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A SPARSE DYNAMIC PROGRAMMING ALGORITHM
FOR ALIGNMENT WITH NON-OVERLAPPING
INVERSIONS

ALAIR PEREIRA DO LAGO!, ILyA MUCHNIK? AND
CASIMIR KULIKOWSKI?

Abstract. Alignment of sequences is widely used for biological se-
quence comparisons, and only biological events like mutations, inser-
tions and deletions are considered. Other biological events like inver-
sions are not automatically detected by the usual alignment algorithms,
thus some alternative approaches have been tried in order to include
inversions or other kinds of rearrangements. Despite many important
results in the last decade, the complexity of the problem of alignment
with inversions is still unknown. In 1992, Schoniger and Waterman pro-
posed the simplification hypothesis that the inversions do not overlap.
They also presented an O(n®) exact solution for the alignment with
non-overlapping inversions problem and introduced a heuristic for it
that brings the average case complexity down. (In this work, n is the
maximal length of both sequences that are aligned.) The present paper
gives two exact algorithms for the simplified problem. We give a quite
simple dynamic program with O(n*)-time and O(n?)-space complex-
ity for alignments with non-overlapping inversions and exhibit a sparse
and exact implementation version of this procedure that uses much less
resources for some applications with real data.

Mathematics Subject Classification. 05C85, 68R15, 90C27,
90C39.

1. INTRODUCTION

In evolution history, some biological events introduce changes in the DNA se-
quences. Some typical biological events include mutations, in which a nucleotide
is substituted by another one, deletions and insertions of nucleotides. Hence, any
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actaga-tcagtc-a actaga-tcagtca
L Lol T ek |
a-ttgaatc-gacta a-ttgaatcgacta

FiGURE 1. Two alignments for actagatcagtca and attgaatcgacta.

original sequence
A BC DE F

A’ BC’ DE’ F’

_—
A’ B'D CE’ F’

new sequence

FI1GURE 2. Example of DNA inversion.

sequence comparison must take into consideration the possibility of these events if
it is expected to identify high similarity between two sequences. Typical alignment
procedures try to identify which parts do not change and where these biological
events are, after exhibiting one best alignment according to some optimization
criteria.

For instance, in Figure 1, we see two alignments of actagatcagtca against
attgaatcgacta. From left to right, one can detect a deletion of ¢, a mutation
from a to t and an insertion of a in both alignments. At the rightmost part, the
first alignment reports a deletion of a, a mutation from ¢ to a and an insertion of ¢.
In contrast, the second alignment highlights the inversion of agtc to its reverse!
complement? gact. Since common aligners do not take inversions into considera-
tion, they would report the first alignment. Figure 2 shows how an inversion can
occur and why one segment is substituted by its reverse complement sequence.

Alignments can be associated with a set of edit operations that transform one
sequence to the other. Usually, the only edit operations that are considered are

1 The order of symbols is reversed.
2 Symbols a and ¢ are swapped and ¢ and g are swapped as well.
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the substitution (mutation) of one symbol by another one, the insertion of one
symbol and deletion of one symbol. If costs are associated with each operation,
there is a classic O(n?) dynamic program that computes a set of edit operations
with minimal total cost and exhibits the associated alignment, which has good
quality and high likelihood for realistic costs.

Consider three new possible edit operations:

e the 2-reversion, which reverses the order of two consecutive symbols;

e the reversion operation, which reverses the order of any segment of sym-
bols instead of a segment of length 2;

e the inversion operation, which substitutes any segment by its reverse com-
plement sequence. The inversion operation is the operation that is inter-
esting in molecular biology. (Diagram in Fig. 2 represents the inversion
of a DNA segment. The DNA sequence is coded by two complementary
tapes and any tape has an orientation from 5’ to 3’.)

Associated with any of these three operations, we can define new alignment prob-
lems. For instance, given two sequences and fixed costs for each kind of edit
operation, the alignment with inversions problem is an optimization problem that
queries the minimal total cost of a set of edit operations that transforms one se-
quence to the other. Moreover, one may also be interested in the exhibition of
its correspondent alignment and/or edit operations. Similarly, we can define the
alignment with 2-reversions and the alignment with reversions problems.

In 1975, Wagner [22] studied the alignment with 2-reversions problem and
proved that it admits a polynomial solution if the cost of a 2-reversion is null.
On the other hand, he also proved that obtaining an optimal solution is NP-hard,
if any operation has a constant positive cost.

To the best of our knowledge, the computational complexities of alignment with
reversions and alignment with inversions problems are unknown.

In order to deal with alignments with inversions, three main approaches have
been considered through the years:

(1) non-overlapping inversions;
(2) sorting unsigned permutations by reversals and;
(3) sorting signed permutations by reversals.

Before we proceed with the results of this paper, we give a brief summary of these
three approaches.

The first approach was introduced in 1992, by Schoniger and Waterman [20],
when they introduced a simplification hypothesis: all regions involved in the inver-
sions do not overlap. This led to the alignment with non-overlapping inversions
problem. They presented an O(n®) solution for this problem and also introduced
a heuristic for it that reduced the running-time. This heuristic uses the algorithm
by Waterman and Eggert [23] that reports the K best non mutual intersecting
local alignments in order to reduce the running time to something between O(n?)
and O(n*), depending on the data.

A second approach has been tried in order to study inversions. This approach
applies well for alignment of sequences of genes and has been very used with
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mitochondrial genomes. It does not apply for sequences of nucleotides nor for
sequences of aminoacids because no repetitions of symbols are allowed. (Repeated
genes and paralogs are not allowed.) Moreover, no insertion and no deletion are
considered and the only admitted operation is the reversal, where a reversal is
defined as transforming a sequence like (1,2,3,4,5) into (1, 4, 3,2, 5).

The problem solved by this approach, also called sorting unsigned permutations
by reversals, means the computation of a kind of “edit distance” of two permuta-
tions where only the reversal operation is allowed. In this case, the data are two
permutations of (1,2,3,...,n), where n is the number of genes. Kececioglu and
Sankoff [18] gave a quadratic 2-approximation algorithm in 1995 and Christie [3]
gave a 3/2-approximation algorithm in 1998. Caprara [2] proved in 1999 that this
problem is in fact NP-hard.

The third interesting approach is the problem called sorting signed permuta-
tions by reversals. This is the same problem as sorting unsigned permutations
by reversals up to the fact that signs are also attributed to a gene and a rever-
sal also flips its sign. For instance, one reversal could transform (1,2,3,4,5) to
(1,—4,-3,—2,5). This sign is usually associated with the direction of the gene
(which DNA strand it belongs to).

Hannenhalli and Pevzner [13,14] gave the first polynomial algorithm for the
problem in 1995 and started a sequence of papers based on this approach. Han-
nenhalli and Pevzner’s algorithm was O(n?) and it was improved to O(n?) by
Kaplan, Shamir and Tarjan [16,17] in 1997. In 2001, Bader, Moret and Yan [1]
gave an algorithm that computes the minimal number of reversals distance in O(n)
(finding the sequence of reversals still requires O(n?)). These studies have been
applied to philogenetic reconstruction studies.

In 2000, El-Mabrouk [7,8] studied the inclusion of two operations: insertions
and deletions of gene segments. She obtained partial results and gave an exact
polynomial solution for one case and a polynomial heuristic with a polynomial
tester for optimality in the other case. Repeated symbols are still not allowed. In
2002, El-Mabrouk [9] also obtained some partial results on considering reversals
and duplications.

This paper gives two exact algorithms for the alignment with non-overlapping
inversions problem, which is the first approach used to attack the problem of
alignments with inversions. Algorithm 1 is an O(n*) solution that uses O(n?)
space and Algorithm 2 is a sparse dynamic implementation of it that reduces the
resources usage if there are o(n?) matches. This is often expected if the cardinality
of the alphabet is large and it is true for the kind of application we have in mind,
where the letters are DNA fragments of fixed length.

2. BASIC DEFINITIONS
Let A be any alphabet, a set of letters. Any finite sequence on A is also called a

word on A or simply a word if the alphabet is clear. Let A* be the set of all words
on A, including the empty word denoted by 1. We identify words of length 1 to
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Ficure 3. Example of a matching graph.

the letters they contain. The concatenation - of words is an associative operation
defined over A* and it will be often omitted. Let w = wjwsy...w be a word.
We denote by |w]| the length k of w. We will also denote w;, the i-th letter of w,
by wl[i]. Let x,y,z € A*. We denote by xA* the set {xy|ly € A*}, we denote by
A*x the set {yz|ly € A*} and we denote by A*zA* the set {yxz|y,z € A*}. We
say that x is a prefix of w if w € xA*, we say that x is a suffiz of w if w € A*x
and we say that z is a factor of w if w € A*zA*. For 1 < i < j < k, the factor
w;w;11 - - w; of w is also represented by w[i.. j].

Let —, also called inversion, be any operation on A* that satisfies the following

properties:

(1) @ € A)Va € A

(2) T-y=7-7,V,y € A*.
Notice that the inversion operation on A* is defined by its values on the letters
of A. For instance, let A = {a,c,t,g} and let s € A* be any DNA sequence. If
the inversion is defined by @ = a, t = ¢, ¢ = ¢ and § = g, it maps s to its reverse
sequence. On the other hand, if the inversion is defined by a = ¢, t =a, ¢ =g
and g = ¢, it maps s to its reverse complement sequence. The last case is the
interesting case for DNA sequences in molecular biology.

Let w: Ax A — RU{—o00} be any weight function. We say that (a,b) € Ax A
is a match if w(a,b) # —oo.

Let s = s182---s, and t = t1to - -ty be two words. We define the matching
graph of s and t as the weighted and colored bipartite graph G = G(s,t,w,—) =
(V, E). The vertex set is a set of symbols V' = {s1,..., sk, t1,..., L } and has size
|s| + |t]. (We do not identify two symbols s; and ¢; even in the case the letters s;
and t; are the same letter in A.) The edge set E is a double copy of Ky
for any pair of vertices s; and ¢; we link them with one blue/dark-gray edge of
weight w(s;, t;) and one red/light-gray edge of weight w(s;,t;). (In fact, edges with
weight —oo will not be used for our purposes and could be deleted.) An edge with
weight that is not —oo is called a direct match if it is blue and it is called inverted
match if it is red. In Figure 3 we have an example of a matching graph. In this
figure, as in others, we do not draw edges with weight —oc.

Given u € V* a nonempty factor of s1s5--- s, and v € V* a nonempty factor of
tite - - tgr, we call B = (u,v) a block. Given a block B = (u,v), there exist integers
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FIGURE 4. Bicoloured incidence matrix.

1<i <i<|sland 1 < j < j < |t| such that u = s[i’..i] and v = t[j’.. j]. Hence,
we can associate ([i’..1] X [j'..j]), the rectangle associated with the block B, with
B. In Figure 4 we have an incidence matrix of the matching graph of Figure 3 and
only matches are shown. Cells at position (s;,t;) are colored according to the color
of the edge linking these vertices. (We could use purple if we had both matches
for the same cell.) We can also see four rectangles corresponding to the blocks
(8182, t1tats), (S3548586, tatstetr), (S78s,tste) and (S9s10,t10t11). Cells inside a
rectangle correspond to edges with vertices in the factors that form the respective
block.

Consider an edge that links s; to ¢; and an edge that links s;» to t;;. We say that
they cross each other if (i —i')(j — j') < 0, we say that they touch each other if
(i—i")(j—4') = 0 and we say that they are parallel if (i—i')(j—j') > 0. Let M C FE
be any set of edges in a matching graph. Recall that M is called a matching if any
two edges of M do not touch each other. Moreover, M is called a direct matching
if it has only direct matches and any two of them are parallel. Furthermore, M is
called an inverted matching if it has only inverted matches and any two of them
cross each other. The restriction of M to a block B = (s[i’..],t[j'..7]) is the
submatching of all edges of M with vertices in s[i’ .. ] and t[j’ .. j]). Finally, M is
called a blockwise inverted matching, or simply a bimatching, if, considering words
in V*, there exists [ > 1 such that:

e there are [ blocks B; = (u;,v;) such that s = s182...8, = uus ... u; and
t=1t1ta.. .ty = V1V2 ...
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FiGUurE 5. Example of a bimatching with four blocks.

e for any ¢ € {1,...,1}, the restriction M; of M to the block B; is either a
direct matching or an inverted matching;

[ ) M = Uélei.
Given a bimatching M, the number of blocks [ is not unique since any direct
submatching M; can also be split as a union of smaller direct submatchings. How-
ever, the number of blocks such that the corresponding restriction M; is an inverted
matching does not change. This is the number of inversions of M, 1(M). Given
a bimatching M, the smallest possible value for [ is called the number of blocks
of M.

One can notice that in Figure 5 we have a bimatching M with four blocks which

are those associated with the blocks of Figure 4. There are 1(M) = 2 maximal
inverted submatchings.

3. TWO ALGORITHMS FOR OPTIMAL BIMATCHING

Given a bimatching M, one can easily deduce an alignment with non-overlapping
inversions associated with it. One could naturally define the weight of a matching
in a matching graph to be the sum of the weights of its edges. However, it is com-
mon in alignments to give penalties for biological events like mutations, insertions
or deletions. In order to be more general, we attribute a inversion penalty I > 0
for every inverted submatching M;. (We deal with penalties for insertions and
deletions in Sect. 4.) Hence, we define the weight of a bimatching M as

w(M) = Z w(e) —1(M)I.

ec M

Hence, the following is the optimization problem we are interested in solving.

Problem 1. Given a matching graph G = G(s,t,w,—), we want to compute the
maximal weight w(M) for all possible bimatchings M. As usual, we may also be
interested in a bimatching of maximal weight.

Such a bimatching M* of maximal weight is called an optimal bimatching of
s and t and its weight w(M™*) is denoted by BIM(s,t). The weight of an optimal
direct matching is denoted by DM(s,t). Next lemma proves some recurrences on
BIM.
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Lemma 2. Let A be an alphabet, let a,b € A be any letters, let u,v € A* be any
words on A, let us give an inversion operation — on A* and a weight function w
and let I be an inversion penalty. Hence, the following are true:

(1) BIM(1,v) = BIM(u, 1) = 0;

BIM(u,v) + w(a, b)
_ BIM(ua, v)
(2) BIM(ua,vb) = max BIM (u, 0b)
B—-1
where B = max{BIM(u1,v1) + DM(u2,02)jlua = wujus,vb = wvjve,

ugve # 1}.

Proof. By definition, BIM(1,v) = BIM(u,1) = 0. There are four cases for an
optimal bimatching of ua and vb: it includes the blue edge (a,b), which leads to
BIM(ua, vb) = BIM(u, v)+w(a,b); it does not include any edge using b, which leads
to BIM(ua, vb) = BIM(ua, v); it does not include any edge using a, which leads to
BIM(ua, vb) = BIM(u, vb); its last block is inverted, which leads to BIM(ua, vb) =
—TI + max{BIM(u1, v1) + DM(u2,7z)|ua = ujusz, vb = v1v2, ugve # 1}. O

Lemma 2 leads us to the dynamic programming algorithm given by Algorithm 1.
In fact, if we associate the cases seen in the proof of Lemma 2 with the lines in
Algorithm 1, the first case is considered in line 8 and the next two cases are
considered in line 7. Every subcase considered in the max operation of fourth case
is considered at line 15. Notice that 1 < ¢’ < ¢ < |s|, in contrast to 1 < 7 < j" < |¢].
One can notice that the maximum B of fourth case is not computed first in order to
compute other B’s later. Partial computations are done in advance in Algorithm 1
in order to factorize better the computations of L[i’, j/] = DM(s[i’..1],t[j..j])-
These facts lead to the correctness of Algorithm 1. Considering the four loops and
the dimension of the two matrices L and B, one can then prove Theorem 3.

Theorem 3. Algorithm 1 computes in B|s|, |t|] the mazimal weight of a bimatch-
ing BIM(s,t) with time complexity |s|?|t|* and space complexity |s||t|.

As usual, by tracking any maximality choice, one can obtain also an optimal
bimatching. The numbers present in positions (s;,t;) of the incidence matrix of
Figure 6 show the corresponding values Bli, j| computed for most important cells in
Algorithm 1 if all matches have weight 1. One can therefore obtain the bimatching
of Figure 5 as the optimal bimatching for the matching graph of Figure 3. It
should be said that this algorithm was first published in 2003 [6] and a preliminary
version of Algorithm 2 has been used since 2001 [4]. Gao et al. independently
published a time complexity |s|?[t|> and space complexity |s||t| for alignments
with non-overlapping inversions in 2003 [12]. This work does not include a sparse
implementation like Algorithm 2.

3.1. A SPARSE DYNAMIC PROGRAM FOR BIM(s, t)

In Algorithm 2, we improve the computational resources usage required by
Algorithm 1 when there are o(|s||t|) matches. We use techniques that appeared
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Algorithm 1. An O(n*)-time and O(n?)-space algorithm for BIM.
BIM(s, ¢)

1 > Compute the table BJi,j] = BIM(s[1..4],¢[1..])

2 Let Bfi,j]beOfori=0o0rj=0

3 for i from 1 to |s| do

4 for j from [t| downto 1 do

5 Bli,j] «— —o0

6 for j from 1 to |t| do

7 Bli,j) — max(BJi,j), Bli — 1,), Bli.j — 1)

8 Bli, j] < max(Bl[i, jl, [2—13—1]+w(5[21 t7])

9 > Compute L[i’,5'] = DM(s[i’..4],t[j .. j']) and set Bli, ;']
10 Let L[/, j ]beOforzferlor] =j5-1

11 for j’ from j to |¢| do

12 for i’ from i downto 1 do

13 L[ ) = max(L[i" ' = 1Ll +1,5)

14 L[i’,j']  max(L[i" + 1, 5" — 1] + w(s[i'], ¢[j']), LIi", j'])
15 B[iaj/]‘*ma’X(B[Za]]aL[ )] ]+B[Z 71;.7*1]71)
16 return B

in a work by Hunt and Szymanski [15] in 1977 for the computation of the length
of the longest common subsequence (LCS) (A good survey can be found in [21]).
The name Sparse Dynamic Programming was adopted by Eppstein et al. [10,11]
in a well known work published in 1992. The main idea behind these techniques
is that only cells associated with a match are “visited”, and this is done here.

Before we proceed, we need a few more definitions. We say that a rectangle
([i..4]x[k..1]) dominates the rectangle ([¢'.. | x[k'..U'])if j < j andl <!’. The
pair (j,1) is called the right upper corner of ([i..j] x [k..l]) and the domination
relation depends only on the right upper corners. We will give direction signs for
rectangles according to whether we admit a direct or an inverted matching as the
restriction of a bimatching to the corresponding block. We define the rank of a
signed rectangle ([i..j] x [k..l]) to be the maximal weight of bimatchings that are
restricted to the block (s[a. . j], t[c..l]) and admit a block decomposition where the
last block is (s[i..j],t[k..l]) and the restriction to it has the right direction. We
say that a signed rectangle is dominant if any other signed rectangle that dominates
it has either a smaller rank or the same right upper corner. The dominance relation
is a partial quasi-order where the equivalence classes have always the same rank
and the same right upper corner.

The only considered signed rectangles in Algorithm 2 are all direct rectan-
gles ([i..4] x [j..J]) such that (4, ) is a direct match and all inverted rectangles
([i..4] x [k..1]) such that both (j, k) and (4,) are inverted matches. We store
only dominant signed rectangles (one for each equivalence class). This naturally
gives us the rank of their right upper corner positions. (See function UPDATE in
Algorithm 3.)



184 A. PEREIRA DO LAGO, I. MUCHNIK AND C. KULIKOWSKI

Algorithm 2. An O(m?(log® k 4 logm))-time and O(m + k)-space algorithm
for BIM, where m = O(|s||t|) is the number of matches and k = O(s||t|) is the
number of dominant rectangles
BIM(s[a..b],t[c..d], M,w)

1 > Compute R, an AVL-tree of AVL-trees R, of dominant rectangles
> Any AVL-tree R[r] = R, has only rectangles of rank r, for r € R

> In R[r], rectangles ([¢'..4] X [j..j']) are ordered by i

> In R, AVL-trees R[r] are ordered by the rank r

> ([z..y] X [u..v]) € R[r] dominates ([z’'..y'] x [«..v]) € R[r'] im-

plies r < 7’

> RANK(R, 4,j) = BIM(sla. ., tlc..j])
7 > M: list of matches with signs (4,4,d') € [a..b] x [c..d] x {+1,—1}
8 > M is ordered by i as first key, then by j as secondary key, then by d’
9 ¢ « the reflection-rotation defined by §(i,5,d") = (4, |s| + 1 — 4, —d)

10 R0

11 R[—o0] « 0

12 > R[—o0] receives a rectangle that dominates any rectangle

13 UPDATE(R, —o0,([a—1..a—1] x[c—1..c—1]),+1)

14 R[+o0] < 0

15 for (i,j,d') € M do

16 M —d§MnNJa..i| x Z x {—1}) > all inverted matches mapped by ¢
17 Sort all (i,7,+1) € M’ by i as first key, then by j as secondary key

18 if d = +1 then

T W N

(=)

19 r— w(sli], t[j]) + RANK(R,i — 1,5 — 1)

20 if » > RANK(R,¢,j) then

21 UPDATE(R, 7, ([¢..4] x [§..7]),+1)

22 else M" —M'N[j..d xZx{+1}

23 >j..d x [Is] + 1 — di..s] + 1 — o] x {+1} =
§(la..q x[j..d] x{-1}) B

24 ¢ « function defined by ©(f,g) = w(g, f)

25 B — BIM((t[j..d],s[|s| +1—i..|s|+1—a], M", ¢))

26 for §(i',j',—1) € M" do

27 > DM(s[i’..d],t[j..5']) + BIM(sla..i — 1], ¢t[c..5—1]) = I

28 r — RANK(B,j',|s| +1—4') + RANK(R,i' — 1,5 — 1) — I

29 if » > RANK(R,,5') then

30 UPDATE(R, r, ([¢'..4] x [7..5']),—1)

31 return R

The ranks of other positions are “automatically propagated” from dominant
positions. (See function RANK in Algorithm 3.)

Comments in the algorithms explain well the used data structure. One can
notice that the computation of DM(s[i’..4],t[j .. j’]) that was done in Algorithm 1
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is now recursively done at line 25 of Algorithm 2. If M is the matches list applied to
the first call of BIM, the recursive call will only take inverted matches of M. In fact,
these inverted matches are reflected and rotated by the 0 bijective transformation
and any recursive call uses a subset M” of these transformed matches. These
matches are all direct and no inner recursive call is performed. This reflection-
rotation is performed in order to use the same function BIM for the computation
of DM. Taking advantage of the orderings of the lists M and M’ we can efficiently
perform the intersection at line 22 since M" is a tail of M’. Taking advantage
of the orderings of the lists M and M’ we can efficiently perform the intersection
at line 16 and the ordering at line 17. Considering the four cases seen in the
proof of Lemma 2, the first case is treated at lines 19-21. The next two cases are
automatically propagated from dominant positions by the function RANK. The
fourth case is treated at lines 28-30.

Algorithm 3. Functions RANK and UPDATE used in Algorithm 2.
RANK(R, 1, J)
1 > Return the rank of position (i, j)

2 W «— maximal weight assumed by w

3 a<+ —0o0

4 b+ 400

5 m « the rank of the root of R

6 while there is a third rank between a and b do

7 > 3([z..y] X [u..v]) € R[a] that dominates ([i..4] X [j..]])

8 > H(x..y] x [u..v]) € R[b] that dominates ([i..] x [5..]])

9 if Im’ € [m..m+ W) such that
A([z..y] X [u..v]) € R[m'] that dominates ([i..i] x [j..j]) then
10 a«—m'

11 while m < a do

12 m <« right child of m
13 else b—m

14 m «— left child of m

15 return a
UPDATE(R, r, ([¢'..d] x [j..7]),d)
1 > Insert the rectangle ([¢'..4] x [j..j']) of rank r > RANK(R,,j') in R

2 > ([z..y] x [u..v]) € R[r] dominates ([2’..y'] x [u'..v]) € R[r'] im-

plies r < 7/
3 foreach ([z..y] x [u..v]) dominated by ([¢'..4] x [j..4']) do
4 if ([r..y] x [u..v]) € R[r'] for some r' < then
5 Remove ([z..y] X [u..v]) from R[r’]

6 Insert ([¢'..4] x [j..4']) in R[r] ©> We had r > RANK(R,1,5’)

In function RANK in Algorithm 3, we perform a binary-search-like in R in order
to find out the rank of position (i,j) and a and b are the limits of this search.
Unfortunately, it may happen that #([z..y] x [u..v]) € R[b] that dominates



186 A. PEREIRA DO LAGO, I. MUCHNIK AND C. KULIKOWSKI

0 5 10
©

15

1
oo
©

10 44

By |

- H | .
0 5
S

FIGURE 6. Dominant rectangles and their ranks.

([i..4] X [7..7]), but I > bsuch that I([z’..y'] x [’ ..0]) € R[Y] that dominates
([i..4] x [j..7]). Since one can always delete one edge from the boundary from
the rectangle ([z'..y'] x [u'..?v']), one can suppose b’ < b+ W where W is the
maximal weight assumed by w. This is checked at line 9. Notice that the intervals
[m..m + W) only contains m if all matches have weight 1 and the penalty I is
integer. In function UPDATE in Algorithm 3, using the pattern of inserted rectan-
gles, the rectangles ([z..y] X [u..v]) € R[r'] analyzed at loop at line 3 havey =1
and can be kept in a linked list ordered by v (and hence by ', too).

Figure 6 shows dominant rectangles with their corresponding ranks in the right
upper corners as computed in Algorithm 2 (all matches have weight 1). Figure 7
shows an example of possible data that have been applied to the algorithm BIM.
Since the number of matches is much smaller than the size of the matrix, the sparse
implementation is much faster, despite non-sparse implementation simplicity. The
DNA sequences correspond to two syntenic regions from two bacteria (Xylella fas-
tidiosa, genes 0227-0239, and Pseudomonas aeruginosa, genes 4727-4746). These
sequences were split in fragments of length 100 in order to form the alphabet.
A match between two fragments is assumed if the alignment score is above an
adequately chosen threshold.
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Usually, biologists are also interested in penalties for events like insertions and
deletions in the same way inversion penalty I was considered before. Many consec-
utive insertions (deletions) are called a gap and many gap functions (in terms of
the number of symbols involved) are considered for a gap penalty and none of them
are completely accepted to be realistic. The simplest considered gap function, and
a quite satisfactory one, is the linear function. This leads to a gap penalty g > 0
that is subtracted from the weight of the bimatching w(M) for every insertion (a
symbol ¢; that is not matched in s by the bimatching) and for every deletion (a
symbol s; that is not matched in ¢ by the bimatching).
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In Algorithms 1 and 2, a gap penalty g = 0 was considered. The case g > 0 could
easily be managed by few simple modifications in Algorithm 1 (one could subtract g
at lines 7 and 13), but such approach would make things harder for Algorithm 2.
Hopefully, the case g > 0 can easily be reduced to the case g = 0 by applying
Algorithms 1 or 2 for a new weight function ¢ defined by ¥(a,b) = w(a,b) + 2g.
In fact, one can easily prove the following lemma

Lemma 4. BIM,, 4(s,t) = BIM o(s,t) — g|s| — g]t|.

A discussion on local alignments is out of the scope of this paper. Appropriate
initialization modifications are enough for dealing with them.

5. CONCLUSION AND OPEN PROBLEMS

We gave new algorithms for the alignment with non-overlapping inversions prob-
lem, improving the time complexity of an exact solution from O(n%) to O(n?) in
Algorithm 1. In Algorithm 2, we also gave a sparse dynamic programming imple-
mentation that gives the exact solution and can be speeded up even further if we
have o(n?) matches. This is quite common for applications with large alphabets.
Both algorithms can deal with linear gap functions as we have seen and very small
modifications need to be introduced in order to manage local alignments with
non-overlapping inversions.

Let LCS(u,v) denote the length of the longest common subsequence of u and
v. Motivated by these algorithms, one of the authors recently [5] proposed the
following open problem: given two words s and t of length n, one can pre-process
both words in such a way that any query LCS(u,v) can be answered in time O(1),
for u a factor of s and v a factor of ¢. This pre-processing can be done in O(n?).
Can we do it in O(n?)? In O(n®)? Although a little stronger, one can think of a
version with DM (u, v) queries instead of LCS(u, v) queries.

As far as we know, alignment with non-restricted inversions is an open problem.
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