to obtain 2b(G) Pfaffian reorientations of D, no two
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of which are similar. For this purpose, we consider a tight cut decomposition G
of G. Given any subset B of bricks in G, we shall see that the directed graph
obtained by reversing the orientations of all the arcs in R := ⊕B∈BE(B) is also
a Pfaffian orientation of G. The difficult part is to show that distinct subsets of
bricks give rise to dissimilar Pfaffian orientations. The following lemma will be
used in establishing that fact.

Lemma 3.2. Let G be a matching covered graph, G a tight cut decomposition
of G, B a subset of G, R := ⊕B∈BE(B). The following properties hold:

(i) for each conformal circuit Q of G, |R ∩ E(Q)| is even;
(ii) set R is a cut if and only if B consists solely of braces.

Proof. By induction on |V (G)|. If B is empty then the assertion holds immediately.
We may thus assume that B contains at least one brick or one brace.

Consider first the case in which G is either a brick or a brace, in which case G
is the only element of B. Then, R = E(G). Every conformal circuit Q of G has
even length, whence |R ∩ E(Q)| is even. By Proposition 1.3, set R is a cut if and
only if |R∩E(Q)| is even, for every circuit Q of G. That is, R is a cut of G if and
only if G is bipartite. The assertion holds if G is a brick or a brace.

We may thus assume that G has nontrivial tight cuts. Let C be a nontrivial
tight cut of G that is used to produce G. Let G1 and G2 denote the two C-
contractions of G. For i = 1, 2, let Gi and Bi denote the restrictions of G and B,
respectively, to bricks and braces of Gi, let Ri := ⊕B∈BiE(B). Then, {G1,G2} is
a partition of G, {B1,B2} is a partition of B, Gi is a tight cut decomposition of Gi

and Bi ⊆ Gi, for i = 1, 2. Moreover, R = R1 ⊕ R2.
To prove part (i) of the assertion, let Q be a conformal circuit of G. Consider

first the case in which E(Q) and C are disjoint. As C is tight in G, it follows
that Q is a conformal circuit of one of G1 and G2. Adjust notation so that Q is a
conformal circuit of G1. Then, R ∩ E(Q) = R1 ∩ E(Q). By induction hypothesis,
|R1 ∩ E(Q)| is even. Thus, |R ∩ E(Q)| is even. Part (i) of the assertion holds in
this case.

Consider next the case in which Q has at least one edge in C. As C is tight
in G, circuit Q contains precisely two edges in C. For i = 1, 2, let Qi denote the
circuit of Gi spanned by E(Q)∩E(Gi). Then, Qi is a conformal circuit of Gi. By
induction hypothesis, |Ri ∩ E(Qi)| is even. Thus,

R ∩ E(Q) = (R1 ⊕ R2) ∩ E(Q) = (R1 ∩ E(Q1)) ⊕ (R2 ∩ E(Q2)).

By induction hypothesis, each of |R1 ∩ E(Q1)| and |R2 ∩ E(Q2)| is even, thus
|R ∩ E(Q)| is also even. The proof of (i) is complete.

To prove part (ii) of the assertion, consider first the case in which B consists
solely of braces. Then, each graph in B1 is a brace. By induction hypothesis, R1

is a cut of G1. Thus, R1 is a cut of G. Let X1 be a shore of R1 in G. Likewise,
R2 is a cut of G, let X2 be a shore of R2 in G. Then, R = R1⊕R2 = ∂G(X1⊕X2)
is a cut of G. Part (ii) of the assertion holds if each graph in B is a brace.
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Consider last the case in which B contains at least one brick. Then, at least one
of B1 and B2 contains at least one brick. Adjust notation so that B1 contains at
least one brick. By induction hypothesis, R1 is not a cut of G1. By Proposition 1.3,
G1 contains a circuit, Q1, such that |R1 ∩ E(Q1)| is odd. If Q1 contains no edges
in C then Q1 is a circuit of G and R ∩E(Q1) = R1 ∩E(Q1), whence |R ∩E(Q1)|
is odd. By Proposition 1.3, set R is not a cut of G.

We may thus assume that Q1 has (precisely two) edges in C, say e and f .
Let Me and Mf denote two perfect matchings of G that contain edges e and f ,
respectively. As C is tight, edge e does not lie in Mf and f does not lie in Me. Thus,
the Me, Mf -alternating circuit S of G that contains edge e contains also edge f
and no other edge of C. The set E(G2)∩E(S) spans in G2 a circuit, say Q2, that
is conformal in G2. Moreover, E(Q1) ∪ E(Q2) spans in G a circuit, Q. Then,

R ∩ E(Q) = (R1 ⊕ R2) ∩ E(Q) = (R1 ∩ E(Q1)) ⊕ (R2 ∩ E(Q2)).

Note that R2∩E(Q2) = R2∩E(S). By part (i), with B2 playing the role of B, and
since S is a conformal circuit of G, it follows that |R2∩E(Q2)| is even. By defnition
of Q1, |R1 ∩E(Q1)| is odd. It follows that |R ∩E(Q)| is odd. By Proposition 1.3,
set R is not a cut of G. The proof of (ii) completes the proof of the Lemma. �

Corollary 3.3. Every Pfaffian matching covered graph G has at least 2b(G) dis-
similar Pfaffian orientations.

Proof. By hypothesis, G has a Pfaffian orientation, say D. Let G0 be the collection
of (precisely b(G)) bricks of a tight cut decomposition of G. For each subset B of G0,
let R(B) := ⊕B∈BE(B), let D(B) := D rev R(B). Let D := {D(B) : B ⊆ G0}.

By part (i) of the lemma and Theorem 1.2, the 2b(G) orientations in D are
Pfaffian. To complete the proof, we now show that they are dissimilar. For this,
let B1 and B2 denote two distinct subsets of G0. Then, B := B1 ⊕ B2 is a nonnull
subset of G0. Moreover, R(B) = R(B1)⊕R(B2), whence D(B2) = D(B1) rev R(B).
By the Lemma, part (ii), R(B) is not a cut of G. Therefore, D(B1) and D(B2) are
dissimilar. This conclusion is valid for any two distinct subsets B1 and B2 of G0.
The assertion holds. �

3.2. Pfaffian extensions

In this section we use Theorem 2.8 in order to prove that every Pfaffian matching
covered graph G has precisely 2b(G) dissimilar Pfaffian orientations. We also show
how to determine Pfaffian orientations for Pfaffian matching covered graphs.

Theorem 3.4. Let G be a matching covered graph, D a collection of 2b(G) dis-
similar Pfaffian orientations of G. Let R be a b-removable ear of G, Q a con-
formal circuit of G that contains some edge of R, D0 an orientation of G such
that (i) D0−R is a Pfaffian orientation of G−R and (ii) Q has odd parity in D0.
If G−R has precisely 2b(G−R) dissimilar Pfaffian orientations then D0 is similar
to some orientation in D.
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Proof. Let G′ := G − R, t := 2b(G). Denote by D1, D2, . . . , Dt the t dissimilar
Pfaffian orientations in D. For i = 0, 1, . . . , t, let D′

i := Di − R. For i > 0, D′
i is

a Pfaffian orientation of G′, because Di is a Pfaffian orientation of G. Moreover,
D′

0 is a Pfaffian orientation of G′, by hypothesis.
Consider first the case in which R is a single ear. In that case, b(G′) = b(G).

By hypothesis, G′ has precisely t dissimilar Pfaffian orientations. Therefore, there
are indices i and j such that D′

i and D′
j are similar, where 0 ≤ i < j ≤ t. Let C′

denote a cut of G′ such that D′
i = D′

j rev C′. Let X denote a shore of C′ in G′.
Let C := ∂G(X). Then, D�

j := Dj rev C is similar to Dj , whence D�
j is a Pfaffian

orientation of G. Moreover, for each edge of G′, its orientations in Di and in D�
j

coincide. If i = 0 then Q has odd parity in Di, by hypothesis. If i > 0 then Q
has odd parity in Di, because Di is Pfaffian. As D�

j is Pfaffian, Q has odd parity
in D�

j . As R is a single ear of G and Q contains an edge of R, it contains all the
edges of R. Each edge of E(Q)−E(R) has the same orientation in Di and in D�

j .
We conclude that R has the same parity in Di and in D�

j . By Proposition 1.5, Di

and D�
j are similar. Thus, Di and Dj are similar. As the orientations in D are

dissimilar, it follows that i = 0. The assertion holds if R is a single ear.
Consider next the case in which R is a double ear. In that case, b(G′) = b(G)−1.

By hypothesis, G′ has precisely t/2 dissimilar Pfaffian orientations. Therefore,
there are indices i, j and k such that D′

i, D′
j and D′

k are similar, where 0 ≤ i <
j < k ≤ t. Let C′

j and C′
k denote cuts of G′ such that D′

i = D′
j rev C′

j = D′
k rev C′

k.
Let Xj and Xk denote shores of C′

j and C′
k in G′, respectively. Let Cj := ∂G(Xj),

Ck := ∂G(Xk). Then, D�
j := Dj rev Cj is similar to Dj , whence D�

j is a Pfaffian
orientation of G. Likewise, D�

k := Dk rev Ck is similar to Dk, whence D�
k is a

Pfaffian orientation of G. Moreover, for each edge of G′, its orientations in Di,
D�

j and in D�
k coincide. If i = 0 then Q has odd parity in Di, by hypothesis. If

i > 0 then Q has odd parity in Di, because Di is Pfaffian. As D�
j and D�

k are both
Pfaffian, Q has odd parity in both. Let R1 and R2 denote the two constituent
paths of R. Adjust notation so that Q contains an edge of R1. Then, Q contains
all the edges of R1. If Q does not contain any edge in R2 then G−R2 is matching
covered, whence R2 is a removable ear of G, a contradiction to the definition of
removable double ear. We conclude that Q has edges in R2, whence it contains
all the edges of R2. It follows that Q contains all the edges of R. Path R1 has
the same parity in at least two of Di, D�

j and D�
k. As each edge of E(Q) − E(R)

has the same orientation in those three orientations, and since Q has odd parity in
those three orientations, it follows that in at least two of the orientations Di, D�

j

and D�
k, each of R1 and R2 has the same parity. By Proposition 1.5, at least two

of Di, D�
j and D�

k are similar. Thus, at least two of Di, Dj and Dk are similar.
As the orientations in D are dissimilar, it follows that i = 0 and Di is similar to
(precisely) one of Dj and Dk. The assertion holds if R is a double ear. �

Corollary 3.5. Every Pfaffian matching covered graph G has precisely 2b(G) dis-
similar Pfaffian orientations.

Proof. By induction on |E(G)|. Let t := 2b(G). By hypothesis, G is Pfaffian. By
Corollary 3.3, G has a collection D of t dissimilar Pfaffian orientations. To prove
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the assertion, we now show that every Pfaffian orientation D of G is similar to
some orientation in D.

The assertion holds immediately if G is K2. We may thus assume that G is
distinct from K2. As G is Pfaffian, we have that p(G) = 0. By Theorem 2.8, G
has a b-removable ear R. As D is Pfaffian, D−R is a Pfaffian orientation of G−R.
Every conformal circuit of G has odd parity in D. By induction hypothesis, G−R
has precisely 2b(G−R) dissimilar Pfaffian orientations. By Theorem 3.4, D is similar
to some orientation in D. This conclusion holds for each Pfaffian orientation D
of G. �

Corollary 3.6. Let G be a matching covered graph, R a b-removable ear of G,
D an orientation of G, Q a conformal circuit of G that contains some edge of R.
Assume that (i) D−R is a Pfaffian orientation of G−R and (ii) Q has odd parity
in D. Then, G is Pfaffian if and only if D is a Pfaffian orientation of G.

Proof. If D is a Pfaffian orientation of G then G is certainly Pfaffian. To prove the
converse, assume that G is Pfaffian. By Corollary 3.3, G has a collection D of 2b(G)

dissimilar Pfaffian orientations. By Corollary 3.5, G − R has precisely 2b(G−R)

dissimilar Pfaffian orientations. By Theorem 3.4, D is similar to some orientation
in D. Thus, D is a Pfaffian orientation of G. �

3.3. Polynomial reducibilities

In this section we give a polynomial algorithm that, given a matching covered
graph G, produces an orientation D of G such that G is Pfaffian if and only
if D is Pfaffian. We also give polynomial reductions relating two problems: (i) to
determine whether or not a given matching covered graph is Pfaffian and (ii) to de-
termine whether or not a given orientation of a matching covered graph is Pfaffian.
We need to record first some facts concerning the complexity of some problems
related to matching covered graphs.

The literature has several polynomial algorithms to determine, given a graph G,
a perfect matching of G, or alternatively, a certificate that G has no perfect match-
ings; the certificate is a set S of vertices of G such that the number of odd compo-
nents of G − S is strictly larger than |S|. Using any such algorithm, it is possible
to determine in polynomial time whether or not a given graph G is matching cov-
ered. In linear time it is possible to verify whether or not G is connected. For
each edge e of G, if u and v denote the ends of e, G has a perfect matching that
contains edge e if and only if graph G − u − v has a perfect matching.

We remark that to determine, in polynomial time, a conformal circuit of a given
matching covered graph G distinct from K2 that contains a given edge e of G, it
suffices to determine a perfect matching M of G that contains edge e and a perfect
matching N of G that does not contain edge e, and then take the M, N -alternating
circuit of G that contains edge e.

To determine the set of removable ears of a matching covered graph G in poly-
nomial time, let P denote the set of paths P of G of maximum length such that
each internal vertex of P has degree two. If G is not a circuit, then P induces a
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partition of E(G) and P may be determined in linear time. The set of removable
ears of an even circuit is trivially determined, so assume that G is not a circuit.
Every constituent path of a removable ear of G lies in P and has odd length. Thus,
the set of removable single ears of G is the set of those paths R in P that have odd
length and such that G − R is matching covered. Likewise, the set of removable
double ears of G is the set of those vertex-disjoint pairs {R1, R2} of paths in P
such that each of R1 and R2 has odd length, G−R1−R2 is matching covered and
neither R1 nor R2 is removable.

We now make some remarks concerning the determination, in polynomial time,
of the number b(G) of bricks of any tight cut decomposition of G. In linear time,
determine whether or not G is bipartite. If G is bipartite then b(G) = 0. Assume
thus that G is nonbipartite. For each pair {u, v} of distinct vertices u and v of G,
determine whether or not G − u − v is connected and has a perfect matching. If,
for some such pair, G − u − v has no perfect matching, then let B := S ∪ {u, v},
where S is a certificate of the nonexistence of a perfect matching in G − u − v.
As G is matching covered, it follows that the number of odd components of G−B
is equal to |B|, no edge of G has both ends in B and each component of G − B
is odd. As G is nonbipartite, at least one (odd) component of G − B, say K,
is nontrivial. In that case, C := ∂(V (K)) is a nontrivial tight cut of G. Then,
b(G) = b(G1) + b(G2), where G1 and G2 are the two C-contractions of G, the
algorithm procedes recursively. Assume thus that G−u−v has a perfect matching,
for each pair {u, v} of distinct vertices of G. Then, G is said to be bicritical. We
thus have a polynomial algorithm to determine whether or not a matching covered
graph is bicritical.

We may assume that G is bicritical. If, for some pair {u, v}, G − u − v is not
connected, then, as G is bicritical, each component of G − u − v is even. For
any component K of G − u − v, C := ∂(V (K) ∪ {u}) is a nontrivial tight cut
of G. Again, recursively determine b(G1) and b(G2), where G1 and G2 are the
C-contractions of G and determine b(G) = b(G1) + b(G2).

Finally, if G is bicritical and 3-connected, then G is a brick, by the following
assertion, proved by Edmonds, Lovász and Pulleyblank [6].

Theorem 3.7. A nonbipartite matching covered graph G is a brick if and only if
it is 3-connected and bicritical.

In that case, b(G) = 1. We have thus very briefly described a polynomial
algorithm for determining b(G) for a given matching covered graph G.

We end these preliminary remarks with the following observation. In polynomial
time, we know how to determine the set of removable ears of G and also, for each
such ear R, the numbers b(G) and b(G − R). Therefore, in polynomial time we
know how to determine the set of b-removable ears of G.

Lemma 3.8. There is a polynomial algorithm that, given a matching covered
graph G, either determines (i) a conformal subgraph H of G such that p(H) > 0,
or (ii) an ear decomposition

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G
of G where for 2 ≤ i ≤ r, Gi−1 = Gi − Ri, and Ri is a b-removable ear of Gi.
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Proof. If G is K2 then r := 1 and G1 := G. Assume thus that G is not K2. Deter-
mine, in polynomial time, a b-removable ear of G, if one exists. By Theorem 2.8,
if no such ear exists then p(G) > 0 and we are done. If a b-removable ear R
is found, then recursively run the algorithm for matching covered graph G − R.
Any conformal subgraph of G − R is a conformal subgraph of G. If G − R has a
conformal subgraph H such that p(H) > 0, then H is a conformal subgraph of G
and we are done. Alternatively, an ear decomposition

G1 ⊂ G2 ⊂ . . . ⊂ Gr−1 = G − R

is obtained, where for each i, 2 ≤ i < r, Gi−1 = Gi − Ri, and Ri is a b-removable
ear of Gi. Add to that decomposition graph Gr := G as its last term, where
Rr := R is the b-removable ear of Gr such that Gr−1 = Gr − Rr. �

Theorem 3.9. There exists a polynomial algorithm that, given a matching covered
graph G, determines an orientation D of G such that G is Pfaffian if and only
if D is a Pfaffian orientation of G.

Proof. Run the algorithm described in the proof of Lemma 3.8. We now define
the orientation D as follows. If a conformal subgraph H of G such that p(H) > 0
has been obtained, then G is not Pfaffian, and any orientation D of G satisfies the
assertion. We may thus assume that an ear decomposition

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

was determined, where, for i = 2, 3, . . . , r, Gi−1 = Gi−Ri, and Ri is a b-removable
ear of G. Orient G1 arbitrarily. For i = 2, 3, . . . , r, extend the orientation Di−1

of Gi−1 to an orientation Di of Gi as follows: determine in polynomial time a
conformal circuit Qi of Gi that contains some edge in Ri. Orient the edges of Ri

so that Qi has odd parity in Di.
We now show, by induction on i, that Gi is Pfaffian if and only if Di is a Pfaffian

orientation of Gi. This assertion holds immediately for i = 1. Assume thus that
i > 1. If Di is a Pfaffian orientation of Gi, then Gi is certainly Pfaffian. To prove
the converse, assume that Gi is Pfaffian. Then, Gi−1 is Pfaffian. By induction,
Di−1 is a Pfaffian orientation of Gi−1. By Corollary 3.6, it follows that Di is a
Pfaffian orientation of Gi. In particular, G is Pfaffian if and only if D := Dr is a
Pfaffian orientation of G. �

With the next two corollaries we establish the result first proved by Vazirani
and Yanakakis [16], that it is no easier to decide whether a given orientation of a
graph is Pfaffian than deciding that the graph is Pfaffian and finding a Pfaffian
orientation if it is.

Corollary 3.10. The problem of determining whether or not a given match-
ing covered graph is Pfaffian is polynomially reducible to the problem of deciding
whether or not a given orientation of a matching covered graph is Pfaffian.
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Corollary 3.11. The problem of determining whether or not a given orientation D
of a matching covered graph G is Pfaffian is polynomially reducible to the problem
of deciding whether or not a given matching covered graph is Pfaffian.

Proof. Determine whether G is Pfaffian. If G is not Pfaffian then certainly D is
not Pfaffian. Assume thus that G is Pfaffian. Then, p(H) = 0, for each conformal
subgraph H of G. Run the algorithm described in the proof of Lemma 3.8, in
order to obtain an ear decomposition

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

of G, where, for i = 2, 3, . . . , r, Gi−1 = Gi −Ri, and Ri is a b-removable ear of G.
For each i, 1 ≤ i ≤ r, let Di denote the restriction of D to Gi.

For i = 1, 2, . . . , r, we now determine, in polynomial time, whether Di is
Pfaffian, and, if the answer is negative, a conformal circuit Q of Gi that has
even parity in Gi. If i = 1, then Di is certainly Pfaffian. Assume thus that i > 1.
If Di−1 is non-Pfaffian, then let Q be a conformal circuit of Gi−1 that has even
parity in Di−1. Then, Q is a conformal circuit of Gi that has even parity in Di.
Assume thus that Di−1 is Pfaffian. In polynomial time, determine a conformal
circuit of Gi that contains some edge in the b-removable ear Ri of Gi. If Qi has
even parity in Di then Di is certainly non-Pfaffian. Assume thus that Qi has odd
parity in Di. By Corollary 3.6, it follows that Di is a Pfaffian orientation of Gi.
In particular, the algorithm either determines that D is Pfaffian, or alternatively,
returns a conformal circuit of G that has even parity in D. �

4. A Characterization of Pfaffian bipartite graphs

The first results in this section provide the basis for the characterization of
Pfaffian bipartite graphs. Recall that braces are bipartite matching covered graphs
free of nontrivial tight cuts. Braces have an important property concerning remov-
able edges.

Lemma 4.1 (see [2], Lem. 3.2). Let G be a brace on at least six vertices. Then
every edge of G is removable.

The following lemma provides a characterization of non-removable edges in
matching covered bipartite graphs.

Lemma 4.2 (see [12], Th. 4.1.1). Let G[A, B] be a bipartite matching covered
graph distinct from K2 and let e be an edge of G. Then, e is not removable in G if
and only if there is a partition {A′, A′′} of A and a partition {B′, B′′} of B with
|A′| = |B′| such that e is the only edge joining a vertex in A′ to a vertex in B′′.

Many properties that do not hold in general for bipartite matching covered
graphs hold for bipartite graphs obtained from the deletion of a removable edge
from a brace. We now describe some of those properties.

Let G be a matching covered graph G with bipartition {A, B}. For each shore X
of a tight cut C, the numbers |X ∩ A| and |X ∩ B| differ by exactly one, by
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Proposition 2.1. Whichever of X ∩ A and X ∩ B is the largest, it is called the
majority part of X , whereas the other is the minority part of X . The next property
is immediate from the fact that braces are free of tight cuts and Proposition 2.1.

Proposition 4.3. Let G be a brace, e a removable edge of G, C := ∂(X) − e a
nontrivial tight cut of G− e. Then, e is the only edge of G that has its ends in the
minority parts of X and of X.

Lemma 4.4. Let G be a brace, e a removable edge of G, C := ∂(X)−e a nontrivial
tight cut of G − e. Then, each edge of C is removable in G − e.

Proof. Assume to the contrary that there is an edge e′ in C that is not removable
in G− e. Then, e′ is not removable in some (bipartite) C-contraction of G− e, by
Proposition 2.2. Adjust notation so that e′ is not removable in the C-contraction H
obtained from G by contracting X to a single vertex x. Let {A, B} denote the
bipartition of H . Adjust notation so that x lies in A.

Let y denote the end of e′ in X. Thus, y lies in the majority part of X . By
Lemma 4.2, there exists a partition (B′, B′′) of B and a partition (A′, A′′) of A
such that |A′| = |B′| and e′ is the only edge of H that joins a vertex of A′ to a
vertex of B′′. Then, Y := A′′ ∪ B′′ ∪ {y} is the shore of a nontrivial tight cut
of G − e. Moreover, edge e has one end in X, the other in X ∩ A, the minority
part of X . Thus, no end of e lies in B′′. We conclude that Y is the shore of a
nontrivial tight cut of G, a contradiction. As asserted, every edge of C is removable
in G − e. �

Suppose that G is a brace and e is a removable edge of G. It turns out that one
can always find at least two removable edges of G − e incident with any vertex,
provided that vertex is of degree greater than two in G − e, as shown in the next
result.

Lemma 4.5. Let G[A, B] be a brace, e a removable edge of G, v any vertex of G.
If the degree of v is greater than two in G − e then at most one edge of G − e
incident with v is not removable in G − e.

Proof. If every edge of G−e incident with v is removable in G−e then the assertion
holds immediately. We may thus assume that there is an edge e′ incident with v
that is not removable in G− e. We must now show that every edge of ∂(v)− e− e′

is removable in G − e.
By Lemma 4.2, there is a partition {A′, A′′} of A and a partition {B′, B′′}

of B with |A′| = |B′| such that e′ is the only edge of G − e joining a vertex
in A′ to a vertex in B′′. Assume, without lost of generality, that v ∈ A′. Then
X ′ := (A′ − v) ∪ B′ is the shore of a (possibly trivial) tight cut C′ of G − e.

Consider first the case in which X ′ is a singleton. In that case, each edge of
∂(v) − e − e′ joins v to the only vertex of X ′. By hypothesis, the degree of v in
G − e is three or more. Therefore, the edges of ∂(v) − e − e′ are multiple edges.
We conclude that the assertion holds in this case.

We may thus assume that X ′ is not a singleton. As X ′ contains all the vertices
of B′′ and also vertex v, it follows that X ′ is not a singleton either. Thus, C′ is a
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nontrivial tight cut of G− e. Moreover, all the edges of ∂(v)− e− e′ lie in C′. By
Lemma 4.4, each edge of C′ is removable in G−e. Thus, each edge of ∂(v)−e−e′

is removable in G − e. �

Theorem 4.6. A bipartite matching covered graph G is Pfaffian if and only if it
does not contain K3,3 as a minor.

Proof. If G contains K3,3 as a minor then clearly G is non-Pfaffian, for K3,3 is
non-Pfaffian. Now, suppose that G is non-Pfaffian, and let us show, by induction,
that G contains K3,3 as a minor.

If G contains a proper minor H that is non-Pfaffian then, by induction hy-
pothesis, H contains K3,3 as a minor. As the minor property is transitive, G also
contains K3,3 as a minor. We may thus assume that all proper minors of G are
Pfaffian. We shall prove that G is K3,3. As G is free of non-Pfaffian proper minors,
it follows that G is simple. Graphs K2 and C4 are the only simple bipartite match-
ing covered graphs on two and four vertices, respectively, and they are Pfaffian
graphs. It follows that G contains at least six vertices.

Proposition 4.7. Graph G is a brace.

Proof. Observe first that every (not necessarly removable) single ear of G has
length one, otherwise, G is an even subdivision of a bipartite graph H that is
non-Pfaffian and a proper minor of G, a contradiction.

We now prove that G is free of vertices of degree two. For this, assume, to the
contrary, that G has a vertex v, that has precisely two neighbors, u and w. Let
X := {u, v, w}, C := ∂(X). As |V (G) ≥ 6, C is a nontrivial tight cut of G. The
C-contraction G′ of G that contains the vertices in X is C4, up to multiple edges,
whence it is Pfaffian. By Theorem 2.4, the other C-contraction of G, denoted G′′,
is non-Pfaffian. Vertices u and w both have degree grater than two in G, because G
is free of single ears of length greater than one. Thus, the contraction vertex, say x,
of G′′ has degree at least four in G′′. Moreover, each edge of C is a multiple edge
in G′. By induction hypothesis, G′′ has K3,3 as a minor. As K3,3 is cubic and x
has degree four in G′′, it follows that K3,3 is a proper minor of G′′. As G is free
of single ears of length greater than one and x has degree four in G′′, it follows
that G′′ is also free of single ears of length greater than one. We conclude that G′′

has a removable edge e such that G′′ − e is non-Pfaffian. If e does not lie in C
then e is removable in G. If e lies in C then it is a multiple edge in G′, whence
removable in G′. In both alternatives we conclude that e is removable in G, by
Proposition 2.2. Clearly, C − e is a tight cut of G − e and one the (C − e)-
contractions of G − e is G′′ − e, in turn a non-Pfaffian graph. By Theorem 2.4,
G − e is non-Pfaffian. This is a contradiction to the hypothesis that G is free of
proper non-Pfaffian minors. As asserted, G is free of vertices of degree two.

Finally, assume, to the contrary, that G has a non-trivial tight cut C. By
Theorem 2.4, at least one of the C-contractions of G is non-Pfaffian. Let X be a
minimal subset of V (G) such that C := ∂(X) is a nontrivial tight cut of G and
the C-contraction G′ of G, obtained from G by contracting X to a single vertex x,
is non-Pfaffian. Note that the other C-contraction of G, denoted G′′, must be a
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brace, by the minimality of X , and by Theorem 2.4 and Proposition 2.1. Let v
be any vertex of X in the minority part of G′′. Then, no edge of ∂(v) lies in C.
Vertex v must be adjacent to at least three vertices of G, because G is simple and
free of vertices of degree two. It follows that G′′ is a brace with at least six vertices.
Let e be any edge of ∂(v). By Lemma 4.1, e is removable in G′′. As e does not lie
in C, it is removable in G. Cut C is a tight cut of G − e, the C-contraction G′ of
G − e is non-Pfaffian. By Theorem 2.4, G − e is non-Pfaffian. Again, we have a
contradiction to the hypothesis that G is free of proper non-Pfaffian minors. We
conclude that G is free of nontrivial tight cuts. That is, G is a brace. �

Let e be an edge of G. By Lemma 4.1, G−e is matching covered and so, G−e is
Pfaffian. Consider a Pfaffian orientation D of G−e. Then, every perfect matching
of G − e has the same sign relative to the given orientation.

Orient edge e arbitrarily and consider the set Me of all perfect matchings of G
containing e. The matchings in Me cannot have the same sign, otherwise, by
possibly changing the orientation of e, we get all perfect matchings of G with the
same sign and we conclude that G is Pfaffian, a contradiction. Then, there exist
two perfect matchings F1 and F2 in Me with distinct signs. We now determine
properties of matchings F1 and F2.

Proposition 4.8. Every removable edge of G − e lies in F1 ∪ F2.

Proof. Suppose that G−e contains a removable edge f that does not lie in F1∪F2.
Then, G−e−f is a bipartite matching covered graph. Moreover, D−f is a Pfaffian
orientation of G− e− f . As e has its ends in distinct parts of G− e− f , addition
of e to G − e − f produces a matching covered graph (see [12, Th. 4.1.1]). Thus,
G − f is matching covered.

As all proper minors of G are Pfaffian, G− f is Pfaffian. As D− f is a Pfaffian
orientation of G − e − f , then, by Corollary 3.6, D − f has an extension D′ to
an orientation of G − f that is Pfaffian. But F1 and F2 are perfect matchings of
G− f having distinct signs in D′. This is a contradiction. Thus, every removable
edge of G − e lies in F1 ∪ F2. �

Proposition 4.9. The set F1 ∩ F2 − e is empty.

Proof. Assume, to the contrary, that F1 ∩ F2 − e contains an edge, say f . Let v
denote an end of f . As f and e are distinct edges of a matching, they are nonad-
jacent. Thus, v is not an end of e. As G is a brace, vertex v has degree at least
three in G − e. By Lemma 4.5, ∂(v) − f contains an edge that is removable in
G − e. That edge does not lie in F1 ∪ F2, a contradiction to Proposition 4.8. �

By Theorem 1.1, F1 ⊕ F2 contains a circuit C of even parity. Moreover, e does
not lie in C. Let F ′

2 := F1 ⊕ C. Then, F1 and F ′
2 are perfect matchings of G

with distinct parities, both of which contain edge e. If E(C) is a proper subset
of F1 ⊕ F2, then F1 ∩ F ′

2 − e is nonnull, in contradiction to Proposition 4.9. We
conclude that E(C) = F1 ⊕ F2. Thus, C is a Hamiltonian circuit of G − u − v,
where u and v are the ends of e.
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Now, suppose that C contains a chord f . Then, C+f is the union of two circuits
of G that do not contain e. Moreover, as G is simple and bipartite, both circuits
have sizes smaller than C, one of them, say C1, is F1-alternating, the other, C2, is
F2-alternating. As C has even parity, one of C1 and C2, say C2, has even parity.
Then, F ′

2 := F2 ⊕ C2 is a perfect matching of G that contains edge e, has sign
distinct from that of F1 and F1 ∩F ′

2 − e is nonnull, a contradiction. Thus, C does
not contain a chord. That is, G − u − v = C.

As G is a brace, every vertex of G has degree at least three. As G is bipartite,
every vertex of C must be adjacent to precisely one of u and v. By Proposition 4.8
and Lemma 4.5, the ends of e must have degree three in G. We conclude that
C = C4 and G = K3,3. �

5. Final remarks

As mentioned in the introduction, the Pfaffian orientation problem has been
completely solved for planar graphs and bipartite graphs. Generalizing Little’s
theorem, Fischer and Little [7] found an excluded conformal minor characteriza-
tion of near-bipartite graphs. Apart from these results, as far as we know, the
complexity status of the Pfaffian orientation problem is very much open.

A cut C in a matching covered graph is separating if both C-contractions are
matching covered. Thus, tight cuts are separating cuts. But, in general, a separat-
ing cut need not be a tight cut. We say that a brick is solid if it is free of non-trivial
separating cuts. Solid bricks are precisely the bricks whose perfect matching poly-
topes are described in terms of degree constraints and non-negativity [1].

Conjecture 5.1. A solid brick is Pfaffian if and only if it does not have a minor
having K3,3 as a brace.

Note added in proof: Since writing this paper, we have been able to prove
Conjecture 5.1.
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