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ON CHRISTOFFEL CLASSES

JEAN-PIERRE BOREL!"* AND CHRISTOPHE REUTENAUER?Z**

Abstract. We characterize conjugation classes of Christoffel words
(equivalently of standard words) by the number of factors. We give
several geometric proofs of classical results on these words and sturmian
words.

Mathematics Subject Classification. 68R15.

1. INTRODUCTION

Sturmian sequences have a long history, through the work of Bernoulli in the
18th century, of Smith, Christoffel and Markoff in the 19th century, Morse and
Hedlund in the 20th century and the explosion of researches at the end of it. See the
books by Allouche and Shallit [1] and Berstel and Séébold [3]. They are related to
continued fractions, discrete geometry, symbolic dynamics, formal languages and
combinatorics on words.

Christoffel words are a finitary version of Sturmian sequences, related to con-
tinued fractions of rational numbers. They are a variant of the so called standard
words [3], which appear in Christoffel’s article [6].

The present article, besides some new results, rests on two principles: first,
most of the theory of Sturmian sequences may be done on its finitary counterpart,
the theory of Christoffel words and their conjugates; secondly, most of the proofs
use only elementary arguments of planar geometry, in the spirit of [4]. We shall
illustrate here the second principle (for the first, it should be done elsewhere). This
is done for some already known results in the Appendix. We also give some new
results: in particular, the conjugation classes of Christoffel words (equivalently
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FiGURE 1. The lower Christoffel word aaabaabaab of slope %

of standard words) are characterized by the number of factors, see Theorem 4.1,
which is a finitary version of a well-known result of Morse-Hedlund on Sturmian
sequences.

Furthermore, Theorem 5.1 gives the exact position of the k£ + 1 factors of
length k. This result has as consequence that in a Sturmian sequence, the k+1 fac-
tors of length k appear in some window of length 2k (it could not be shorter).

This article also sheds some light onto the circular structure of Christoffel words,
which justifies the title. For related work on conjugacy and Sturmian sequences,
see the interesting word of Chuan [7-10].

The authors want to thank Valérie Berthé, Francois Bergeron and Jean Berstel
for useful discussions on this subject and Aldo de Luca for useful mail exchange.
And the two referees for useful suggestions and corrections.

2. CHRISTOFFEL WORDS

A word w on a two-letter alphabet is called a lower Christoffel word if it is
obtained by discretizing a segment in the plane, as in Figure 1.

Formally, the definition goes as follows: each word w on an ordered two-letter
alphabet {a,b} defines naturally a continuous (even piecewise linear) path in the
plane, from the origin to some point (p, q¢) € N?; letter a corresponds to a segment
[(i,7), (i4+1, )], letter b to a segment [(i, j), (4, j+1)]; thus p (resp. ) is the number
of a’s (resp. ¥'s) in w.

Now let (p,q) € N? with ged(p, q) = 1. Consider a word w whose a—degree is p
and whose b—degree is q. We say that w is a lower Christoffel word if the path of w
is under the segment [(0,0), (p, ¢)], and if both delimit a polygon with no integral
interior point. We say that w is the lower Christoffel word of slope %. Observe
that w is of length p + q.

One defines similarly upper Christoffel words. A Christoffel word is by definition
a lower or an upper Christoffel word. Note that a single letter is by definition also
a Christoffel word, but we disregard in the sequel this trivial case.

Note that if w,w’ are the lower and upper Christoffel words associated to (p, q),
then w’ = @ (the reversal of w); moreover, w = amb,w’ = bma, where m is
the word that encodes the sequence of vertical and horizontal intersections of the
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FIGURE 3. The circular word (aaababb).

segment with the axes of the integer lattice; in particular, by symmetry, m is a
palindrome. See Figure 2.

Let us call cutting word a word m that is obtained in this way. In other words,
m is a cutting word (on the alphabet {a,b}) if and only if amb (or equivalently
bma) is a Christoffel word. These words have been studied extensively; they are
called central in [3], and the notation PER is used by A. de Luca for the set they
form. See [2] for other discretization procedures for segments.

3. PIRILLO’S THEOREM

Recall that two words u,v are conjugate if for some words f, g, one has u =
fg,v=gf. Conjugation is an equivalence relation. An equivalence class is called
a conjugation class, or a circular word. The conjugation class of w is denoted (w).
See Figure 3.

Theorem 3.1. A word m on the two-letter alphabet {a, b} is a cutting word if and
only if amb and bma are conjugate.

Remark. Pirillo’s statement in [15,16] is the following: a word m is a palin-
drome prefix of some standard Sturmian sequence if and only if mab and mba are
conjugate.
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This statement is equivalent to the theorem; indeed, it follows from the general
theory of Sturmian words (see [3]) that m is a palindrome prefix of a standard
Sturmian sequence if and only if amb and bma are Christoffel words. Moreover, it
is easy to see that: mab and mba conjugate < amb and bma conjugate.

The fact that the lower and upper Christoffel words of the same slope are
conjugate (which is the direct part of Pirillo’s theorem) was already known by H.
Cohn [11] (Lem. 6.1); see also [12] proof of Proposition 10.

4. CHARACTERIZATION OF CHRISTOFFEL CLASSES

A word v is a factor of a word w if for some words p, ¢, one has w = pvg. A
word v is called factor of a circular word (w) if v is a factor of some conjugate
of w; note that v may be factor of (w) without being factor of w, e.g. aa is factor
of (aba), but not of aba.

Theorem 4.1. Let w be a word of length n > 2. The following statements are
equivalent.

(i) w is conjugate to a Christoffel word.
(i) For k=0,...,n—1, (w) has k+ 1 factors of length k.
(i1i) (w) has n —1 factors of length n — 2 and w is primitive.

We call Christoffel class the conjugation class of a Christoffel word. Recall that a
word is primitive if it is not a power of some other word; equivalently, the associate
circular word is not fixed by any nontrivial rotation.

We shall use the following lemma, which is a finitary version of a well-known
result for (infinite) sequences.

Lemma 4.1. Let w be a word of length n. The following statements are equivalent:
(i) w is primitive;
(i) for k=0,...,n—1,(w) has at least k + 1 factors of length k.

We prove this lemma, since we could not find a reference for it, although the
technique is classical.

Proof. If w is not primitive, then w = u?,p > 2. Then k = |u| < n, and (w)
has < k factors of length k.

For the converse, denote by aj, the number of factors of length k of (w). Then
1=a9<a; <...<a, since each factor of length 7 — 1 has a right extension into a
factor of length ¢, if ¢ < n. Suppose that aj, < k for some k € {0,...,n—1}. Then
for some [ < k, one has a;—1 = a; < [. Consider the factor graph of order [ — 1
of (w), whose vertices are the factors of length [ — 1 of (w), with an edge u —— v,
if ua is a factor of length I of (w), a a letter, and if ua = bv for some letter b. By
hypothesis, each factor of length [ — 1 has a unique right extension into a factor of
length [. Hence each vertex has exactly one outgoing edge. Hence, each strongly
connected component of the graph is a simple closed path. Since the sequence
w>® =ww...w...is the sequence of the labels of the edges of some infinite path
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FIGURE 4. The 4 factors of length 3.

in the graph, we see that w® has a period not greater than the number of vertices,
that is, hence w™ has a period < k. Hence w is not primitive. O

Proof of the theorem.

(i) = (ii)  This will be proved independently in the next section.

(ii) = (iii) Is clear, by the lemma.

(iii) = (i) By the lemma, (w) has at least n factors of length n —1; but it cannot
have more, so that (w) has exactly n factors of length n — 1.

Now, the circular word (w) has n occurrences of factors of length n—2; moreover,
there are n — 1 distinct such factors. We deduce that (w) has exactly one factor
of length n — 2 that appears twice (call it m), and the others appear only once.

Since (w) has n factors of length n — 1, each factor of length n — 2 has a unique
right (resp. left) extension into a factor of length n — 1 except one, which has
two extensions and which we denote by r (resp. ). Necessarily, r (resp. [) must
appear twice. Hence [ = m = r.

Since m appears exactly twice and since length of w = length of m + 2, we
have (w) = (amb) = (cmd); by the property of double extension, we deduce that
b # d, a # ¢; by counting letters, we see that {a,b} = {c,d}, hence a = d, b=—¢
and a # b. Thus (amb) = (bma), amb and bma are conjugate and we conclude
using Pirillo’s theorem. O

5. FACTORS OF A CHRISTOFFEL CLASS

We want to prove the following result.

Theorem 5.1. Let w be a Christoffel word of length n and k € {0,1...,
n—1}. Let p (resp. s) the prefix (resp. suffix) of length k of w. Then (w)
has k41 distinct factors of length k and they coincide with the k+1 factors of sp,
which are all distinct.

Note that sp is of length 2k and that a word of length 2k has k 4+ 1 factors of
length &k, when they are counted with multiplicities; here, they are all distinct.
As an example, take w = aabaabaabab and k = 3. See Figure 4.

Proof of the theorem.

1. Let C denote the set of conjugates of w. Fix k as in the Theorem. Note
that the set of factors of length k of (w), or equivalently of ww, is equal
to the set of prefixes of length & of the conjugates of w.

Define C}, to be the set of conjugates of w whose first letter is a letter in s
(s is defined in the statement), together with w itself; in other words, the
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FIGURE 5. The 10 conjugates of z3yx2yx?y.

elements of C} are the prefixes of length n of ssw, for some factorization
s = s182. Clearly, |C| = k + 1, since w is primitive.

We shall show that the set of prefixes of length & of the words in C' is
equal to the set of prefixes of length k£ of the words in C}, and that the
latter are distinct. This will prove the theorem.

. To this end, we define a mapping ¢ : C\w — C\w’ (v’ is the greatest

conjugate in the lexicographic order of w), such that: if we = @(wy)
and p1,pe are the prefixes of length k of wq,ws, then (%) either p; = po
or p1 > po in lexicographical order; moreover, (xx) the latter case occurs
if and only if wy € Cy.

This will prove 1.

. It will turn out from the definition of ¢ that: wy = @(w;) =

wy = myan,wy = mazyn; this will prove (x). Moreover, |m| < k <
wy € Cf; this will prove (xx). Note that we use here the alphabet {x,y},
referring to the coordinates in the z, y-plane, see below.

. We use the geometric realization of words in order to define .

We identify a primitive word w with the bi-infinite sequence (we shall
say “sequence”) ---ww---w--- € {z,y}?, where the dot indicates the
position of the zero. The latter sequence will be identified with the cor-
responding bi-infinite path in the x, y-plane, together with some integer
point on this path, which serves to identify the origin of the path and dis-
tinguish between conjugates of w. All the conjugates of w give the same
bi-infinite path, but with different origins. See Figure 5, where the origins
are the fat points.

. Now, consider all the points (np,ng) € Z (here (p,q) = (7, 3)).

They are all on line D and the path goes vertically towards these points,
and leaves them horizontally (see Fig. 5); this corresponds to the factor
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FIGURE 6. Geometric definition of the mapping .

yx in ... www ... We replace these yx by xy and change correspondingly
the path. See Figure 6.

The new path is identical to the previous one, after a translation, which amounts
to replace line D by line D’, which passes through the points of the ancient path
closest to D, but not on D.

Changing the path, but keeping the same fat points, we obtain the mapping
¢ : C\w — C\w', since we identify conjugates with fat points. It is readily verified
that ¢ satisfies 3. O

The proof shows also the following result.

Corollary 5.1. Let w be a lower Christoffel word and w = w1 < we < ... < wy
be its conjugates ordered lexicographically. Then wy = zmy,w, = ymzx and for
eachi=1,...,n—1, one has for some words u,v,w; = UTYV, W;] = UYTV.

We may illustrate the corollary by writing a matrix with w = w; in the first row,
ws in the second etc. Then each line differs from the next only by one factor zy
which is replaced by yx. See Figure 7, where dots indicate the replacement.

Note that this matrix, for general words w, appears in the so called
Burrows-Wheeler transformation. It allows to S. Mantaci, A. Restivo, M. Sciortino
to prove that a word w is in a Christoffel class if and only if the last column of
this matrix is formed by y’s, followed by z's, see [14].

On this matrix, the mapping ¢ of the proof of Theroem 5.1 appears as scanning
through the rows: ¢ of a conjugate of w is the conjugate in the row above it. Note
that in the example of Figure 7, if we take k = 4, the set Cy of the proof of
Theorem 5.1 is

Cy = {y2*ya’ya®, 2’ya’ya’y, vya’yzPyz, yriyarPya®, P yatyayl;
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FIGURE 7. Matrix of conjugates.

FIGURE 8. Cayley graph of a Z/10Z with generator 3.

the factors of length 4 of ww are the prefixes of length 4 of the words in Cy, that
is yx?y, 2?yx, vyx?, ya®, 23y.

A closer look at this matrix shows that it has a cyclic structure, and also many
symmetries. This may be deduced from the following construction of Christoffel
words, which appears already in Christoffel’s article [6] (see also the equivalent
formulation by finite interval rotations [14] p. 244). We give the construction on
an example, for the Christoffel word w = x3yx?yz?y.

The graph of Figure 8 is the Cayley graph of Z/10Z: its vertices are 0,1,...,9,
and the edges correspond to the generator 3 of Z/10Z, which is the number of y's
in the Christoffel word w. Each vertex of the graph corresponds to a conjugate
(equivalently, a nontrivial suffix) of w, and the numbering of the vertex corresponds
to the distance to the line D of the corresponding integer point in Figure 9.

The word w is recovered by putting x on an edge ¢ — j if i < j, and y otherwise,
and reading the edges, beginning form the vertex 0.

The following consequence of the theorem was indicated to us by Valérie Berth.
Let a be irrational > 0 and consider the line y = ax. We obtain a bi-infinite
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sequence s by discretizing from below this line. It is a consequence of the general
theory of Sturmian sequences that s has k + 1 factors of length k for any k € N.
If we write s = ...a_sa_1ajasas ..., where the origin is between a_; and aq, then:
these k+ 1 factors are exactly the k+1 factorsof a_y ...a_sa_1a1as ... ay, which
are distinct.

Indeed, let t be the cutting sequence corresponding to the line y = ax. Then,
denoting by ¢ the reversal of ¢, we have s = tyxzt. Now, for each palindrome word
m which is a prefix of t,w = zmy is a lower Christoffel word (see [5] Th. 4.1,
[3] Cor. 2.2.29); and there are arbitrary long such words, so we may assume that
|w| > k. Then m is a suffix of £ and myz m is a factor of s = fyzt, and the yx
factors match. Since ww = zmyxzmy and |w| > k, the theorem implies the
above assertion.

We also obtain the following corollary, since Sturmian sequences of the same
slope have the same factors.

Corollary 5.2. For each Sturmian sequence and each nonnegative integer k, some
factor of length 2k of the sequence contains the k + 1 factors of length k of the
sequence.

Remark. Another proof of Corollary 5.2 using the Rauzy graph (see [3]) is easily
obtained.

6. APPENDIX: SOME GEOMETRICAL PROOFS OF KNOWN RESULTS

a) We first prove the direct part of Pirillo’s theorem: if w,w’ are the lower
and upper Christoffel word of the same slope, then they are conjugate.

It is easy to verify the following fact: if [,I’ are two parallel lines, as in the
leftmost part of Figure 10, then there exists at most one discrete path, with steps
as the ones in Section 2, between them: indeed, then the three other configurations
cannot occur (each square in Fig. 10 is a unit square and the fat points are integer
points).

Now consider the Christoffel word w of slope %; we construct the segment
(0,0), (2p,2q), see Figure 11. Let A, B be the points on the path that are the
furthest from this segment. Then AB is parallel to the segment. By the previous
fact, the path from A to B is necessarily the one encoded by the upper Christoffel
word w’. Hence w’ is a factor of ww, which implies that w,w’ are conjugate.
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FicURE 11. Conjugation of the upper and lower Christoffel words.

b) With the same geometric argument, we obtain a little bit more. Recall
from [4] the standard factorization of a lower Christoffel word w: it is the factor-
ization w = ww corresponding to cutting the path from (0,0) to (p, ¢) at the closest
integer point A’ to the segment [(0,0), (p, q)]; see Figure 12. The two words u,v
are necessarily lower Christoffel words.

Likewise, the upper Christoffel word w’ has a standard factorization which
corresponds to the closest point A” in his path; by symmetry, since w’ = @ (the
reversal of w), its standard factorization is w’ = 0. We have v = ynzx, @ = ymzx
where m, n are palindromes, since v, @ are upper Christoffel words.

We have also a factorization w = fg corresponding to the furthest point A. Now
this point is necessarily the southeast corner of the unit square whose northwest
corner is A”. Thus we see that f, g and 0, @ are almost equal: f = znz, g = ymy.
Thus v = zny = zny, u = xmy. Hence we obtain

Proposition 6.1. The lower and upper Christoffel words w,w’ are conjugate by
palindromes. More precisely w = zmz yny, w’' = ynyzmz, where the standard
factorization of w is w = zmy - zny and m,n are palindromes.
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FiGure 13. Two symmetries imply a translation.

Remark. These results could be obtained as a consequence of the de Luca-Mignosi
characterization of standard words (a word mzy is standard < axmy is a Christoffel
word), see [13]. They show indeed that a word w is standard if and only if, for
some palindromes m, n,r one has w = mxy = nr.

¢) We prove now geometrically the well-known fact that if w = xuy is a
Christoffel word of slope q/p, with p, q relatively prime, then u has the two periods
s,t with s+t =p+q and sp, tg = 1 mod.(p + q) (see [3,13] Prop. 2.2.12). Note
that s,t are necessarily relatively prime.

We use Figure 12 and the notations of Part b above. We have w = zuy =
xmy xny, hence v = myx n, which shows that u has the palindrome prefix m and
the palindrome suffix n. Now, u is palindrome, and if a palindrome of length &
has a prefix (or suffix) of length [, then it has the period k — [; this is because the
product of two axial symmetries is a translation, see Figure 13: D is the bisector
of segment AC, and D’ that of AB. The product of the symmetry by D’ followed
by that of D maps B onto C', and A onto A + B.C>'; hence it is the translation with
respect vector B.C>V .

Thus u has the periods which are the sums ¢ and s of the coordinates of the
points A" and A” in Figure 12. Let (2/,y), (", y") be these coordinates. Then the
parallelogram constructed on these points has no interior integer points. Hence its

/ /

area is one, that is, ‘ j,, 5,, = 1. Moreover, p =z’ +2”,q = y' + y”. Thus we

conclude in view of the following lemma.
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(xl/’yl/) — A//

FicURE 14. Parallelogram.

Lemma 6.1. Let (2',y'), (z",y") € N? be as in Figure 14 and suppose the parallel-
ogram 0A’ M A" does not contain any integer interior point. Then (&' +y')(y' +y")
and (" +y") (2’ + 2") are both congruent to 1 mod.(x' +y' + z" +y").

Proof. The area of a parallelogram with integer vertices, and no integer interior
/ /
point, is 1. Thus, we have 1 = ;3,, 5,,

and ({El +y/)(y/ _"_y//) — /y/ +x/y// +y/2 _"_y/y// — l‘lyl + 1 + :L‘”yl +y/2 +y/y// —
1+ (' +2"+y' +y")y’, which proves the first congurence. The second is obtained

— x/y// _ z//y/. Thus x/y// — 1+ z//y/

similarly. O
d) The proof in ¢). shows also the following fact: if the Christoffel word w
is of slope 1 gcd(p,q) = 1, and if w = wv is its standard factorization, then

P
|u] = ¢, |v] = s with sp,tqg =1 mod.(p + q).
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