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Series which are both max-plus and min-plus

rational are unambiguous

Sylvain Lombardy and Jean Mairesse∗

November 13, 2018

Abstract

Consider partial maps Σ∗ −→ R with a rational domain. We show

that two families of such series are actually the same: the unambiguous

rational series on the one hand, and the max-plus and min-plus rational

series on the other hand. The decidability of equality was known to hold

in both families with different proofs, so the above unifies the picture. We

give an effective procedure to build an unambiguous automaton from a

max-plus automaton and a min-plus one that recognize the same series.

1 Introduction

A max-plus automaton is an automaton with multiplicities in the semiring
Rmax = (R ∪ {−∞},max,+). Roughly, the transitions of the automaton have
a label in a finite alphabet Σ and a weight in the semiring. The weight of a
word w in Σ∗ is the maximum over all successful paths of label w of the sum
of the weights along the path. The series recognized by the automaton T is the
resulting map S(T ) : Σ∗ → Rmax. The set of series recognized by a max-plus
automaton is denoted by RmaxRat(Σ

∗).
These automata, or the variants obtained by considering the min-plus semi-
ring Rmin = (R ∪ {+∞},min,+) or subsemirings such as Zmax or the tropical
semiring Nmin, have been studied under various names: distance automata, cost
automata, finance automata... The motivations range from complexity issues
in formal language theory [15], to automatic speech recognition [11], via the
modeling of Tetris heaps [5].
In Krob [10], the following question was raised: characterize the series which are
recognized both by a max-plus and a min-plus automaton. That is, characterize
the class RmaxRat(Σ

∗)∩RminRat(Σ
∗). Here, we answer the question by showing

that these series are precisely the unambiguous max-plus (equivalently, min-
plus) series. Given a finitely ambiguous max-plus automaton, it is decidable if
the corresponding series is unambiguous [8]. On the other hand, the status of
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the same problem starting from an infinitely ambiguous max-plus automaton is
unknown.
Apart from an interest in terms of classification, this result clarifies the status of
the equality problem for max-plus series. The equality problem is to determine if
“S = T ”, where S and T are series recognized by given max-plus automata. The
equality problem is already undecidable in Zmax and for two letters alphabet [9],
but it is decidable for finitely ambiguous automata over Rmax [6, 17]. Also, the
following result is proved in [10]: if A is an automaton over Zmax, and B an
automaton over Zmin, then the problem “S(A) = S(B)” is decidable, so the
equality problem is decidable in ZmaxRat(Σ

∗) ∩ ZminRat(Σ
∗) (see Proposition

3.5). We can now conclude that the decidability result in [10] is a particular
case of the one in [6, 17].

The paper is organized as follows. In §3, we extend several results of [10] from
Zmax to Rmax, in particular the so-called Fatou property. The results are then
used in §4 to obtain the characterization of RmaxRat(Σ

∗) ∩ RminRat(Σ
∗).

Below, the results on decidability and complexity should be interpreted under
the assumption that two real numbers can be added or compared in constant
time.

2 Preliminaries

Let K be any semiring and denote the neutral element of the additive, resp.
multiplicative, law by 0

K

, resp. 1
K

. Let Q be a finite set and Σ a finite alphabet.
A finite linear representation indexed by Q over the alphabet Σ and the semiring
K is a triple (α, µ, β), where α, resp. β, is a row, resp. columm, vector of KQ

and µ is a morphism from Σ∗ into K

Q×Q (for u = u1 · · ·un, ui ∈ Σ, µ(u) =
µ(u1) · · ·µ(un)). The (formal power) series recognized by (α, µ, β) is the series S :
Σ∗ → K such that 〈S,w〉 = αµ(w)β. By the Schützenberger Theorem, the set
of series that can be recognized by a finite linear representation is precisely the
set of rational series. We denote it by KRat(Σ∗).

Let (α, µ, β) be a finite linear representation indexed by Q over the semiring K.
This representation can be viewed as an automaton with set of states Q: for
every (p, q) in Q2 and every letter a in Σ, if µ(a) 6= 0

K

, there is a transition from p

to q with label a and weight µ(a). For every p in Q, if αp 6= 0
K

, (resp. βp 6= 0
K

),
the state p is initial with weight αp (resp. terminal with weight βp). In the
sequel, we identify the linear representation with the corresponding automaton.
As usual we transfer the terminology of graph theory to automata, e.g. (simple)
path or circuit of an automaton. A path which is both starting with an ingoing
arc and ending with an outgoing arc is called a successful path. The label of a
path is the concatenation of the labels of the successive arcs (transitions). The
weight of a path is the product (with respect to the multiplicative law of the
semiring) of the weights of the successive arcs (including the ingoing and the
outgoing arc, need it be). We denote by weight (π) the weight of the path π.
Two automata are equivalent if they recognize the same series.
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The support of a series S is the set of words w such that 〈S,w〉 6= 0
K

. We denote
the support of S by Supp S. The characteristic series of a language L is the
series 1L such that 〈1L, w〉 = 1

K

if w ∈ L, and 〈1L, w〉 = 0
K

otherwise.

The max-plus semiring Rmax is the semiring formed by the set R ∪ {−∞} with
max as the additive operation and + as the multiplicative operation. In the
sequel, we sometimes denote max and + respectively by ⊕ and ⊗; the neutral
elements for these operations are respectively −∞ and 0. This semiring is
naturally ordered by the usual order on R extended by: ∀a,−∞ ≤ a. The min-
plus semiring Rmin is obtained by replacing max by min and −∞ by +∞ in the
definition of Rmax. The subsemirings R−

max, Zmax, Z
−
max, Zmin, . . . , are defined

in the natural way.
The subsemiring B = {(−∞, 0),⊕,⊗} of Rmax is the Boolean semiring. There
exists a morphism from Rmax onto B that maps −∞ onto −∞ and any other
element onto 0.

An automaton over Rmax is called a max-plus automaton, the corresponding
series is called a max-plus (rational) series. Let S be a max-plus rational series
recognized by (α, µ, β). Then Supp S is the regular language recognized by the
Boolean automaton obtained from (α, µ, β) by applying to each coefficient the
canonical morphism from Rmax onto B.

An automaton is unambiguous if, for every word w, there is at most one suc-
cessful path labeled by w. An automaton is 1-valued if, for every word w, all
the successful paths labeled by w have the same weight.
In Rmax, a triple (α, µ, ν) is unambiguous if, for every word w,

a) there exists at most one i, (αµ(w))i + βi 6= −∞

b) ∀a ∈ Σ, ∀j, there exists at most one i, (αµ(w))i + µ(a)ij 6= −∞ .

In Rmax, a triple (α, µ, ν) is 1-valued if, for every word w,

a) ∃xw , ∀i, (αµ(w))i + βi ∈ {−∞, xw}

b) ∀a ∈ Σ, ∀j, ∃x, ∀i, (αµ(w))i + µ(a)ij ∈ {−∞, x} .

Analogous definitions hold for triples over Rmin. A max-plus, resp. min-plus,
series is unambiguous if there exists an unambiguous max-plus, resp. min-plus,
automaton recognizing it.

The operations on matrices over Rmax are defined classically with respect to the
operations of Rmax, e.g.: (M ⊗N)ij =

⊕
k Mik ⊗Mkj = maxk(Mik +Mkj). We

usually write AB for A⊗ B. Given u = (u1, . . . , un) ∈ R

n
max and λ ∈ Rmax, set

λu = (λ ⊗ u1, . . . , λ⊗ un) = (λ + u1, . . . , λ+ un).

Consider a matrix A ∈ R

Q×Q
max . The matrix A is irreducible if the graph of A

(nodes Q, i → j if Aij 6= −∞) is strongly connected. A scalar λ ∈ Rmax and a
column vector u ∈ R

Q
max \ (−∞, . . . ,−∞) such that

Au = λu = (λ+ ui)i∈Q ,
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are called respectively an eigenvalue and an eigenvector of A. The number
of eigenvalues is at least one and at most |Q|, and it is exactly one if A is
irreducible. The max-plus spectral theory is the study of these eigenvalues and
eigenvectors. In the sequel, we only need the result in Theorem 2.1. For a more
complete picture, as well as proofs and bibliographic references, see for instance
[1].

Theorem 2.1 (Max-plus spectral theory). Consider A ∈ R

Q×Q
max . Let ρ(A) be

the maximal eigenvalue of A. We have:

ρ(A) = max
k≤|Q|

max
i1,...,ik−1∈Q

Ai1i2 +Ai2i3 + · · ·Aik−1i1

k
= max

k≤|Q|
max
i∈Q

Ak
ii

k
.

In words, ρ(A) is the maximal mean weight of a simple circuit of (the graph of)
A.

3 Some decidability results

In this section, we reconsider the various results proved by Krob [10] for series
in Zmax and we extend them to Rmax. The proofs are different since they use the
max-plus spectral theory. The results are then used in §4. Obviously, analogous
results hold for Rmin.

The decidability part of Proposition 3.1 is given in [10, Corollary 4.3] for se-
ries in ZmaxRat(Σ

∗). The proof in [10] is different and relies on the fact that
ZmaxRat(Σ

∗) is a constructive Fatou extension of Z−
maxRat(Σ

∗). We prove a
generalization of this last result for RmaxRat(Σ

∗) in Proposition 3.2 below. Us-
ing Proposition 3.2, we can then recover the decidability in Proposition 3.1 in
the same way as in [10]. Observe however that the proof of Proposition 3.1
given below provides a polynomial procedure.
In contrast with Proposition 3.1, the problem “∀w ∈ Σ∗, 〈S,w〉 ≥ 0” is unde-
cidable even for S ∈ ZmaxRat(Σ

∗), see [9].

Proposition 3.1. Consider the following problem:

Instance: S ∈ RmaxRat(Σ
∗)

Problem: ∀w ∈ Σ∗, 〈S,w〉 ≤ 0 .

This problem can be decided with an algorithm of polynomial time complexity in
the size of an automaton recognizing S.

Proof. Let A = (α, µ, β) be a trim automaton recognizing S with set of states
Q. Set

M =
⊕

a∈Σ

µ(a) .

Let ρ(M) be the maximal eigenvalue of M . By the Max-plus Spectral Theorem
2.1, there exist k ∈ N

∗ and i ∈ Q such that Mk
ii = k × ρ(M). It implies
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that there exists w ∈ Σk such that µ(w)ii = k × ρ(M). Clearly, we have
µ(wn)ii ≥ n × k × ρ(M) for all n ∈ N

∗. Since the automaton is trim, there
exist w1, w2 ∈ Σ∗ such that αµ(w1)i > −∞ and µ(w2)βi > −∞. Assume that
ρ(M) > 0, then by choosing n large enough, we get the following contradiction

〈S,w1w
nw2〉 ≥ αµ(w1)i + µ(wn)ii + µ(w2)βi > 0 .

Assume now that ρ(M) ≤ 0. By the Max-plus Spectral Theorem 2.1, it implies
that all the circuits in the automaton have a weight which is non-positive. As-
sume that there exists a word w such that 〈S,w〉 > 0. Let π be a successful
path of label w and maximal weight in the automaton. If π contains a circuit,
then the path π′ obtained by removing the circuit is still a successful path. In
particular, if w′ is the label of π′, we have 〈S,w′〉 ≥ 〈S,w〉 > 0. So we can
choose, without loss of generality, a word w such that 〈S,w〉 > 0 and |w| < |Q|.
Now notice that we have for all k ∈ N,

(
∃u ∈ Σk, 〈S, u〉 > 0

)
⇐⇒ αMkβ > 0 .

Summarizing the results obtained so far, we get

(∀u ∈ Σ∗, 〈S, u〉 ≤ 0) ⇐⇒ (ρ(M) ≤ 0)∧ ( ∀k ∈ {0, . . . , |Q|− 1}, αMkβ ≤ 0 ) ,
(1)

where M0 is the identity matrix defined by: ∀i,M0
ii = 0, ∀i 6= j,M0

ij = −∞.

Complexity. Computing the matrix M has a time complexity O(|Σ||Q|2).
Computing ρ(M) can be done using Karp algorithm [1, Theorem 2.19] in time
O(|Q|3). Computing αMkβ for all k ∈ {0, . . . , |Q| − 1} requires also a time
complexity O(|Q|3).

Proposition 3.2 is proved for series in ZmaxRat(Σ
∗) in [10, Proposition 4.2]. It

is not obvious to extend the approach of [10] to series in RmaxRat(Σ
∗). We

propose a quite different proof.

Proposition 3.2 (Fatou property). Consider a series S in RmaxRat(Σ
∗). Then

we have
S : Σ∗ −→ R

−
max =⇒ S ∈ R

−
maxRat(Σ

∗) .

Furthermore, given an automaton A over Rmax recognizing S, one can effectively
compute an automaton A− over R−

max recognizing S. The procedure to get A−

from A has a polynomial time complexity in the size of A.

Proof. Let (α, µ, β) be a trim triple recognizing S with set of states {1, . . . , n}.
Define the matrix M =

⊕
a∈Σ µ(a). Since S : Σ∗ −→ R

−
max, it follows from (1)

that ρ(M) ≤ 0. In particular any circuit has non-positive weight. It follows
immediately that:

M∗ =
⊕

i∈N

M i = I ⊕M ⊕M2 ⊕ · · · ⊕Mn−1 ,
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where I is the identity matrix of dimension n × n defined by ∀i, Iii = 0, ∀i 6=
j, Iij = −∞. Since S : Σ∗ −→ R

−
max, it follows that αM

∗β ≤ 0. Set u = M∗β

and define the diagonal matrix (the non-diagonal coefficients being −∞) D =
diag(u1, . . . , un). Define

α̂ = αD, β̂ = D−1β, ∀a ∈ Σ, µ̂(a) = D−1µ(a)D .

Clearly, the automaton (α̂, µ̂, β̂) recognizes the series S. We have: ∀i, α̂i =

αi + (M∗β)i ≤ αM∗β ≤ 0; and also: ∀i, β̂i = βi − (M∗β)i ≤ βi − βi = 0. At
last, we have: ∀a ∈ Σ, ∀i,

⊕

j

µ̂(a)ij ≤
⊕

j

(D−1MD)ij =
⊕

j

[
(D−1M)ij + (M∗β)j

]

= (D−1MM∗β)i ≤ (D−1M∗β)i = 0 ,

where we have used that MM∗ ≤ I ⊕MM∗ = M∗. Hence the triple (α̂, µ̂, β̂)
is defined over the semiring R−

max. This completes the proof.

Complexity. The matrix M is computed in time O(|Σ|n2). Then, computing

u = M∗β requires O(n3) operations. Knowing u, computing (α̂, µ̂, β̂) requires
O(|Σ|n3) operations.

Proposition 3.3 is proved for series in ZmaxRat(Σ
∗) in [10, Proposition 5.1]. The

proof relies on the Fatou property. Since we have extended this last property
to RmaxRat(Σ

∗), the proof of Krob carries over unchanged. In the proof below,
we present the arguments in a slightly different way.

Proposition 3.3. The following problem is decidable:

Instance: S ∈ RmaxRat(Σ
∗) and c ∈ R

Problem: ∀w ∈ Σ∗, 〈S,w〉 = c (i.e. S = c) .

Proof. First of all, it is enough to prove the result for c = 0. Indeed, testing if
〈S,w〉 = c is equivalent to testing if 〈S′, w〉 = 0 where S′ is the series defined
by 〈S′, u〉 = 〈S, u〉 − c. And it is straightforward to get a triple recognizing S′

from a triple recognizing S.
According to Proposition 3.1, we can decide if S belongs to R−

max(Σ
∗). If not,

then we have S 6= 0. If S ∈ R

−
max(Σ

∗) then, by Proposition 3.2, there exists an
effectively computable automaton (α, µ, β) over R−

max recognizing S. We define
an automaton (α, µ, β) as follows:

∀a ∈ Σ, ∀i, j, µ(a)ij =

{
0 if µ(a)ij = 0

−∞ if µ(a)ij < 0
,

with α and β being defined from α and β in the same way. The important
property is that for w ∈ Σ∗,

〈S,w〉 = 0 ⇐⇒ α µ(w)β = 0 . (2)

6



Let us set µ(Σ∗) = {µ(w), w ∈ Σ∗}. Obviously, (µ(Σ∗),⊗) is a submonoid of
the finite monoid (Bn×n,⊗). In particular, µ(Σ∗) is finite and can be effectively
constructed. In view of (2), we have

(∀w ∈ Σ∗, 〈S,w〉 = 0) ⇐⇒
(
∀A ∈ µ(Σ∗), αAβ = 0

)
. (3)

Since µ(Σ∗) is finite and effectively computable, the property on the right can
be checked algorithmically.

Complexity. In contrast with Proposition 3.1, we do not get a polynomial
procedure in Proposition 3.3. Deciding if the right-hand side in (3) holds is
PSPACE-complete with respect to the dimension of the triple, see for instance [7,
Theorem 13.14 and Exercise 13.25]. This is known as the universality problem.

Proposition 3.4. The following problem is decidable:

Instance: S ∈ RmaxRat(Σ
∗) and c ∈ R

Problem: ∀w ∈ Supp S, 〈S,w〉 = c .

Proof. The proof is the same as in Proposition 3.3. Instead of deciding the
right-hand side of (3), it must be decided whether (α, µ, β) and (α, µ, β) have
the same support.

Complexity. The complexity of this problem is PSPACE-complete. Indeed,
(α, µ, β) is obtained from (α, µ, β) by deleting some transitions. And deciding
whether the language accepted by a non-deterministic automaton remains the
same after the deletion of some transitions is PSPACE-complete. We briefly
explain why. First, the equivalence problem for non-deterministic Boolean au-
tomata is PSPACE-complete [16], and thus our problem is in PSPACE. Next,
let A be a non-deterministic automaton and let A′ be the automaton obtained
from A by adding a state, initial and terminal, with loops labelled by evey let-
ter. Deciding whether A′ is equivalent to A is equivalent to deciding whether A
accepts every word (universality problem), which is PSPACE-complete. Thus
our problem is PSPACE-hard.

Proposition 3.5 is proved for series in ZmaxRat(Σ
∗) and ZminRat(Σ

∗) in [10,
Proposition 5.3]. As discussed in the Introduction, a consequence of Proposition
3.5 is that the equality problem is decidable in RmaxRat(Σ

∗) ∩ RminRat(Σ
∗).

Quoting [10]: “the problem remains to characterize (such) series”. This is done
in §4.

Proposition 3.5. The following problem is decidable:

Instance: S ∈ RmaxRat(Σ
∗), T ∈ RminRat(Σ

∗)
Problem: S = T .

The above equality should be interpreted as: Supp S = Supp T and ∀w ∈
Supp S, 〈S,w〉 = 〈T,w〉.

7



Proof. Define the series −T with coefficients in R∪{+∞} by 〈−T,w〉 = −〈T,w〉
for all w. Clearly −T ∈ RmaxRat(Σ

∗). The above problem is equivalent to:

(a) Supp S = Supp T and (b) ∀w ∈ Supp S, 〈S − T,w〉 = 0 .

Point (a) is the problem of equivalence of rational languages and is thus decid-
able. The series S − T is the Hadamard max-plus product of S and −T ; it is
recognized by the tensor product of triples recognizing S and −T :
Let (α, µ, ν) (resp. (α′, µ′, ν′)) be a trim triple recognizing S (resp. −T ) with
set of states Q = {1, . . . , n} (resp. Q′ = {1, . . . ,m}). Let (ι, π, τ) be the triple
defined on Q×Q′ by:

ιp,q = αp + α′
q τp,q = νp + ν′q π(a)(p,q)(r,s) = µ(a)pr + µ′(a)qs .

By Proposition 3.4, (b) is decidable.

Using the same proof, one also shows that “S ≤ T ” is decidable. On the other
hand, “S ≥ T ” is already undecidable for S ∈ ZmaxRat(Σ

∗) and T ≡ 0, see [9].

4 Max-plus and min-plus rational implies un-

ambiguous

To prove that a series recognized by a max-plus and a min-plus automaton is
also recognized by an unambiguous automaton, we use an intermediate step
which is to prove that it is recognized by a 1-valued automaton.

Recall that the notion of 1-valuedness of a max-plus automaton has been de-
fined in §2. This notion clearly extends to any automaton with multiplicities
over an idempotent semiring, in particular to a transducer. A transducer T is
an automaton over the semiring BRat(B∗). The transducer T is 1-valued (or
functional) if |Supp 〈S(T ), w〉| ≤ 1 for all w. Next result is classical and due to
Eilenberg [4] and Schützenberger [14], see [2, Chapter IV.4]: a 1-valued trans-
ducer can be effectively transformed into an equivalent unambiguous one. The
proof of Eilenberg and Schützenberger easily extends to a 1-valued automaton
with multiplicities in an idempotent semiring. Here we give a different and sim-
ple proof of the same result. The argument is basically the same one as in [8,
Section 4].

Proposition 4.1. For any max-plus or min-plus 1-valued automaton, there
exists an unambiguous automaton which recognizes the same series.

Proof. LetA = (α, µ, ν) be a 1-valued automaton andA′ the underlying Boolean
automaton. Let D = (β, δ, γ) be the determinized automaton of A′ obtained by
the subset construction. Let S = (ι, π, τ) be the tensor product of A and D:

ιp,q = αp + βq, τp,q = νp + γq, π(a)(p,q)(r,s) = µ(a)pr + δ(a)qs .

8



The automaton S is the Schützenberger covering of A, see [13]. There is a
competition in S if:
(a) there exist q, r, s, p, and p′ such that p 6= p′, π(a)(p,q)(r,s) 6= −∞ and
π(a)(p′,q)(r,s) 6= −∞, or
(b) there exist q, p and p′ such that p 6= p′, τp,q 6= −∞ and τp′,q 6= −∞.
Let U be any automaton obtained from S by removing the minimal number of
transitions and/or terminal arrows such that there is no more competition. We
claim that U is an unambiguous automaton equivalent to A. The proof of this
claim can be found in [8, Section 4].

As a side remark, the above proof is also clearly valid in any idempotent semir-
ing.

We now have all the ingredients to prove the main result.

Proposition 4.2. Let S be a series in RmaxRat(Σ
∗). The series −S is in

RmaxRat(Σ
∗) if and only if the series S is unambiguous.

Proof. Let A = (α, µ, ν), resp. A′ = (α′, µ′, ν′), be a triple that recognizes S,
resp. −S. Let P = (ι, π, τ) be the triple on the semiring Rmax ×Rmax and with
set of states Q×Q′ defined by:

ιp,q = (αp, αp + α′
q), τp,q = (νp, νp + ν′q)

π(a)(p,q)(r,s) = (µ(a)pr , µ(a)pr + µ′(a)qs)

This triple recognizes the series (S, S − S) = (S, 1Supp S).
For every vector or matrix x with coefficients in R2

max, for i in {1, 2}, we denote
x(i), the projection of x with respect to the i-th coordinate.
By Proposition 3.2 there exists an automaton (ι′, π′, τ ′) equivalent to (ι, π, τ)
and such that (ι′(2), π′(2), τ ′(2)) is over R−

max (the first ccordinate is unmodified:
ι′(1) = ι(1), π′(1) = π(1), τ ′(1) = τ (1)). We define an automaton B = (ι, π, τ ) over
the semiring Rmax as follows:

∀a ∈ Σ, ∀i, j ∈ Q×Q′, π(a)ij =

{
π(1)(a)ij if π′(2)(a)ij = 0

−∞ if π′(2)(a)ij < 0
,

with ι and τ being defined from ι′ and τ ′ in the same way. We claim that
(ι, π, τ) is a 1-valued automaton that recognizes S.
For every word w, every successful path of B labeled by w has a weight equal to
the first coordinate k1 of the weight k of a successful path of P such that k2 = 0.
It means that k1 is the weight of a successful path labeled by w in A and that
−k1 is the weight of a successful path labeled by w in A′. Hence, k1 ≤ 〈S,w〉
and −k1 ≤ 〈−S,w〉, and so k1 = 〈S,w〉. Therefore, every successful path of B
labeled by w has a weight equal to 〈S,w〉.
Conversely, every word w in Supp S labels a successful path in B. Indeed, there
is a successful path labeled by w with weight 〈S,w〉 in A, and a successful path
labeled by w with weight −〈S,w〉 in A′. The product of the two paths gives
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a successful path in P labeled by w with a weight having a second coordinate
equal to 0, hence, after applying Proposition 3.2, the weight of every transition
along this path has a second coordinate equal to 0.
Therefore B recognizes the same series as A. We complete the proof by applying
Proposition 4.1.

There is a canonical bijection from Rmax to Rmin that consists in mapping every
x different from −∞ onto itself and −∞ onto +∞. This bijection is obviously
not an isomorphism. With some abuse, we say that a series S of RmaxRat(Σ

∗)
is also in RminRat(Σ

∗) if its image with respect to the canonical bijection is in
RminRat(Σ

∗).

Corollary 4.3. A series S is in RmaxRat(Σ
∗) ∩ RminRat(Σ

∗) if and only if it
is unambiguous. Starting from a pair formed by a max-plus and a min-plus au-
tomaton recognizing S, one can effectively compute an unambiguous automaton
recognizing S.

Observe that given a pair formed by a max-plus and a min-plus automaton, it
can be checked if they indeed recognize the same series using Proposition 3.5.

Proof. Since S is in RminRat(Σ
∗), −S is in RmaxRat(Σ

∗) (there is an isomor-
phism from Rmax onto Rmin that maps x onto −x). This result is therefore
equivalent to Proposition 4.2. The effective computation of an unambiguous
automaton recognizing S is done in the proof of Proposition 4.2.

Complexity. In Corollary 4.3, one gets a 1-valued automaton recognizing
S of dimension the product of the dimensions of the max-plus and min-plus
automata. This follows directly from the proof of Proposition 4.2. The time
complexity to construct it is also clearly polynomial. On the other hand, the
dimension of an unambiguous automaton recognizing S may be exponential with
respect to the dimension of the 1-valued automaton.

5 Examples

Let S be the series defined by 〈S,w〉 = max(|w|a, |w|b). This series is obviously
max-plus rational. In [8], it is proved that S is not unambiguous (section 3.2),
and with a different argument that it is not min-plus rational (section 3.6). We
know now that both statements are equivalent.

We consider now a simple example on which we illustrate the different steps of
our proof.

Let Amax and Bmin be the two automata drawn on Figure 1-(a) (the weights
equal to 0 on ingoing or outgoing arrows have been omitted). The automaton
Amax is a max-plus automaton, while the automaton Bmin is a min-plus automa-
ton. Their product, performed as in the proof of Proposition 4.2, is drawn on the
same figure. The automata are equivalent only if the weight with respect to the
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Bmin

Amax

a|1
a|1

a|2
b|1

b|3

|1

a|1

a|1
b|2

b|1
a|0
b|1

|1, 1

b|1, 0
a|0,−2
b|1, 0

b|1,−2 b|1,−2

a|1,−1

a|1,−1
b|2, 1

a|0,−1
a|0,−1

a|1, 0

a|1, 0

a|1, 0

a|1, 0

b|2,−1

(a) Two automata and their product

|1, 0

b|1, 0
a|0,−2
b|1, 0

b|1,−2 b|1,−2

b|2, 0

a|1, 0

a|1,−2
b|2, 0

a|0,−2
a|0, 0

a|1, 0

a|1, 0

a|1, 0

a|1, 0

(b) Application of the Fatou property

Figure 1: Getting an unambiguous automaton (I)

second coordinate is non-positive on every successful path. Hence, we can apply
the Fatou property (Proposition 3.2) to get an equivalent automaton on which
the weight ot the second coordinate is non-positive on every arc (transitions,
and initial and final arrows). The result is shown on Figure 1-(b). After deleting
the arcs that have a second coordinate weight different from 0, and remembering
only the first coordinate, we get the 1-valued automaton of Figure 2-(a). As this
automaton has the same support as Amax and Bmin, we can conclude that Amax

and Bmin are indeed equivalent. We can then turn this 1-valued automaton into
an unambiguous one (Figure 2-(b)), using the construction of Proposition 4.1.
This example is “artificial”. For instance, we can get an equivalent two states
unambiguous automaton from the max-plus one only by deleting some transi-
tions. This does not imply that there always exists an unambiguous automaton
that has a number of states less or equal to the number of states of either the
max-plus or the min-plus automaton. We now give an example that enhances
this point.

Recall first that every max-plus or min-plus series over a one-letter alphabet
is unambiguous [3, 12]. We now make the following claim (the proof is not
difficult): If S is a max-plus rational series over the one-letter alphabet {a}, and
if the sequence (〈S, an〉)n∈N is periodic of minimal period p, then the smallest
1-valued automaton recognizing S is of dimension p, and is deterministic.
Let p, q, r, and s be four distinct prime numbers. For i ∈ {p, q, r, s}, define the
series Si on {a}∗ by:

Supp Si = {an | n = 0 mod i}, ∀w ∈ Supp Si, 〈Si, w〉 = i .

If w is not in Supp Si, set 〈Si, w〉 = 0 with the convention that 0 is neutral for
both min and max and absorbing for +. We then consider the series T defined
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|1

b|1 b|1

b|2

a|0

a|1

b|2

a|1

a|1

a|1

a|1

(a) The 1-valued automaton

b

a

a, b

a
a, b

b

a

b

|1

b|1 b|1

a|0
b|2

a|1

b|2

a|1 a|1

|1

|1

b|1

a|1a|1

b|2

a|1

a|1

b|2

b|1

b|1

a|1a|1

b|2

a|1

b|2

a|1a|1a|1
a|1

(b) The unambiguous automaton

Figure 2: Getting an unambiguous automaton (II)

by:

∀w ∈ a∗, 〈T1, w〉 = max(〈Sp, w〉, 〈Sq, w〉), 〈T2, w〉 = min(〈Sr , w〉, 〈Ss, w〉)

〈T,w〉 = 〈T1, w〉+ 〈T2, w〉 .

The series T1 and T2, and therefore T , are unambiguous, so they belong to
ZmaxRat(a

∗) ∩ ZminRat(a
∗). The series T1 is recognized by the max-plus au-

| q

length q

| p

length p

0 0 0 0

Figure 3: A max-plus automaton recognizing T1.

tomaton of dimension (p+ q) given in Figure 3. A min-plus (and determinisic)
automaton recognizing T1 is the following one (for p < q):
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States: {0, 1, . . . , pq − 1}; transitions: i
a|0
−→ i + 1 mod pq; initial state:

|0
→ 0;

final states: ip
|p
→ for 1 ≤ i < q, and jq

|q
→ for 0 ≤ j < p.

And similarly for T2, the small automaton being the min-plus one. Therefore,
the series T is recognized by a max-plus automaton of dimension (p + q)rs,
and a min-plus one of dimension pq(r + s). Now observe that (〈T, an〉)n∈N is
periodic of minimal period pqrs. Using the above claim, the smallest 1-valued
(or unambiguous, or deterministic) automaton recognizing T is of dimension
pqrs.
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