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EPISTURMIAN MORPHISMS AND A GALOIS THEOREM
ON CONTINUED FRACTIONS

Jacques Justin1, 2

Abstract. We associate with a word w on a finite alphabet A an
episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study
their relations with the similar ones for the reversal of w. Then when
|A| = 2 we deduce, using the Sturmian words that are the fixed points
of the two morphisms, a proof of a Galois theorem on purely periodic
continued fractions whose periods are the reversal of each other.
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Introduction

Sturmian words on a two-letter alphabet have been actively studied, at least
since the fundamental paper of Morse and Hedlund [15]. For a survey, see [13].
These words have a deep relation with simple continued fractions. Among the
generalizations of Sturmian words to any finite alphabet, the one known as Arnoux-
Rauzy sequences [2, 16–18] or, with even slightly more generality, as episturmian
words [3,8,11,12] leads to many properties extending those of Sturmian words. In
particular the continued fractions point of view has a transposition for episturmian
words [20]. In this paper the famous Lagrange theorem relating periodic continued
fractions to quadratic numbers was extended to a “multidimensional” continued
fraction algorithm (see also [19]). However this one has not the same efficiency
as the classical one for approximating irrationals by rationals. Evariste Galois
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found, when a student at Lycée Louis le Grand1, a theorem relating the values
of two purely periodic (simple) continued fractions whose periods are reversal of
each other [9]. In the same paper Galois also gives a characterization of quadratic
numbers with a purely periodic continued fraction expansion. Both results are used
in [1] for characterizing the so-called Sturm numbers (see also [13], Th. 2.3.26).

Here we study relations involving some (finite) episturmian words and epis-
turmian morphisms. More precisely we associate with a (finite) word w a palin-
drome Pal(w) and a morphism µw. Such palindromes (which are the bispecial
Arnoux-Rauzy words of [14]) play an important role in the theory of (infinite)
episturmian words [8], in particular in the Sturmian case where they are called
central words [13].

In Section 2 we establish some relations between Pal(w), µw, Pal(w̃), µw̃,
where w̃ is the reversal of w. These relations are explained by the fact that the
incidence matrices of µw and µw̃ are similar.

In Section 3, applying this to a 2-letter alphabet, we prove the above-mentioned
Galois theorem by considering the standard episturmian words which are the fixed
points of µw and µw̃.

It seems to us that this confirms the interest of the multidimensional continued
fraction algorithm in the above sense. However it remains much work to do on the
subject, in particular in relation with the generalized intercept introduced in [11]
and the generalized Ostrowski numeration systems [4, 12].

1. Preliminaries

The alphabet A, |A| ≥ 2, is finite and will be kept throughout the paper, ε is
the empty word, A∗ is the set of (finite) words and Aω the set of (right) infinite
words on A.

The length of v = x1 · · ·xn, xi ∈ A, is |v| = n and the number of occurences of
letter x in v is |v|x. If |v|x = 0, then v is x-free. The reversal of v is ṽ = xn · · ·x1

and v is a palindrome if ṽ = v.
If v ∈ A∗ the (Parikh) vector of v is the |A|×1 vector of the |v|x, x ∈ A, and if ϕ

is an (endo)morphism of A∗ its incidence matrix is the |A|×|A| matrix M = (mxy)
whose columns are the vectors of the |ϕ(y)|, y ∈ A, i.e., mxy = |ϕ(y)|x.

For u ∈ A∗ its (right) palindromic closure is the shortest palindrome u(+) hav-
ing u as a prefix. We have u(+) = uv−1u with v the longest palindromic suffix of u
(when h = fg we sometimes write f = hg−1 and g = f−1h).

Now we say some words about (infinite) episturmian words, limiting ourselves to
what is really needed here. Let ∆ ∈ Aω, ∆ = x1x2 · · ·xi · · · , xi ∈ A. The infinite
word having the sequence of prefixes u1 = ε, u2 = x1, ..., ui+1 = (uixi)(+), ... is the
standard episturmian word directed by ∆ (also called characteristic Arnoux-Rauzy

1 The author also studied at Lycée Louis le Grand but without discovering any theorem.
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sequence if ∆ contains infinitely many occurrences of each of its letters). In par-
ticular for |A| = 2 Arnoux-Rauzy sequences are the Sturmian words, while epis-
turmian words also include the “periodic Sturmian words”, i.e., the infinite words
given by cutting sequences with rational slope.

Now let w = x1 · · ·xn, xi ∈ A, then using the successive letters of w construct as
previously the sequence u1 = ε, . . . , un+1 = (unxn)(+) of all palindromic prefixes
of un+1. We write un+1 = Pal(w) and say that w directs Pal(w). Let x ∈ A. If w
is x-free then Pal(wx) = Pal(w)xPal(w). If x occurs in w write w = w1xw2 with
w2 x-free. Then the longest palindromic prefix of Pal(w) followed by x in Pal(w)
is Pal(w1) whence easily

Pal(wx) = Pal(w)Pal(w1)−1Pal(w). (1)

Consider for any letter a the morphism ψa such that ψa(a) = a and ψa(b) = ab
for any letter b �= a. The ψa generate by composition the monoid of pure standard
episturmian morphisms [11], Section 2.1.

For any w = x1 · · ·xn as previously we write µw = ψx1 ◦ ψx2 · · · ◦ ψxn . In
particular µε is the identity and, for x ∈ A, µx = ψx. We also denote by Mw the
incidence matrix of µw.

The relations between w, µw, Mw are one-to-one and indeed are isomorphisms
between A∗, the monoid of pure standard episturmian morphisms and the monoid
of the Mw.

For continued fractions see [5] for instance.

2. Words and matrices relations

The first lemma recalls and proves for sake of completeness some relations
appearing with different notations in [8, 11]. This allows to prove the curious
relation |Pal(w)| = |Pal(w̃)| and some other ones. Then we give an interpretation
in terms of the matrices Mw and Mw̃.

Lemma 2.1.
1) For any palindrome p and letter x, µx(p)x is a palindrome.
2) For any w ∈ A∗, x ∈ A we have

Pal(xw) = µx

(
Pal(w)

)
x. (2)

3) For any v, w ∈ A∗,

Pal(vw) = µv

(
Pal(w)

)
Pal(v). (3)

Proof.
Part 1) follows from the easy fact that, for u ∈ A∗, x ∈ A, µx(ũ)x = xµ̃x(u).
Part 2) is proved by induction on |w|. If |w| = 0 the assertion is trivial. Other-

wise let w = vy, y ∈ A. If y occurs in v write v = v1yv2 with v2 y-free. Then by
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equation (1) Pal(w) = Pal(v)Pal(v1)−1Pal(v) whence

µx

(
Pal(w)

)
x = µx

(
Pal(v)

)
xx−1µx

(
Pal(v1)

)−1
µx

(
Pal(v)

)
x.

As |v| < |w| and |v1| < |w| we get by induction hypothesis

µx

(
Pal(w)

)
x = Pal(xv)Pal(xv1)−1Pal(xv).

As xv = xv1yv2 and |v2|y = 0, equation (1) shows that the right member is
Pal(xw).

If on the contrary |v|y = 0 then Pal(w) = Pal(v)yPal(v) whence

µx

(
Pal(w)

)
x = µx

(
Pal(v)

)
xx−1µx(y)µx

(
Pal(v)

)
x = Pal(xv)x−1µx(y)Pal(xv).

Thus if y �= x then |w|y = 0, whence µx

(
Pal(w)

)
x = Pal(xv)yPal(xv) =

Pal(xvy) = Pal(xw). If y = x then similarly µx

(
Pal(w)

)
x = Pal(xv)Pal(xv) =

Pal(xvx) = Pal(xw).
For 3) the proof is by induction on |v|. The assertion is trivial for |v| = 0.

Otherwise let v = yv1. Using part 2) of the lemma and the induction hypothesis
we successively get

Pal(vw) = Pal(yv1w) = µy

(
Pal(v1w)

)
y = µy

(
µv1

(
Pal(w)

)
Pal(v1)

)
y

= µyv1

(
Pal(w)

)
µy

(
Pal(v1)

)
y = µv

(
Pal(w)

)
Pal(v). �

Lemma 2.2. For w ∈ A∗ if x ∈ A occurs in w write w = w1xw2 with w1 x-free.
Then

|Pal(w)|x = |Pal(w2)| + 1. (4)

Proof. By Lemma 2.1 Pal(w) = µw1

(
Pal(xw2)

)
Pal(w1) whence as w1 is x-free

|Pal(w)|x = |µw1

(
Pal(xw2)

)|x = |Pal(xw2)|x
= |µx

(
Pal(w2)

)
x|x = |Pal(w2)| + 1. �

We deduce a rather curious relation between the palindromes directed by w and w̃.

Theorem 2.3. For any w ∈ A∗, Pal(w) and Pal(w̃) have the same length.

Proof. The proof is by induction on |w|. This is trivial for |w| = 0. Otherwise
set w = vx. If v is x-free then Pal(w) = Pal(v)xPal(v) whence |Pal(w)| =
2|Pal(v)| + 1. Also, by equation (2), Pal(w̃) = Pal(xṽ) = µx

(
Pal(ṽ)

)
x. As

Pal(ṽ) is x-free, |µx

(
Pal(ṽ)

)| = 2|Pal(ṽ)|. Thus using the induction hypothesis
|Pal(w̃)| = 2|Pal(ṽ)| + 1 = 2|Pal(v)| + 1 = |Pal(w)|.

Otherwise x occurs in v. Write v = v1xv2 with v2 x-free. Then by equation (1)
Pal(w) = Pal(vx) = Pal(v)Pal(v1)−1Pal(v) whence |Pal(w)| = 2|Pal(v)| −
|Pal(v1)|.
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Also Pal(w̃) = Pal(xṽ) = µx

(
Pal(ṽ)

)
x whence |Pal(w̃)| = 2|Pal(ṽ)|−

|Pal(ṽ)|x+1. But Lemma 2.2 applied to ṽ = ṽ2xṽ1 gives |Pal(ṽ)|x = |Pal(ṽ1)|+1.
Thus using induction hypothesis,

|Pal(w̃)| = 2|Pal(ṽ)| − |Pal(ṽ1)| = 2|Pal(v)| − |Pal(v1)| = |Pal(w)|. �

Lemma 2.4. Let w ∈ A∗, y ∈ A.
1) If w is y-free then µw(y) = Pal(w)y. Otherwise write w = v1yv2, v2 y-free,

then µw(y) = Pal(w)Pal(v1)−1.
2)With x ∈ A, if w is x-free or y-free then |µw(y)|x = |Pal(w)|x + |y|x. Other-

wise write w = v1yv2 = w1xw2 with |v2|y = |w1|x = 0. Then

|µw(y)|x = |Pal(w)|x − |Pal(v1)|x = |Pal(w)|x − |Pal(w̃2)|y.

Proof. For 1), by equation (3), Pal(wy) = µw(y)Pal(w). If w is y-free then
Pal(wy) = Pal(w)yPal(w) whence µw(y) = Pal(w)y. Otherwise, with w = v1yv2,
v2 y-free, Pal(wy) = Pal(w)Pal(v1)−1Pal(w) whence µw(y) as claimed.

For 2), if w is y-free then |µw(y)|x = |Pal(w)y|x = |Pal(w)|x + |y|x. If w is
x-free and x �= y then |µw(y)|x = 0 = |Pal(w)|x + |y|x.

Otherwise, write w = v1yv2 = w1xw2 with |v2|y = |w1|x = 0. Then µw(y) =
Pal(w)Pal(v1)−1 whence |µw(y)|x = |Pal(w)|x − |Pal(v1)|x.

It remains to show that |Pal(v1)|x = |Pal(w̃2)|y . If |v1| ≤ |w1| then v1 is
x-free, w2 is y-free, hence |Pal(v1)|x = |Pal(w̃2)|y = 0. Otherwise, |v1| > |w1|.
Write v1 = w1xu, u ∈ A∗. Then using Lemma 2.2, as v2 is y-free and w1 is x-free,
|Pal(v1)|x = |Pal(u)|+1 and similarly |Pal(w̃2)|y = |Pal(ũ)|+1 = |Pal(u)|+1. �
Corollary 2.5. The traces of Mw and Mw̃ are equal.

Proof. For x ∈ A, if |w|x = 0 then |µw(x)|x = |µw̃(x)|x = 1. Otherwise let
w = v1xv2 = w1xw2 with |v2|x = |w1|x = 0. Then by Lemma 2.4 |µw(x)|x =
|Pal(w)|x−|Pal(v1)|x = |Pal(w)|x−|Pal(w̃2)|x. Similarly |µw̃(x)|x = |Pal(w̃)|x−
|Pal(w̃2)|x. Thus in both cases |µw(x)|x − |µw̃(x)|x = |Pal(w)|x − |Pal(w̃)|x.

Summing over x ∈ A we get tr(Mw) − tr(Mw̃) = |Pal(w)| − |Pal(w̃)| = 0. �
It is possible from this to show that Mw and Mw̃ have the same eigenvalues.

Indeed Mwk and Mw̃k have the same traces for any integer k. As the trace is
the sum of the eigenvalues and as the eigenvalues of Mwk and Mw̃k are the k-th
powers of those of Mw and Mw̃ we get that the Newton sums of the eigenvalues
of Mw and Mw̃ are the same and that these matrices have the same characteristic
polynomial.

Theorem 2.6. For x ∈ A set Lw(x) =
∑

y∈A |µw(y)|x. Then

Lw(x) = (|A| − 1)|Pal(w)|x + 1. (5)

Proof. If |w|x = 0 then Lw(x) = |µw(x)|x = 1 = (|A| − 1)|Pal(w)|x + 1. Oth-
erwise let w = w1xw2 with w1 x-free. Then by Lemma 2.4, 2) |µw(y)|x =
|Pal(w)|x−|Pal(w̃2)|y. Summing over y we get Lw(x) = |A||Pal(w)|x−|Pal(w̃2)|.
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As by Lemma 2.2 |Pal(w̃2)| = |Pal(w2)| = |Pal(w)|x − 1 we get Lw(x) =
(|A| − 1)|Pal(w)|x + 1. �

Corollary 2.7. ∑

y∈A

|µw(y)| = (|A| − 1)|Pal(w)| + |A|. (6)

Proof. By summation of equation (5) over x. �

Remark 2.1. The |µw(y)| are periods of Pal(w) and indeed formula (6) is the
same as the one given in [7] for |A| = 3 and [10] for |A| ≥ 2. More precisely the
ordered set of the |µw(y)| is a “good” |A|-uple in the sense of these papers with
its GCD equal to 1 and Pal(w) is a word of maximal length having these periods
|µw(y)| and not having period 1 (this is a particular case of the Fine and Wilf
theorem for |A| periods).

Proposition 2.8. For any x, y ∈ A

Lw(x) − Lw̃(y) = (|A| − 1)(|µw(y)|x − |µw̃(x)|y).

Proof. By Theorem 2.6, Lw(x) − Lw̃(y) = (|A| − 1)(|Pal(w)|x − |Pal(w̃)|y). If
|w|x = 0 or |w|y = 0 then by Lemma 2.4, 2) |µw(y)|x = |Pal(w)|x + |y|x and
|µw̃|y = |Pal(w̃)|y + |x|y whence the result. Otherwise let w = w1xw2 with
|w1|x = 0 . Then by Lemma 2.4, 2) |µw(y)|x = |Pal(w)|x − |Pal(w̃2)|y and
|µw̃(x)|y = |Pal(w̃)|y − |Pal(w̃2)|y whence the result. �

Example 2.1. With A = {1, 2, 3}, w = 123223, w̃ = 233221,

Pal(w) = 12131213121213121312121312131212131213121

Pal(w̃) = 22232223222232223222122232223222232223222,
both of length 41, and

Mw =




21 5 17
12 3 10
8 2 7



 Mw̃ =




1 1 1
16 23 26
4 6 7



 .

It is possible to write Proposition 2.8 as a matricial relation, but we will see now
a more direct way.

Theorem 2.9. Matrices Mw and Mw̃ are similar and are related by

HMw = (HMw̃)T (7)

with H = (hxy) given by hxx = 0, hxy = 1, x, y ∈ A, x �= y.

Proof. For any letter x it is immediate to verify that HMx = (HMx)T whence (7)
by product. �
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Remark 2.2. Let K = (kxy) such that, kxx = 2 − |A|, kxy = 1, x, y ∈ A, x �= y,
then HK = KH = (|A| − 1)I whence

MT
w̃ = (|A| − 1)−1HMwK.

It is possible to deduce from Theorem 2.9 some relations given above and even
some other ones due to the particular form of H , for example det(Mw −MT

w̃ ) = 0
for |A| > 2 and det(Mw −Mw̃) = 0 for odd |A|.
Corollary 2.10. The word w is a palindrome if and only if the matrix HMw is
symmetrical.

Proof. By Theorem 2.9 HMw is symmetrical if and only if Mw = Mw̃. Thus, in
view of the bijection between w and Mw the proof is over. �
Remark 2.3. When A is a 2-letter alphabet, {1, 2}, [6] gives a number theoretical
condition on the |µw(y)| equivalent to w is a palindrome, namely |µw(1)|2 ≡ 1
mod (|µw(1)|+ |µw(2)|). It could be asked whether this condition can be extended
to any finite alphabets.

3. The case |A| = 2 and a Galois theorem

From now on A = {1, 2}. Set Mw = (mij), Mw̃ = (m′
ij), 1 ≤ i, j ≤ 2. For

short we also set p1 = m11 +m21, p2 = m12 +m22 and similarly p′1 = m′
11 +m′

21,
p′2 = m′

12 +m′
22.

The matrix H of Theorem 2.9 becomes the permutation matrix
(

0 1
1 0

)
, thus

by this theorem Mw̃ =
(
m22 m12

m21 m11

)
.

Consider an infinite simple continued fraction, [e1, e2, . . .], e1 ≥ 0, e2, e3, . . . > 0
and the standard Sturmian infinite word s directed by ∆ = 1e12e21e3 · · · . Let
α1, α2 be the frequencies of 1, 2 in s. It is well known [13] that α2 = [0, e1 +
1, e2, e3, . . .].

Consider in particular an immediately periodic continued fraction, [e1, e2, . . ., ed]
(thus e1 > 0, now) and without loss of generality suppose d is even. Then s is
directed by ∆ = wω where w = 1e12e2 · · · 2ed , i.e., s is the fixed point of µw. Also
consider w̃ = 2ed1ed−1 · · · 1e1 and s′ directed by w̃ω , i.e., the fixed point of µw̃.

The above-mentioned Galois Theorem is as follows.

Theorem 3.1. With θ = [e1, e2, . . ., ed] and θ′ = [ed, ed−1, . . ., e1], the algebraic
conjugate of the (quadratic by Lagrange’s Theorem) number θ is −1/θ′.

Let us verify that. Set θ∗ = −1/θ′. As said above the frequency of 2 in s
is α2 = [0, e1 + 1, e2, e3, . . ., ed, e1] and the frequency of 1 in s′ is α′

1 = [0, ed +
1, ed−1, ed−2, . . ., e1, ed].

It follows
α2 =

1
θ + 1

α′
1 =

1
θ′ + 1

=
θ∗

θ∗ − 1
· (8)
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Now the vector (α1, α2)T is an eigenvector of Mw corresponding to the dominating
eigenvalue ξ of Mw (i.e., ξ is the greater root of ξ2−(m11+m22)ξ+1). Calculation
of this vector gives

α1 =
ξ − p2

p1 − p2
α2 =

p1 − ξ

p1 − p2
(9)

and similarly for frequencies α′
1, α

′
2 of 1, 2 in s′. Then using (8) we get

θ =
ξ − p2

p1 − ξ
θ∗ =

p′2 − ξ

p′1 − ξ
· (10)

In order to verify that θ and θ∗ are conjugate it suffices to verify that θθ∗ and
θ + θ∗ are rational and this is easy using ξ2 = (m11 +m22)ξ − 1 and det(Mw) =
m11m22 −m12m21 = 1.

Remark 3.1. This proof is by far less direct than that of Galois but raises the
question of possible generalization to finite alphabets and multidimensional con-
tinued fractions.
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Soc. Math. France 119 (1991) 199–215.

[3] J. Berstel, Recent results on extensions of Sturmian words. Internat. J. Algebra Comput.
12 (2002) 371–385.
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[20] L.Q. Zamboni, Une généralisation du théorème de Lagrange sur le développement en fraction
continue. C. R. Acad. Sci. Paris I 327 (1998) 527–530.

To access this journal online:
www.edpsciences.org


