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ONE-WAY COMMUNICATION COMPLEXITY
OF SYMMETRIC BOOLEAN FUNCTIONS ∗

Jan Arpe1, 2, Andreas Jakoby1, 3 and Maciej Lískiewicz1, 4

Abstract. We study deterministic one-way communication complex-
ity of functions with Hankel communication matrices. Some structural
properties of such matrices are established and applied to the one-way
two-party communication complexity of symmetric Boolean functions.
It is shown that the number of required communication bits does not
depend on the communication direction, provided that neither direction
needs maximum complexity. Moreover, in order to obtain an optimal
protocol, it is in any case sufficient to consider only the communica-
tion direction from the party with the shorter input to the other party.
These facts do not hold for arbitrary Boolean functions in general.
Next, gaps between one-way and two-way communication complexity
for symmetric Boolean functions are discussed. Finally, we give some
generalizations to the case of multiple parties.
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1. Introduction

The communication complexity of two-party protocols was introduced by
Yao [17] in 1979. The theory of communication complexity evolved into an impor-
tant branch of computational complexity (for a general survey of the theory see
e.g. Kushilevitz and Nisan [10]).
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In this paper we consider one-way communication, i.e. we restrict the commu-
nication to a single round. This simple model has been investigated by several
authors for different types of communication such as fully deterministic, proba-
bilistic, nondeterministic, and quantum (see e.g. [1,4,8,9,12,13,17]). We study the
deterministic setting. One-way communication complexity finds application in a
wide range of areas, e.g. it provides lower bounds on VLSI complexity and on the
size of finite automata (cf. [6]). Moreover, one-way communication complexity of
symmetric Boolean functions is connected with binary decision diagrams by the
following observation due to Wegener [16] (see also [14]): the size of an optimal
protocol coincides with the number of nodes at a certain level in a minimal OBDD.

We consider the standard two-party communication model: initially the parties,
called Alice and Bob, hold disjoint parts of input data x and y, respectively. In
order to compute a function f(x, y), they exchange messages between each other
according to a communication protocol.

In a (deterministic) one-way protocol P for f , one of the parties sends a single
message to the other party, and then the latter party computes the output f(x, y).
We call P a protocol of type A → B if Alice sends to Bob and of type B → A
if Bob sends to Alice. The size of P is the number of different messages that
can potentially be transmitted via the communication channel according to P .
The one-way communication size SA→B(f) of f is the size of the best protocol of
type A → B. It is clear that the respective one-way communication complexity is
CA→B(f) = �log SA→B(f)�. For the case when Bob sends messages to Alice, we
analogously use the notation SB→A and CB→A. Note that throughout this paper,
log always denotes the binary logarithm.

The main results of this paper deal with one-way communication complexity of
symmetric Boolean functions – an important subclass of all Boolean functions. A
Boolean function F is called symmetric, if permuting the input bits does not affect
the function value. Some examples for symmetric functions are and, or, parity,
majority, and arbitrary threshold functions. We assume that to compute F Alice
holds m input bits and Bob holds n bits. As the function value of a symmetric
Boolean function only depends on the number of 1’s in the input (cf. [15]), it is
completely determined by the sum of the number of 1’s in Alice’s input part and
the number of 1’s in Bob’s part. Hence for such functions, we are faced with the
problem of determining the one-way communication complexity of a function

f : {0, . . . , m} × {0, . . . , n} → {0, 1}

associated to F , where f(x, y) only depends on the sum x + y. Note that
SA→B(F ) ≤ m + 1 is a trivial upper bound on the one-way communication size
of F .

Let us assume that Alice’s input part is at most as large as Bob’s is (i.e.
let m ≤ n). While for arbitrary functions this property does not imply which
communication direction admits the better one-way protocols, we show that the
converse is true for symmetric Boolean functions F , namely in this case we have
CA→B(F ) ≤ CB→A(F ). Moreover, we prove that if some protocol of type A → B
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does not require maximal size, i.e. if SA→B(F ) < m + 1, then both directions
yield the same complexities, i.e. CA→B(F ) = CB→A(F ).

We also present a class of families of symmetric Boolean functions for which
one-way communication is almost as powerful as two-way communication. More
precisely, for any family of symmetric Boolean functions F1, F2, F3 . . . with

Fm : {0, 1}2m → {0, 1},

let fm : {0, . . . , m} × {0, . . . , m} → {0, 1} denote the integer function associated
to Fm. We prove that if fm ⊆ fm+1 for all m ∈ N, then either the one-way
communication complexities of F1, F2, F3 . . . are almost all equal to a constant c
or the two-way communication complexities of F1, F2, F3 . . . are infinitely often
maximal. We show that one can easily test whether the first or the second case
occurs: The two-way communication complexities are infinitely often maximal if
and only if the unary language {0k+� | fk+�(k, �) = 1, k, � ∈ N} is nonregular.

On the other hand, we construct an example of a symmetric Boolean function
having one-way communication complexity exponentially larger than its two-way
communication complexity. Finally, we generalize the two-party model to the case
of multiple parties and extend our results to such a setting.

Our proofs are based on the fact that the communication matrix of the integer
function f associated with a symmetric Boolean function F is a Hankel matrix.
In general, the entries of the communication matrix Mf of f are defined by mi,j =
f(i, j). A Hankel matrix is a matrix in which the entries on each anti-diagonal
are constant (equivalently, mi,j only depends on i + j). Hankel matrices are
completely determined by the entries of their first rows and their last columns.
Thus with any (m + 1) × (n + 1)-Hankel matrix H we associate a function fH

such that fH(0), fH(1), . . . , fH(n) compose the first row of H and fH(n), fH(n +
1), . . . , fH(m+n) make up its last column. One of the main technical contributions
of this paper is a theorem saying that if m ≤ n and H has less than m+1 different
rows, then fH is periodic on a certain large interval. We apply this property to
the one-way communication size using a known relationship between this measure
and the number of different rows in communication matrices.

As a byproduct, we obtain a word combinatorial property: let w be an arbitrary
string over some alphabet Σ. Then, for m ≤ �|w|/2� and n = |w| − m + 1, the
number of different substrings of w of length n is at most as large as the number
of different substrings of w of length m. Moreover, if the former number is strictly
less than m (note that it can be at most m in general), then the number of different
substrings of length n and the number of different substrings of length m coincide.

The paper is organized as follows: in Section 2, we introduce basic definitions
and notation. Section 3 deals with the examination of the number of different
rows and columns in Hankel matrices involving certain periodicity properties. In
Section 4, we state some applications of these properties. Then, in Section 5, we
present a class of symmetric Boolean functions with both maximal one-way and
two-way communication complexity, and then we construct a symmetric Boolean
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function with an exponential gap between its one-way and its two-way commu-
nication complexity. Finally, in Section 6, we discuss natural extensions of our
results to the case of multiple parties.

2. Preliminaries

For any integers 0 ≤ k < k′, let [k..k′] denote the set {k, k + 1, . . . , k′}, and
denote [0..k] by [k] for short. By N we denote the set of nonnegative integers.
We consider deterministic one-way communication protocols between Alice and
Bob for functions f : [m] × [n] → Σ, where Σ is an arbitrary (finite or infinite)
nonempty set. More specifically, we assume that Alice holds a value x ∈ [m], and
Bob holds a value y ∈ [n] for some fixed positive integers m and n. Their aim is
to compute the value f(x, y).

Let MΣ(m, n) denote the set of all (m + 1)× (n + 1) matrices M = (mi,j) with
mi,j ∈ Σ. We will frequently omit the index Σ when it is understood from the
context. It will be convenient for us to enumerate the rows from 0 to m and the
columns from 0 to n. For a given function f : [m] × [n] → Σ, we denote by Mf

the corresponding communication matrix in M(m, n).

Definition 1. For a matrix M ∈ M(m, n), define #row(M) to be the number of
different rows of M , and similarly let #col(M) be the number of different columns
of M . Furthermore, for any i, j ∈ [m], let i ∼M j denote that the rows i and j of
M are equal.

Since the sender has to specify the type of row (resp. column) his input belongs
to, it is easy to characterize the one-way communication size by #row and #col.

Fact 1. For all m, n ∈ N and for every function f : [m] × [n] → Σ, it holds that
SA→B(f) = #row(Mf ) and SB→A(f) = #col(Mf ).

In this paper we will restrict ourselves to functions f that only depend on the
sum of the arguments. Note that for such functions f the communication matrix
Mf is a Hankel matrix. The problem of finding protocols for such restricted f
arises naturally when one considers symmetric Boolean functions.

Definition 2. Let f : [s] → N, λ ≥ 1 and s1, s2 ∈ [s] with s1 ≤ s2 − λ. We call f
λ-periodic on [s1..s2], if for all x ∈ [s1..s2 − λ], f(x) = f(x + λ).

Obviously, f is λ-periodic on [s1..s2] if and only if for all x, x′ ∈ [s1..s2] with
λ | (x − x′), it holds that f(x) = f(x′).

3. Periodicity of rows and columns in Hankel matrices

This section is devoted to examine the relationship between the number of dif-
ferent rows and the number of different columns in a Hankel matrix. Lemmas 1
through 3 are technical preparations for Theorem 1 which gives an explicit charac-
terization of a certain periodic behaviour of the function associated with a Hankel
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matrix and of the Hankel matrix itself. Theorems 2 and 3 reveal all possible con-
stellations of values for #row(H) and #col(H) for a Hankel matrix H . The results
will be applied to the theory of one-way communication in Section 4.

Fact 2. Let f : [s] → N be λ-periodic on [s1..s2] ⊆ [s] and on [t1..t2] ⊆ [s] such
that s1 ≤ t1 and t1 + λ ≤ s2. Then f is λ-periodic on [s1..t2].

Proof. Let x ∈ [s1..t2 − λ]. If x ≤ t1, then s1 ≤ x ≤ x + λ ≤ t1 + λ ≤ s2, so
f(x) = f(x + λ) because of the λ-periodicity on [s1..s2]. On the other hand, if
x > t1, then f(x) = f(x + λ) because of the λ-periodicity on [t1..t2]. �

Lemma 1. Let H ∈ M(m, n) be a Hankel matrix, m0, m1 ∈ [m] with m0 < m1,
and λ ∈ [1..m1 − m0]. Then the following two statements are equivalent:

(a) fH is λ-periodic on [m0..m1 + n].
(b) For all x ∈ [m0..m1] and all k ∈ N such that x + kλ ≤ m1, x ∼H x + kλ.

Proof. “(a)⇒(b)”: Let x ∈ [m0..m1] and k ∈ N such that x + kλ ≤ m1. For all
y ∈ [n],

x + y ≥ m0 and x + y + kλ ≤ m1 + n.

Since fH is λ-periodic on [m0..m1 + n], we have fH(x + y) = fH(x + kλ + y).
“(b)⇒(a)”: Let x ∈ [m0..m1 + n − λ]. We consider two cases. If x ≤ m0 + n,
then fH(x) = fH(m0 + (x−m0)) = fH(m0 + λ + (x−m0)) = fH(x + λ), because
m0 ∼H m0 + λ by hypothesis. If on the other hand x > m0 + n, then x− n > m0

and x − n + λ ≤ m1. By hypothesis, x − n ∼H x − n + λ, and thus fH(x) =
fH(x − n + n) = fH(x − n + λ + n) = fH(x + λ). �

Corollary 1. Let H ∈ M(m, n) be a Hankel matrix and i, j ∈ [m] with i < j.
Then i ∼H j if and only if fH is (j − i)-periodic on [i..j + n].

Corollary 2. Let H ∈ M(m, n) be a Hankel matrix. If fH is λ-periodic on
[m0..m1 + n] for some m0, m1 ∈ [m] with m0 < m1 and some λ ∈ [1..m1 − m0],
then #row(H) ≤ m0 + λ + m − m1, where equality holds if and only if all rows
0, . . . , m0 + λ − 1 and m1 + 1, . . . , m are pairwise different.

Lemma 2. Let H ∈ M(m, n) be a Hankel matrix and m0, m
′
0, i, j ∈ [m] such that

m0 ≤ i < j, m′
0 −m0 ≤ n + 1, j −m0 ≤ n + 1, i ∼H j, and m0 ∼H m′

0. Then fH

is (j − i)-periodic on [m0..j + n].

Proof. Choose λ = j − i and µ0 = m′
0 − m0. By Corollary 1, fH is

(i) µ0-periodic on [m0..m
′
0 + n] and

(ii) λ-periodic on [i..j + n].
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Figure 1. An illustration of Case 1.

Let x ∈ [m0..j + n − λ]. In order to show that fH(x + λ) = fH(x), we consider:

Case 1 (m0 ≤ x < i). Let k ∈ N such that i ≤ x + kµ0 ≤ i + µ0 − 1. We need to
show that

x, x + kµ0, x + kµ0 + λ, x + λ ∈ [m0..m
′
0 + n] and (1)

x + kµ0, x + kµ0 + λ ∈ [i..j + n] (2)

in order to apply properties (i) and (ii) to the corresponding elements. Property
(1) follows from m0 ≤ x and x+kµ0+λ ≤ i+µ0+λ−1 = j+m′

0−m0−1 ≤ m′
0+n.

Property (2) is due to i ≤ x + kµ0 and x + kµ0 + λ ≤ j − 1 +µ0 ≤ j +n. Now (cf.
Fig. 1) fH(x) = fH(x + kµ0) = fH(x + kµ0 + λ) = fH(x + λ), where the first and
the last equality follow from properties (1) and (i), and the middle equality is due
to properties (2) and (ii).
Case 2 (i ≤ x ≤ j + n − λ). In this case, fH(x) = fH(x + λ) by Corollary 1. �

The following lemma is symmetric to the previous one:

Lemma 3. Let H ∈ M(m, n) be a Hankel matrix and m1, m
′
1, i, j ∈ [m] such that

i < j ≤ m1, m1 −m′
1 ≤ n + 1, m1 − i ≤ n + 1, i ∼H j, and m1 ∼H m′

1. Then fH

is (j − i)-periodic on [i..m1 + n].

Proof. Let H = (hi,j). We define λ = j − i and H ′ = (h′
µ,ν) ∈ M(m, n) by

h′
µ,ν = hm−µ,n−ν for (µ, ν) ∈ [m]×[n], i.e. we rotate H by 180 degrees in the plane.

Clearly, H ′ is again a Hankel matrix. Moreover, we have fH(z) = fH′(m+n−z) for
all z ∈ [m+n]. We set m0 = m−m1, m′

0 = m−m′
1, i′ = m−j, and j′ = m−i. Now

it is easy to check that H ′, i′, j′, m0, and m′
0 fulfill the preconditions of Lemma 2

and m + n − x − λ ∈ [m0..j
′ + n − λ], thus yielding

fH(x + λ) = fH′(m + n − x − λ) = fH′(m + n − x) = fH(x). �
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Theorem 1. Let m ≤ n+1 and H ∈ M(m, n) be a Hankel matrix with #row(H) <
m + 1. Then there exist λ ∈ [1..n] and m0, m1 ∈ [m] with m1 − m0 ≥ λ such that
the following two properties hold:

(a) The function fH is λ-periodic on [m0..m1 + n].
(b) If i, j ∈ [m] with i < j and i ∼H j, then i, j ∈ [m0..m1] and λ | (j − i).

Moreover, m0, m1 and λ can be explicitly determined as follows:

m0 = min{k ∈ [m] | ∃k′ ∈ [m] with k′ > k and k ∼H k′},
m1 = max{k ∈ [m] | ∃k′ ∈ [m] with k′ < k and k ∼H k′}, and

λ = min{j − i | i, j ∈ [m] with i ∼H j and i < j}.

Proof. Since #row(H) < m + 1, there exist i, j ∈ [m] with i < j such that i ∼H j.
Thus, m0, m1 and λ are well-defined. Clearly, m1 − m0 ≥ λ. Choose i0, j0 ∈ [m]
such that i0 ∼H j0 and j0 − i0 = λ. Since m ≤ n, all preconditions of Lemmas 2
and 3 are satisfied. Thus we conclude that fH is λ-periodic on both discrete
intervals [m0..j0 + n] and [i0..m1 + n]. Fact 2 now yields property (a). Now let
i, j ∈ [m] with i < j and i ∼H j. Let k ∈ N such that j−i = kλ+r with 0 ≤ r < λ.
By property (a), fH is λ-periodic on [m0..m1 + n], and so by Lemma 1 (note that
i + kλ = j − r ≤ j ≤ m1), we have i + kλ ∼H i ∼H j. As r = j − i − kλ < λ and
λ is the minimal difference between two equal rows of different indices, we have
r = 0, so λ | (j − i). �

Using Corollary 2 we deduce two consequences of Theorem 1:

Corollary 3. For H, m0, m1 and λ as in Theorem 1, #row(H) = m0+λ+m−m1,
i.e. H has exactly m0 + λ + m − m1 pairwise different rows.

Corollary 4. Let m ≤ n+1 and H ∈ M(m, n) be a Hankel matrix with #row(H) <
m + 1. Then #col(H) ≤ #row(H).

Proof. Let m0, m1 and λ be as in Theorem 1. From Theorem 1, we have that the
function fH = fHT is λ-periodic on [m0..m1 + n] = [m0..(m1 + n−m) + m]. Now
Corollary 2 implies that

#row(HT ) ≤ m0 + λ + n − (m1 + n − m) = m0 + λ + m − m1 = #row(H),

where the last equality is due to Corollary 3. Hence the corollary follows since we
have #col(H) = #row(HT ). �

The next lemma states an “expansion property” of Hankel matrices with at
least two equal rows.

Lemma 4. For arbitrary m, n ∈ N let H ∈ M(m, n) be a Hankel matrix with
#row(H) < m + 1. Then there exist m′ ≥ n and a Hankel matrix H̃ ∈ M(m′, n)
such that #row(H̃) = #row(H) and #col(H̃) = #col(H).

Proof. We duplicate the area between two equal rows until the total number of
rows exceeds the total number of columns n. This process effects neither the
number of different rows nor the number of different columns. To do this we
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proceed as follows. Since #row(H) < m + 1, there exist m0, m1 ∈ [m] with
m0 < m1 and m0 ∼H m1. Set λ = m1 − m0, and let c ∈ N such that m + cλ ≥ n.
We set m′ = m + cλ and define H̃ = (h̃i,j) ∈ M(m′, n), where for j ∈ [n],

h̃i,j =






hi,j if i < m0,

hm0+�,j if i = m0 + kλ + � for some k ∈ [c] and some � ∈ [λ − 1] ,

hi−cλ,j , if i ≥ m1 + cλ.

Now, H̃ is again a Hankel matrix, and both properties #row(H̃) = #row(H) and
#col(H̃) = #col(H) hold. �

Theorem 2. Let m ≤ n+1 and H ∈ M(m, n) be a Hankel matrix with #row(H) <
m + 1. Then #row(H) = #col(H).

Proof. From Corollary 4, we have #row(H) ≥ #col(H). By Lemma 4, there exist
m′ ≥ n and a Hankel matrix H̃ ∈ M(m′, n) such that #row(H̃) = #row(H)
and #col(H̃) = #col(H). Thus, again by Corollary 4, we obtain #row(H) =
#row(H̃) = #col(H̃T ) ≤ #row(H̃T ) = #col(H̃) = #col(H). Consequently, we
have #row(H) = #col(H). �

Theorem 3. Let m ≤ n and H ∈ M(m, n) be a Hankel matrix with #row(H) =
m + 1. Then #col(H) ≥ m + 1.

Proof. Induction on n: For n = m, we have H = HT and thus

#col(H) = #row(HT ) = #row(H) = m + 1.

Now suppose that n > m. Let H ′ ∈ M(m, n−1) be the matrix H without its last
column. We consider two cases:
Case 1. n ∼HT n′ for some n′ ∈ [n− 1]. Then #col(H) = #col(H ′). In addition,
#row(H ′) = m + 1, because if #row(H ′) ≤ m was true, then we had i ∼H′ j for
some 0 ≤ i < j ≤ m, and thus i ∼H j, since fH(i+n) = fH(i+n′) = fH(j +n′) =
fH(j + n). Thus, we get #col(H) = #col(H ′) ≥ m + 1 by induction hypothesis.
Case 2. n �∼HT n′ for all n′ ∈ [n − 1]. Then #col(H) = #col(H ′) + 1. Once
again, we have to consider two subcases:
Case 2a. #row(H ′) = m + 1: Then #col(H) = #col(H ′) + 1 = m + 2 > m + 1
by induction hypothesis.
Case 2b. #row(H ′) ≤ m: Assume that #row(H ′) < m, let

m0 = min{k ∈ [m] | ∃k′ ∈ [m] with k′ > k and k ∼H k′} ,

m1 = max{k ∈ [m] | ∃k′ ∈ [m] with k′ < k and k ∼H k′} ,

λ = min{k′ − k | k, k′ ∈ [m] with k < k′ and k ∼H k′} ,

and let m′
0, m′

1 and λ′ be the corresponding numbers for H ′. By Corollary 3,
we have #row(H ′) = m′

0 + m − m′
1 + λ′, and by Theorem 1 f is λ′-periodic

on [m′
0..m

′
1 + n − 1]. Since #row(H ′) < m by assumption, λ′ < m′

1 − m′
0.
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In particular, m0 ∼H m0 + λ′, and thus λ | λ′ by Theorem 1. Consequently,
m0 ≤ m′

0, m1 ≥ m′
1 − 1 and λ ≤ λ′. Hence again by Corollary 3,

#row(H) = m0 + m − m1 + λ ≤ m′
0 + m − (m′

1 − 1) + λ′

≤ m′
0 + m − m′

1 + λ′ + 1 = #row(H ′) + 1 < m + 1,

contradicting #row(H) = m+1. Thus, #row(H ′) = m. By Theorem 2, #col(H ′) =
#row(H ′) = m. Consequently, #col(H) = #col(H ′) + 1 = m + 1. �
We summarize Theorems 2 and 3 as follows.

Theorem 4. Let m ≤ n and H ∈ M(m, n) be a Hankel matrix. Then the following
properties hold:

(a) #row(H) ≤ #col(H).
(b) If #row(H) < m + 1, then #row(H) = #col(H).

Note that for Hankel matrices over Σ with |Σ| ≥ m + n + 1 we can say even more.
Namely, if m ≤ n, then for all r ∈ [m + 1..n + 1], there exists a Hankel matrix
H ∈ M(m, n) with #row(H) = m + 1 and #col(H) = r. To see this, define
f : [m] × [n] → Σ = {a0, . . . , am+n} by f(x, y) = a(x+y) mod r. Then H = Mf is
a Hankel matrix fulfilling the requested properties.

We conclude this section by providing a generalization of Theorem 4 which will
show helpful when examining the multi-party case in Section 6. For a matrix
M ∈ MΣ(m, n) and r ∈ Σ, we denote by #row(M, r) the number of different rows
containing r and by #col(M, r) the number of different columns containing r.

Lemma 5. Let m ≤ n and H ∈ MΣ(m, n) be a Hankel matrix and r ∈ Σ. Then
#row(H, r) ≤ #col(H, r).

Proof. For unary Σ, there is nothing to show, so we first consider the case that
Σ = {0, 1} and r = 1. Denote by H ′ the matrix obtained from H by deleting
all rows and all columns that consist only of 0’s. Then H ′ is a Hankel matrix
again, #row(H ′, 1) = #row(H, 1), and #col(H ′, 1) = #col(H, 1). Now all rows
and columns of H ′ contain at least one 1, so

#row(H, 1) = #row(H ′, 1) = #row(H ′) ≤ #col(H ′) = #col(H ′, 1) = #col(H, 1),

the inequality following from Theorem 4.
Let us now turn to an arbitrary Σ and r ∈ Σ: Define H ′ ∈ M{0,1}(m, n) by

h′
ij =

{
1 if hij = r

0 otherwise.

Then #row(H ′, 1) ≤ #row(H, r) and #col(H ′, 1) ≤ #col(H, r). If H ′ contains
two equal rows with 1’s in them, i.e. i ∼H′ j for some i < j and h′

i,k = 1 for some
k ∈ [n], then by Corollary 1, fH′ is (j − i)-periodic on [i..j + n]. In particular,
each column j0 of H ′ contains a 1, namely one of the values

mi,j0 , mi+1,j0 , . . . , mj,j0
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must equal 1 (otherwise fH′ would be constantly 0 on [i..j + n] contradicting
f(i + k) = 1). But then also all columns of H contain at least one r, so again by
Theorem 4,

#row(H, r) ≤ #row(H) ≤ #col(H) = #col(H, r).

On the other hand, if all rows in H ′ containing a 1 are pairwise different, then also
all rows in H containing an r are pairwise different, so

#row(H, r) = #row(H ′, 1) ≤ #col(H ′, 1) ≤ #col(H, r),

where the first inequality follows from the {0, 1}-case shown above. �

4. Applications

Theorem 4 can be restated in terms of one-way communication:

Theorem 5. Let m ≤ n and f : [m] × [n] → Σ be a function for which the
corresponding communication matrix Mf is a Hankel matrix. Then the following
properties hold:

(a) SA→B(f) ≤ SB→A(f).
(b) If SA→B(f) < m + 1, then SA→B(f) = SB→A(f).

This result can immediately be applied to symmetric Boolean functions:

Corollary 5. Let m ≤ n and F : {0, 1}m × {0, 1}n → {0, 1} be a symmetric
Boolean function. Then the following properties hold:

(a) SA→B(F ) ≤ SB→A(F ).
(b) If SA→B(F ) < m + 1, then SA→B(F ) = SB→A(F ).

Proof. The communication matrix Mf of the function f : [m] × [n] → {0, 1}
defined by

f(x, y) = F ((1, . . . , 1
︸ ︷︷ ︸

x

, 0, . . . , 0
︸ ︷︷ ︸

m−x

), (1, . . . , 1
︸ ︷︷ ︸

y

, 0, . . . , 0
︸ ︷︷ ︸

n−y

))

is a Hankel matrix. Thus the claim follows from Theorem 5. �
The results of the last paragraph can also be applied to word combinatorics:

Theorem 6. Let w be an arbitrary string over some alphabet Σ, and let Nw(i)
denote the number of different subwords of w of length i. Then, for m ≤ �|w|/2�
and n = |w| − m + 1, we have Nw(n) ≤ Nw(m). Moreover, if Nw(n) < m (note
that Nw(n) ≤ m in general), then Nw(n) = Nw(m).

Proof. Let m ≤ �|w|/2�, n = |w|−m+1, and w = w1 . . . wm+n−1 with wi ∈ Σ for
1 ≤ i ≤ m + n − 1. Define the Hankel matrix H = (hi,j) ∈ MΣ(m − 1, n − 1) by
hi,j = wi+j+1. The rows of H make up the subwords of w of length n, while the
columns of H compose the subwords of w of length m. Now Theorems 2 and 3
prove the claim. �



ONE-WAY COMMUNICATION COMPLEXITY 697

5. One-way VERSUS two-way protocols

In this section we first present a class of families of functions for which one-
way communication complexities are almost the same as two-way communication
complexities. We denote the two-way complexity of F by C(F ). Let F1, F2, F3 . . .
with Fm : {0, 1}2m → {0, 1} be a family of symmetric Boolean functions and
let fm : [m] × [m] → {0, 1} denote the integer function associated to Fm, i.e.
F (x1, . . . , x2m) = 1 if and only if f(

∑m
i=1 xi,

∑2m
i=m+1 xi) = 1.

Theorem 7. Let F1, F2, F3 . . . be a family of symmetric Boolean functions such
that fm ⊆ fm+1 for all m ∈ N. Then either

(a) for almost all m ∈ N, CA→B(Fm) = c for some constant c or
(b) for infinitely many m ∈ N, C(Fm) = �log(m + 1)�.

Moreover, (b) holds iff the language L = {0k+� | fk+�(k, �) = 1, k, � ∈ N} is
nonregular.

Proof. First, Theorem 11.3 in [7] gives a nice characterization of (non)regular
unary languages in terms of the rank of certain Hankel matrices. This character-
ization was first observed by Condon et al. [3]. It says that the unary language
L is nonregular if and only if for infinitely many m ∈ N, rank(Mfm) = m + 1
(i.e. the communication matrix Mfm has maximum rank). Second, Mehlhorn and
Schmidt [11] showed that C(f) ≥ log(rank(Mf )) for every f . Combining these
facts we get that for nonregular L, C(fm) = �log(m + 1)� for infinitely many
m ∈ N.

On the other hand, if L is regular then by the Myhill-Nerode Theorem [5] the
infinite matrix M = (mi,j)i,j∈N defined by mi,j = 1 iff 0i+j ∈ L, has constant
number of different rows. Hence the theorem follows. �

Example 1. Let Fm(x1, x2, . . . , x2m) = 1 if and only if the number of 1’s in the
sequence x1, x2, . . . , x2m is the square of some integer. By Theorem 7 either for all
m ∈ N, C(Fm), CA→B(Fm) ≤ c for some constant c or for infinitely many m ∈ N,
CA→B(Fm) = C(Fm) = �log(m + 1)�. Since the language {0n | n is the square
of some integer} is nonregular, the (one-way) communication complexity of Fm is
maximal for infinitely many m ∈ N.

Next, we construct a symmetric Boolean function with an exponential difference
between its one-way and its two-way communication complexity. Let p0, p1, . . .
with pi < pi+1 for all i ∈ N be the sequence of all prime numbers. According to the
Prime Number Theorem, there are at least �

log � prime numbers in the interval [�]

for all � ≥ 5. For k = �log log m� and n = 2k · (1+
∏2k−1

i=0 pi), consider the function
f : [m] × [n] → {0, 1} defined by f(x, y) = 1 iff

⌊
z
2k

⌋
mod pz mod 2k = 0, where

z = x + y. Using the following two-way protocol, one can see that the two-way
communication complexity of f is at most 4 log log m: In the first round, Bob sends
y0 = y mod 2k to Alice. In the second round, Alice sends z0 = (x+y0) mod 2k and
z′ =

⌊
x+y0
2k

⌋
mod pz0 to Bob. Finally, Bob computes f(x, y) by checking whether

(
⌊

y
2k

⌋
+ z′) mod pz0 = 0.
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Note that z0 = z mod 2k. The correctness of the protocol can be seen by
investigating the addition of integers using a remainder representation.

Lemma 6. C(f) ≤ 4 log log m.

For the one-way communication complexity of f we obtain:

Lemma 7. #row(Mf ) = m + 1, i.e. CA→B(f) = �log(m + 1)�.
The proofs of the lemmas are straightforward. We conclude the section with the
following

Theorem 8. For the symmetric Boolean function F : {0, 1}m × {0, 1}n → {0, 1}
associated with f , we have C(F ) ∈ O(log log m) and CA→B(F ) ∈ Θ(log m).

6. Multi-party communication

So far we have analyzed the case that a fixed input partition for a function is
given. However, sometimes it is also of interest to examine the communication
complexity of a fixed function under varying the input partition. A typical ques-
tion for this scenario is whether we can partition the input in such a way that the
communication complexities for protocols of type A → B and B → A coincide.
The main tool for these examinations is the diversity ∆(f) of f which we introduce
below. For a function f : [s] → Σ and m ∈ [s], define fm : [m] × [s − m] → Σ by
fm(x, y) = f(x + y) for x ∈ [m] and y ∈ [s − m], and let rf (m) = #row(Mfm).
We define ∆(f) = maxm∈[s] rf (m).

Lemma 8. For every function f : [s] → Σ, the following conditions hold:
(a) rf (m) = m + 1 for all m ∈ [∆(f) − 1];
(b) if ∆(f) ≤ s

2 , then rf (m) = ∆(f) for all m ∈ [∆(f) − 1 .. s − ∆(f) + 1];
(c) rf (m) ≥ rf (m + 1) for all m ∈ [∆(f) − 1 .. s − 1].

Proof. Obviously, we have rf (m) ≤ m + 1. From the definition of fm we can
derive that the communication matrix of fm is a Hankel matrix. The first and last
part of the claim follow directly from the following observation:

Assume that for some m we have rf (m) < m+1. Then for every
i ≥ m it holds rf (i) ≥ rf (i + 1).

Below we show that the observation is true. Note first that if rows j and k in Mfi

are equal then in Mfi+1 rows j and k are equal, too. Hence rf (m) < m+1 implies
that for every i ≥ m it holds rf (i) < i + 1.

Let k be the maximum index of a row in Mfi such that for some j < k the
rows j and k coincide. Such a pair exists because rf (i) < i + 1. Since each row
� + 1 of Mfi+1 can be derived from row � in Mfi by deleting its first entry, it is
true that in Mfi+1 the rows j + 1 and k + 1 coincide. If k = i, then the number
of different rows among the rows 0, . . . , i in Mfi+1 is at most rf (i), the number
of different rows in Mfi . Since the last row in Mfi+1 coincides with row j + 1,
we have rf (i + 1) ≤ rf (i). If on the other hand k < i, then the rows j + 1 and
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k + 1 do not coincide in Mfi (by maximality of k), so the number of different
rows among rows 1, . . . , i in Mfi+1 is strictly smaller than in Mfi . This implies
rf (i + 1) ≤ (rf (i) − 1) + 1 = rf (i).

Let us now focus on the second part of the claim. Let m = ∆(f) − 1 and
n = s−∆(f)+1. Then m ≤ n (since ∆(f) ≤ s

2 ) and #row(Mfm) = ∆(f) = m+1
by part (a). From Theorem 3 it follows that #col(Mfm) ≥ m + 1 = ∆(f). Since
Mfs−m (for arbitrary m ∈ [s]) is the transpose of Mfm , we have #col(Mfs−m) =
#row(Mfs). Consequently,

rf (∆(f) − 1) = ∆(f)
≤ #col(Mf∆(f)−1 )
= #row(Mfs−∆(f)+1) = rf (s − ∆(f) + 1).

On the other hand, rf is nonincreasing on [∆(f)−1..s−1] by part (c), so rf (m) =
∆(f) for all m ∈ [∆(f) − 1..s − ∆(f) + 1]. �

It is an immediate consequence of Lemma 8 that ∆(f) equals the minimum m
such that Mfm has less than m+1 different rows, provided that such an m exists.

The diversity is helpful to analyze the case that more than two parties are
involved. For such multi-party communication we assume that the input is dis-
tributed among d parties P1, . . . , Pd. Every party Pi knows a value xi ∈ [mi]. The
goal is to compute a fixed function f : [m1] × . . . × [md] → Σ. Analogously to
communication matrices in the two-party case, we use multidimensional arrays to
represent f .

Let M(m1, . . . , md) be the set of all d-dimensional (m1 + 1) × . . . × (md + 1)
arrays M with entries M(i1, . . . , id) ∈ Σ for ij ∈ [mj ], j ∈ [1..d]. M is called the
communication array of a function f iff M(i1, . . . , id) = f(i1, . . . , id). We denote
the communication array of f by Mf .

Recall that in the two-party model the sender has to specify the type of
row/column his input belongs to. In the multi-party case each party has to specify
the type of subarray determined by his input value. Therefore, for each k ∈ [1..d]
and each x ∈ [mk], we define the subarray M

(k)
x ∈ M(m1, . . . , mk−1, mk+1, . . . , md)

of M by M
(k)
x (i1, . . . , ik−1, ik+1, . . . , id) = M(i1, . . . , ik−1, x, ik+1, . . . , id) for all

0 ≤ ij ≤ mj , j ∈ [1..d] \ {k}. Finally, for k ∈ [1..d] we define #subk(M) as the
number of different subarrays with fixed kth dimension:

#subk(M) = |{ M (k)
x | x ∈ [mk] }| .

We call M ∈ M(m1, . . . , md) a Hankel array, if M(i1, . . . , id) = M(j1, . . . , jd) for
every pair (i1, . . . , id), (j1, . . . , jd) ∈ [m1]×. . .×[md] with i1+. . .+id = j1+. . .+jd.
For a Hankel array M ∈ M(m1, . . . , md), let fM : [

∑d
i=1 mi] → Σ be defined by

fM (x) = M(x1, . . . , xd), if x = x1 + . . . + xd. Note that fM is well-defined since
M is a Hankel array.

Lemma 9. For a function f such that the corresponding communication array M
is a Hankel array, we have rfM (mk) = #subk(M) for every k ∈ [1..d].
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Proof. Since the value of the function f depends only on the sum of its variables,
it is sufficient to show the claim for k = 1.

Assume that for x1, x
′
1 ∈ [m1] the corresponding subarrays M

(1)
x1 and M

(1)
x′
1

are
different. Then there exists x2 ∈ [m2], . . . , xd ∈ [md] such that M(x1, x2, . . . , xd) �=
M(x′

1, x2, . . . , xd) and therefore fM (x1 + x2 + . . . + xd) �= fM (x′
1 + x2 + . . . + xd)

and fm1(x1, x2 + . . . + xd) �= fm1(x′
1, x2 + . . . + xd). Hence if two subarrays M

(1)
x1

and M
(1)
x′
1

are different, then also the rows x1 and x′
1 in Mfm1

are different, too.
This implies rfM (m1) ≥ #sub1(M).

Analogously, let us assume that for x1, x
′
1 ∈ [m1] the rows in Mfm1

are different.
Then there exists y ∈ [

∑
i∈[2..d] mi] such that fm1(x1, y) �= fm1(x′

1, y). Choosing
x2 ∈ [m2], . . . , xd ∈ [md] such that y = x2 + . . . + xd we get

M(x1, x2, . . . , xd) = fM (x1 + x2 + . . . + xd) = fm1(x1, y)
�= fm1(x

′
1, y) = fM (x′

1 + x2 + . . . + xd) = M(x′
1, x2, . . . , xd) .

Hence if rows x1 and x′
1 in Mfm1

are different then also the two subarrays M
(1)
x1

and M
(1)
x′
1

are different. This implies rfM (m1) ≤ #sub1(M). �

To study communication complexity issues for multi-party computations, we
consider the following natural extension of the one-way communication model to
multiple parties. Let P1, . . . , Pd be connected by a directed chain specified by a
permutation π : [1..d] → [1..d], i.e. Pπ(i) can only send messages to Pπ(i+1) for i ∈
[d−1]. A protocol P that runs on such a chain is called π-ordered. For a π-ordered
protocol P , let the size S(P) be the number of different communication sequences
of P , and let S(P , r) be the number of different communication sequences of P on
inputs z1 ∈ [m1], . . . , zd ∈ [md] with f(z1, . . . , zd) = r. For a function f , we define
Sπ(f) to be the minimum size of a π-ordered protocol for f , and for each value
r ∈ Σ, let

Sπ(f, r) = min
P computes f and is π−ordered

S(P , r).

We will now present a protocol of minimal size for a fixed chain network and
functions f such that Mf is a Hankel array. During the computation the parties
use the Hankel arrays Mi defined by

Mi(yi, . . . , yd) = Mf(z1, . . . , zd),

where yi =
∑i

j=1 zπ(j) and yj = zπ(j) for all j ∈ [i + 1..d]. Furthermore, let Γi(yi)

be the minimum value z such that (Mi)
(1)
z = (Mi)

(1)
yi . The protocol works as

follows:
1. Pπ(1) sends γ1 = Γ1(xπ(1)) to Pπ(2).
2. For i ∈ [2..d−1], Pπ(i) receives γi−1 from Pπ(i−1) and sends γi = Γi(xπ(i)+

γi−1) to Pπ(i+1).
3. Pπ(d) receives γd−1 from Pπ(d−1). Then Md(γd−1 + xπ(d)) is the result of

the function.
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Theorem 9. For a function f such that Mf ∈ M(m1, . . . , md) is a Hankel array,
the size of the protocol presented above is minimal.

The theorem follows from the following lemma:

Lemma 10. Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel
array. Then a π-ordered protocol P is optimal with respect to S(P) and S(P , r)
for every r ∈ Σ iff for each i ∈ [1..d − 1] the message sent by the party Pπ(i)

to Pπ(i+1) only depends on the subfunction of f obtained by fixing the inputs of
Pπ(1), . . . , Pπ(i) and on the message received by Pπ(i).

Proof. Let us first assume that there exists a party Pπ(i) with i ∈ [1..d−1] and two
inputs xπ(1), . . . , xπ(i) and yπ(1), . . . , yπ(i) such that (1) they specify two different
subfunctions fx, fy of f and (2) Pπ(i) sends the same message to Pπ(i+1) for both
inputs. Since fx, fy are different functions, there exists an input zπ(i+1), . . . , zπ(d)

for the parties Pπ(i+1), . . . , Pπ(d) such that fx and fy result in different values.
Since the parties Pπ(i+1), . . . , Pπ(d) cannot distinguish between both inputs, the
protocol computes an incorrect value for at least one input. On the other hand,
we do not increase S(P) and S(P , r) if Pπ(i) adds some information about the
received message to the message it is going to send.

Let us now assume that there exists i ∈ [1..d − 1] such that for two different
partial inputs xπ(1), . . . , xπ(i) and yπ(1), . . . , yπ(i) that specify the same subfunction
f ′ of f , the party Pπ(i) receives the same message but sends two different messages
to Pπ(i+1). Let X be the set of all inputs where the values of Pπ(1), . . . , Pπ(i) are
given by xπ(1), . . . , xπ(i). For x ∈ X let Yx denote the set of all inputs for which
Pπ(i) receives the same message from its predecessor as for the input x, the input
of Pπ(i) is given by zπ(i) and the input of Pπ(j) is given by xπ(j) for all j ∈ [i+1..d].

Note that f(x) = f(y) for every x ∈ X and every y ∈ Yx. Hence we do not
increase the size of the protocol if Pπ(i) sends on both inputs the same messages
to Pπ(i+1). Moreover, if every party only sends to its successor a unique message
for each y ∈ Yx we reduce total size as well as the size of S(P , f(x)). �

Note that the communication size Sπ may depend on the order π of the parties
on the chain. We call a permutation π : [1..d] → [1..d] with mπ(i) ≤ mπ(i+1) for all
i ∈ [1..d− 1] a sorting of m1, . . . , md. Consequently, for a sorting π of m1, . . . , md,
the ordering is optimal with respect to the communication size.

Theorem 10. Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel
array, and let π be a sorting of m1, . . . , md. Then for every permutation π′ :
[1..d] → [1..d], Sπ(f) ≤ Sπ′

(f) .

Proof. The proof of the theorem follows by induction. We start with the induction
base d = 2. Without loss of generality, we can assume that m1 ≤ m2, π = id,
π′(1) = 2, and π′(2) = 1. In terms of the two-party scenario considered earlier
in this article, we have Sπ(f) = SA→B(f), Sπ′

(f) = SB→A(f). Thus the claim
follows directly from Theorem 4. If we apply Lemma 5, we can even say a little
more. Namely, for any r ∈ Σ,

Sπ(f, r) ≤ Sπ′
(f, r). (3)
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This is because Sπ(f, r) = #row(Mf , r) and Sπ′
(f, r) = #col(Mf , r), as can be

easily verified.
Let us now investigate the case that d > 2. Let P be a π-ordered protocol

for f that is optimal with respect to protocol size. We will show that for every
permutation πs : [1..d] → [1..d] and for every πs-ordered protocol Ps,

S(P) ≤ S(Ps) . (4)

Note that for two permutations π1, π2 which are equivalent in the sense that for
every i ∈ [1..d] mπ1(i) = mπ2(i), we can simulate any π1-ordered protocol on a chain
that is given by the permutation π2 without increasing the size of the protocol.
Hence it is sufficient to show that (4) holds for some sorting π of m1, . . . , md.

For i ∈ [1..d] and x ∈ [mi] let f
(i)
x denote the integer function corresponding to

M
(i)
x . Furthermore, let π

(i)
x be a sorting of m1, . . . , mi−1, mi+1, . . . , md, and let P(i)

x

be an optimal π
(i)
x -ordered protocol for f

(i)
x , hence fulfilling S(P(i)

x ) ≤ Sπ(i)
x (f (i)

x )
by induction hypothesis.

Since for every input x ∈ [mπs(1)] M
(πs(1))
x is a Hankel array, we can apply the

induction hypothesis to prove the existence of an optimal π
(πs(1))
x -ordered protocol

P(πs(1))
x for f

(πs(1))
x such that for every permutation π′ : [1..d − 1] → [1..d − 1]

S(P(πs(1))
x ) ≤ Sπ′

(f (πs(1))
x ) .

This implies that for every permutation π′′ : [1..d] → [1..d] with π′′(1) = πs(1)
there exists a protocol Ph on the chain that starts with Pπs(1) and where the
remaining parties are π

(πs(1))
x -ordered such that

S(Ph) =
∑

M
(πs(1))
x

S(P(πs(1))
x ) ≤

∑

M
(πs(1))
x

Sπ′′′
(f (πs(1))

x ) = Sπ′′
(f)

where π′′′ denotes the permutation that corresponds to π′′ without π(1). The
protocol Ph can be constructed as follows: The first party Pπs(1) computes the
type of the subarray M

(πs(1))
x with x ∈ [mπs(1)] that is given by its input xπs(1).

The remaining parties simulate the protocol P(πs(1))
x . Note that if πh is a sorting

of m1, . . . , md then the claim follows directly.
Let us focus now on the case that πh is not a sorting of m1, . . . , md. Since

πh(i) is a sorting of mπh(2), . . . , mπh(d), the value mπh(2) is minimal for all values
m1, . . . , md.

We proceed in two steps:
1. In the first step, we will investigate permutations π̃h that are similar to πh

except for the first two values, i.e. mπ̃h(1) = mπh(2) and mπ̃h(2) = mπh(1).
2. In the second step, we will investigate permutations π′

h with π′
h(1) = π̃h(1).

For any x1 ∈ [mπh(1)] and x2 ∈ [mπh(2)] define fx1,x2 as the subfunction of f
where we assign to the πh(1)-th and πh(2)-th variable of f the values x1 and x2,
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respectively. Furthermore, let Mx1,x2 denote the communication array of fx1,x2 .
Note that Mx1,x2 is a Hankel array, too.

Let us now divide Ph into two parts. The first part P1
h consists of the strategies

for the first two parties Pπh(1) and Pπh(2). If Ph is optimal with respect to its size
S(Ph) and S(Ph, r) with respect to all πh-ordered protocols, we can assume that
Pπh(2) only sends the type of the subarray Mx1,x2 to Pπh(3).

The second part P2
h(Mx1,x2) of Ph consists of the strategies for the remaining

d − 2 parties Pπh(3) to Pπh(d) where the input of the first two parties is given by
x1 and x2, respectively. Let ΣM be the set of all subarrays Mx1,x2, then we have

S(Ph) =
∑

Mx1,x2∈ΣM

S(P1
h, Mx1,x2) · S(P2

h(Mx1,x2)) .

Let g : [mπh(1)] × [mπh(2)] → ΣM be the function that is computed by the first
two parties in the chain. Note that the communication array Mg of g is a Hankel
array again.

Let π̃h be a permutation with π̃h(1) = πh(2), π̃h(2) = πh(1), and π̃h(i) = πh(i)
for all i ∈ [3..d]. We will now investigate the π̃h-ordered protocol P̃h that is defined
as follows: P̃h runs an optimal strategy to compute g on the first two parties and
simulates Ph on the remaining parties. Analogously to the partition of Ph, we
partition P̃h into two parts P̃1

h and P̃2
h. From equation (3) we can conclude that

there exists such a subprotocol P̃1
h with

∀Mx1,x2 ∈ ΣM : S(P̃1
h, Mx1,x2) ≤ S(P1

h, Mx1,x2),

and therefore we have

S(P̃h) =
∑

Mx1,x2∈ΣM

S(P̃1
h, Mx1,x2) · S(P̃2

h(Mx1,x2))

≤
∑

Mx1,x2∈ΣM

S(P1
h, Mx1,x2) · S(P̃2

h(Mx1,x2)) = S(Ph).

Analogously to the construction of Ph we can now apply a transformation on P̃h

to get a π′
h-ordered protocol P ′

h for a permutation π′
h(1) = π̃h(1) and mπ′

h(i) ≤
mπ′

h(i+1) for all i ∈ [2..d − 1] such that P ′
h fulfills the following inequalities:

S(P ′
h) ≤ S(P̃h) ≤ S(Ph) ≤ Sπs(f) ≤ S(Ps)

for every πs-ordered protocol Ps.
Since mπ̃h(1) is minimal for all values m1, . . . , md and the values mπ′

h(i) for
i ∈ [2..d] are ordered according to their size, we can conclude that π′

h(i) is a
sorting of m1, . . . , md. �

Note that Theorem 10 can easily be generalized to Sπ(f, r) ≤ Sπ′
(f, r). One

application of such generalisation can be found in [2].
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A second generalization of the two-party model is the simultaneous commu-
nication complexity (denoted by C||), where all parties can simultaneously write
in a single round on a blackboard. This means that the messages sent by each
party do not depend on the messages sent by the other parties. After finishing
the communication round, each party has to be able to compute the result of the
function (see e.g. [10]). For two-party communication it is well-known that

C||(f) = CA→B(f) + CB→A(f) = �log SA→B(f)� + �log SB→A(f)� .

Similarly, for the d-party case we have

C||(f) =
∑

i∈[1..d]�log #subi(Mf )� .

Hence if Mf is a Hankel array and if for some k ∈ [1..d] we have #subk(Mf ) ≤
mini∈[1..d] mi, then by Lemmas 8 and 9

C||(f) = d · �log ∆(fMf
)� .

As a third generalization, we consider the case that in each round some party can
write a message on a blackboard. The message and its sender may depend on
messages that have been published on the board in previous rounds. We restrict
the communication such that each party (except for the last one) publishes ex-
actly one message on the blackboard, and in each round exactly one message is
published. After finishing the communication rounds, at least one party has to be
able to compute the result of the function. Let S� be the corresponding size of an
optimal protocol. Note that this model generalizes both of the previous models.

Theorem 11. Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel
array and let π be a sorting of m1, . . . , md. Then Sπ(f) = S�(f) .

Proof. The proof follows by complete induction on the number of parties d. For
d = 2 the claim follows directly from the standard one-way two-party scenario.

For d > 2 let us first note that the first party that writes a message to the
blackboard has to be determined by the protocol independently of the concrete
input. Let Pk be the party that writes its message first. The second party that
writes a message on the blackboard may depend on the type of M

(k)
xk where zk ∈

[mk] is the input of Pk. Let f
(k)
xk describe the function with communication array

M
(k)
xk . Since M

(k)
xk is a Hankel array too, we can apply the induction hypothesis

to the computation of f
(k)
xk . Note that M

(k)
xk ∈ M(m1, . . . , mk−1, mk+1, . . . , md).

Hence for a sorting πk : [1..d − 1] → [1..d − 1] of m1, . . . , md−1 we have:

Sπk(f (k)
xk

) = S�(f (k)
xk

).
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Since the first party that writes a message on the blackboard is chosen indepen-
dently of the concrete input, this equation implies

Sπ′
(f) =

∑

M
(k)
zk

Sπk(f (k)
zk

) =
∑

M
(i)
zi

S�(f (i)
zi

) = S�(f)

where π′(1) = k and for i ∈ [1..d− 1] π′(i + 1) = πk(i). By Theorem 10 we get for
a sorting π : [1..d] → [1..d] of m1, . . . , md:

Sπ(f) ≤ Sπ′
(f) = S�(f).

On the other hand, we can always simulate a protocol which works on a chain by a
protocol that uses a blackboard without increasing the size of the protocol. Hence

S�(f) ≤ Sπ(f).

The claim follows directly. �

7. Conclusions and open problems

In this paper we have investigated one-way communication complexity of func-
tions for which the corresponding communication matrices are Hankel matrices.
We have established some structural properties of such matrices. As a direct
application, we have obtained a complete solution to the problem of how the com-
munication direction in deterministic one-way communication protocols affects the
communication complexity of symmetric Boolean functions. One possible direc-
tion of future research is to study other kinds of one-way communication such as
nondeterministic and randomized for the class of symmetric functions.

Another interesting extension of the topic is to drop the restriction to one-way
protocols and consider the deterministic two-way communication complexity of
symmetric Boolean functions for both a bounded and an unbounded number of
communication rounds. This particularly involves results about the computation
of the rank of Hankel matrices. In addition, consequences for word combinatorics
and OBDD theory may be of interest.

Acknowledgements. We would like to thank Ingo Wegener for his useful comment on the
connection between one-way communication and OBDD theory.

References

[1] F. Ablayev, Lower bounds for one-way probabilistic communication complexity and their
application to space complexity. Theoret. Comp. Sci. 157 (1996) 139–159.
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