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PROBABILISTIC MODELS FOR PATTERN STATISTICS ∗

Massimiliano Goldwurm1 and Roberto Radicioni1

Abstract. In this work we study some probabilistic models for the
random generation of words over a given alphabet used in the literature
in connection with pattern statistics. Our goal is to compare models
based on Markovian processes (where the occurrence of a symbol in a
given position only depends on a finite number of previous occurrences)
and the stochastic models that can generate a word of given length from
a regular language under uniform distribution. We present some results
that show the differences between these two stochastic models and their
relationship with the rational probabilistic measures.
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Introduction

In this work we study some probability models for the random generation of
words over a given alphabet. Our main purpose is to investigate the difference
between the uniform random generation of words of given length in a regular
language and the process of generating at random strings of the same length by
means of a (homogeneous) Markovian source. Markovian processes on words are
widely used in the literature in a large variety of contexts. Here we mainly refer to
pattern statistics where they are often assumed as standard models to study the
frequency of patterns in a text generated at random [11, 14, 16]. In these models
the probability of occurrence of a symbol in a given position only depends on a
fixed number of previous occurrences. However, as shown in [3], a word of given
length n generated uniformly at random in a regular set cannot always be obtained
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as the result of a Markovian process. This leads to consider more general models,
defined by means of weighted finite automata, called rational models in [3]. The
corresponding algorithms of random generation easily derive from the well-known
procedures for the uniform random generation of strings in regular languages [6,7].

In order to compare these processes, here we study three stochastic models for
the random generation of words over a given alphabet, called Markovian, sequen-
tial, and rational model, respectively. A Markovian model is essentially defined by
a deterministic finite automaton with transitions weighted by probabilities. These
probabilistic sources can generate the usual Markovian sequences of arbitrary or-
der, as considered for instance in [16].

The sequential models can be seen as a nondeterministic extension of the
Markovian models. They represent a unary version of the so-called stochas-
tic sequential machines [15] and define the rational probability measures on free
monoids [9]. Other extensions of the Markovian models have already been con-
sidered in the literature [5]. In Section 2 we prove an aymptotic property of the
Markovian models concerning the order of growth of the probabilities associated
with periodic words, which does not hold for sequential models. We think this
represents a key difference between these two models.

Then we compare sequential and rational models. It is easy to see that any
sequential model is also a rational model. However, we prove that this inclusion is
strict by studing the (multivariate) generating function of probabilities of symbol
occurrences. In particular, we show that for some simple rational models such a
function is not holonomic. Note that in the sequential models the same functions
are rational.

We also give furher properties of these models. In Section 3 we show that
any rational model is equivalent to an absorbing sequential model conditioned to
the event of terminating the process in a given transient state. Intuitively, this
means that a rational model is related to the transient phase of a sequential model
with a unique absorbing state. In Section 4 we study some standard statistics of
rational and sequential models in the primitive case, such as (an analogous of) the
stationary distribution and the time of first occurrence of a given symbol.

Finally, in the last section we present a result concerning the stochastic models
for pattern statistics where the set of patterns is given by a regular language.
We show that the frequency of any regular set of patterns in a word generated
in a rational model is equal to the frequency of a single symbol in a binary text
generated at random by another suitable rational model. A similar result holds
for the sequential models and this extends an analogous property proved in [3].

1. Preliminary notions

In this section we recall some basic notions concerning nonnegative matrices,
Markov chains and formal series [2, 12, 17, 18].

Let T be a nonnegative square matrix, i.e. T ∈ R
m×m
+ for some positive m ∈ N,

where R+ is the semiring of nonnegative real numbers. We recall that T is primitive
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if all entries of T n are strictly positive, for some n ∈ N. Moreover, T is called
irreducible if for every pair of indexes p, q there exists n ∈ N such that T n

pq > 0 (all
over this work T n

pq is the pq-entry of T n).
The main properties of primitive matrices are given by the Perron-Frobenius

theorem [18], Section 1. It states that every primitive nonnegative matrix T admits
a real positive eigenvalue λ, called Perron-Frobenius eigenvalue of T , which is a
simple root of the characteristic polynomial of T , such that |ν| < λ for every
eigenvalue ν �= λ and we can associate with λ strictly positive left and right
eigenvectors. Moreover, one can prove that for every n ∈ N

T n = λn(vu′ + C(n)) ,

where u′ and v are strictly positive left and right eigenvectors1 of T corresponding
to the eigenvalue λ, normed so that u′v = 1 and C(n) is a real matrix such that
C(n)ij = O(εn), for some 0 < ε < 1 and every pair of indexes i, j. Moreover, for
every n ∈ N, u′C(n) = 0′ and C(n)v = 0, where 0′ = (0, 0, · · · , 0).

The properties of nonnegative matrices are widely used to study the behaviour
of Markov chains [10, 18]. We recall that a real vector π′ = (π1, π2, . . . , πm) is
stochastic if 0 ≤ πi ≤ 1 for every i and

∑n
i=1 πi = 1. A real matrix P is stochastic if

all its rows are stochastic vectors. It is easy to see that the product of two stochastic
matrices yields a stochastic matrix. Any stochastic matrix P has eigevalue 1, which
admits right eigenvector 1′ = (1, 1, . . . , 1), while |γ| ≤ 1 for every eigevalue γ of P
different from 1.

A Markov chain is a sequence of random variables {X(n)}n∈N taking on values
in a set of states Q = {1, 2, . . . , m} such that there exists a stochastic matrix
P ∈ [0, 1]m×m whose entries satisfy the relations

Pi1j = Pr(X(n) = j | X(n − 1) = i1, X(n − 2) = i2, . . . , X(n − k) = ik)

for every n, k ∈ N, n ≥ k > 0, and any tuple of states j, i1, . . . , ik ∈ Q. Thus, their
probability functions are defined by the matrix P together with the stochastic
vector π ∈ [0, 1]m such that Pr(X(0) = i) = πi for every i ∈ Q. We represent such
a Markov chain by the pair (π, P ). Note that Pr(X(n) = j) = (π′Pn)j , for each
state j and every n ∈ N.

To recall the usual classification of states, consider the directed graph G defined
by P , where {1, 2, . . . , m} is the set of vertexes and any pair (i, j) is an edge if
and only Pij �= 0. A class is defined as a subset of {1, 2, . . . , m} that forms a
strongly connected component of G. The reduced graph of G is a directed acyclic
graph G′ whose nodes are the classes and the edges are the pairs of classes (C, D)
such that Pij �= 0 for some i ∈ C and j ∈ D. A class C is said to be recurrent if
there is no edge in G′ from C to a class D �= C. A class is transient if it is not
recurrent. A state is recurrent (respectively, transient) if it belongs to a recurrent
(resp. transient) class. Moreover a state i is absorbing if {i} is a recurrent class.
It is easy to see that the restriction PC of the matrix P to the entries belonging

1In this work a vector v is represented as column vector while v′ is its transposed (row) vector.
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to a recurrent class C is an irreducible stochastic matrix. On the other hand, one
can prove (see for instance [10], Sect. 2.5.5) that if C is a transient class then, as
n tends to 0, the entries of Pn

C go to 0 exponentially, i.e.

Pn
C = O(εn) , for some 0 < ε < 1 . (1)

Moreover, it is clear that a state i is absorbing if and only if Pii = 1.
We will say that a Markov chain (π, P ) is primitive if P is a primitive matrix.

In this case its Perron–Frobenius eigenvalue is 1 and we have

Pn = 1u′ + O(εn) , (2)

where u is the left eigenvector of P corresponding to the eigenvalue 1 normed so
that u′1 = 1 and 0 < ε < 1. Observe that 1u′ is a stable matrix, i.e. all its rows
equal u′; moreover, u is a stochastic vector, called the stationary vector of the
chain, and it is the unique stochastic vector such that u′P = u′.

The overall behaviour of a Markov chain depends on the form of its reduced
graph and on the behaviour of the chain in its reduced classes. For this reason
primitive (or irreducible) Markov chains are particularly important. Typical quan-
tities studied in the primitive models are the time of first entrance in a given state
and the number of occurrences of a fixed state in the first n steps, and the results
obtained in these cases can often be extended to more general models (see for
instance the so-called mixing Markov chains [10]). A relevant parameter in these
analysis is the so-called fundamental matrix Z, defined by Z = [I − (P − 1u′)]−1;
it turns out that Z is related to the moments of the random variables representing
the time of first entrance in a given state or the number of entrances in a given
state during the first n steps [10], Section 4.3.

We now turn our attention to rational formal series. Throughout this work
A = {a1, a2, . . . , as} is a finite alphabet and for every x ∈ A∗, |x| is the length of x
while |x|ai is the number of occurrences of ai in x. We also denote by An the set
{x ∈ A∗ | |x| = n} for every n ∈ N. A formal series over A with coefficients in R+

is a function r : A∗ −→ R+, usually represented in the form r =
∑

x∈A∗ r(x) · x,
where r(x) denotes the value of r at x ∈ A∗. We denote by R+〈〈A〉〉 the family
of all formal series over A with coefficients in R+. This set forms a semiring with
respect to the traditional operations of sum and Cauchy product.

A classical tool to transform formal series into traditional generating functions
is the canonical monoid morphism Φ : A∗ −→ A⊕, where A⊕ is the totally commu-
tative monoid over the alphabet A whose elements can be represented in the form
ai = ai1

1 ai2
2 · · · ais

s , i ∈ N
s. For every x ∈ A∗ the value Φ(x) is given by Φ(x) = ai

where ij = |x|aj for every j = 1, 2, . . . , s. Clearly Φ extends to a semiring mor-
phism from R+〈〈A〉〉 towards the traditional ring R[[A]] of formal power series in
the commutative variables a1, a2, . . . , as with real coefficients. Therefore Φ can be
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considered as a function Φ : R+〈〈A〉〉 −→ R[[A]] where, for each r ∈ R+〈〈A〉〉,

Φ(r) =
∑
i∈Ns

f(i) ai, and f(i) =
∑

|x|a1=i1,...,|x|as=is

r(x) .

We recall that an element g ∈ R[[A]] is rational if there exist two polynomials p, q ∈
R[A] such that g = pq−1; moreover, g is holonomic if, for each a ∈ A, g is solution
of a linear partial differential equation in a with polynomial coefficients [1]. All
algebraic series are holonomic as well as several types of transcendental series [13,
19]. Further, we recall that the sequence of coefficients associated with a holonomic
series is solution of a linear recurrence relation with polynomial coefficients [13].

A formal series r ∈ R+〈〈A〉〉 is called rational if it admits a linear representation,
that is a triple 〈ξ, µ, η〉 where, for some integer m > 0, ξ and η are (column) vectors
in R

m
+ and µ : A∗ −→ R

m×m
+ is a monoid morphism, such that r(x) = ξ′µ(x) η

holds for each x ∈ A∗. We say that m is the size of the representation. Such
a triple 〈ξ, µ, η〉 can be interpreted as a weighted nondeterministic automaton,
where the set of states is given by {1, 2, . . . , m} and the transitions, the initial and
the final states are assigned weights in R+ by µ, ξ and η, respectively. For each
a ∈ A the matrix µ(a) represents the weights of all transitions of the automaton
labeled by A. To avoid redundancy it is convenient to assume that 〈ξ, µ, η〉 is
trim (meaning that all indexes are used to define the series), i.e. for every index
i there are two indexes p, q and two words x, y ∈ A∗ such that ξpµ(x)pi �= 0 and
µ(y)iqηq �= 0. We say that 〈ξ, µ, η〉 is primitive if T =

∑
a∈A µ(a) is a primitive

matrix. Clearly, if r ∈ R+〈〈A〉〉 is rational then Φ(r) is rational in R[[A]].

2. Stochastic models on words

Inspired by the classical Bernoullian and Markovian processes analogous mod-
els have been proposed in the literature to study probability measures on free
monoids [9, 15]. Incidentally, we recall that a probability measure on A∗ is a map
f : A∗ −→ [0, 1] such that f(ε) = 1 and

∑
a∈A f(xa) = f(x) for every x ∈ A∗ [9].

For our purpose, we may consider a probabilistic model over A as a formalism
to define a probability function on the set An for every integer n > 0; moreover,
it is naturally equipped with an effective procedure to generate on input n a word
in An with the prescribed probability. In this section we study three types of
probabilistic models called, respectively, Markovian, sequential and rational. Our
main purpose is to stress the differences among these models. For instance it
will be clear that for Markovian and sequential models the associated probability
function is a probability measure on a free monoid, while the same property is not
always true rational models.

The simplest probabilistic model on words is the well-known Bernoullian model.
A Bernoullian model B over A is defined by a function p : A → [0, 1] such that∑

a∈A p(a) = 1. A word x ∈ A+ is generated in this model by choosing each letter
of x under the distribution defined by p independently of one another. Thus, the
probability of x = x1x2 · · ·xn, where xi ∈ A for each i, is given by PrB(x) =
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p(x1)p(x2) · · · p(xn), which clearly defines a probability function over An for every
integer n > 0.

2.1. Markovian models

A Markovian model over A is defined as a pair M = (π, M) where, for some
integer k > 0, π ∈ [0, 1]k is a stochastic vector and M is a function M : A →
[0, 1]k×k such that the matrix T =

∑
a∈A M(a) is stochastic and for every a ∈ A,

each row of M(a) has at most one non-null entry.
The probability of a word x = x1x2 · · ·xn, where xi ∈ A for each i = 1, 2, . . . , n,

is given by
PrM(x) = π′M(x1)M(x2) · · ·M(xn)1.

Since both π and T are stochastic arrays, PrM defines a probability function over
An for each positive integer n. Note that (π, T ) is a Markov chain over the set of
states Q = {1, 2, . . . , k}, which we may call the underlying Markov chain of M.

Note that every Bernoullian model is a Markovian model. Moreover, the
pair M = (π, M) defines a deterministic finite state automaton where transi-
tions are weighted by probabilities: the set of states is Q, the transition function
δM : Q × A −→ Q ∪ {⊥} is defined so that for every i ∈ Q and every a ∈ A,
δM(i, a) = j if M(a)ij �= 0, and the same value M(a)ij is the weight of the transi-
tion, while δM(i, a) = ⊥ if M(a)ij = 0. Clearly, δM can be extended to all words
in A∗. Moreover, the sum of weights of all transitions outgoing from any state
equals 1. Since the automaton is deterministic, for every word x = x1x2 · · ·xn

and every i0 ∈ Q there exists at most one path labeled by x starting from i0.
The corresponding weight is given by the value Pi0(x) = πi0 · mi0(x), where
mi0(x) = M(x1)i0i1M(x2)i1i2 · · ·M(xn)in−1in if there exist i1, . . . , in ∈ Q such
that δ(ij−1, xj) = ij for each j = 1, . . . , n, while mi0(x) = 0 otherwise. As a
consequence, the probability of x can be expressed by PrM(x) =

∑k
i=1 Pi(x).

The following lemma gives an asymptotic property of the probabilities defined
in Markovian models. Here we use the symbol Θ to represent the order of growth
of sequences: for a pair of sequences {fn}, {gn}, both included in R+, the equality
fn = Θ(gn) means that for some positive constants c1, c2, the relation c1gn ≤
fn ≤ c2gn holds for any n large enough.

Lemma 2.1. Let M = (π, M) be a Markovian model of size k over the alphabet
A and let x ∈ A+. Then, there exists 0 ≤ β ≤ 1 such that, as n tends to +∞,

PrM(xn) = Θ(βn).

Proof. If PrM{xk} = 0, then the property holds true with β = 0. Now, assume
PrM{xk} �= 0 and set l = |x|. Then there exists a path i0, i1, . . . , ikl ∈ Q such
that

Pi0 (x
k) = πi0M(x1)i0i1M(x2)i1i2 · . . . · M(xkl)ikl−1ikl

�= 0,

where x1x2 · · ·xkl = xk. For the pigeonhole principle, in the sequence of states
i0, il, i2l, . . . , ikl there are at least two equal elements. Consider the smallest inte-
gers a, b, with 0 ≤ a ≤ k − 1 and 1 ≤ b ≤ k, such that ial = i(a+b)l. Then in the
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automaton there is a cycle starting from ial and labelled by xb. As a consequence,
for n large enough, we can write xn as

xn = xa
(
xb
)�n−a

b �
xf ,

where xf = x[n−a]b . Then, denoting mi0(xa) by p0, mial
(xb) by p and mial

(xf )
by pf , we have

Pi0(x
n) = πi0p0p

�n−a
b �pf .

Now, let p̂f be the smallest value assumed by pf for any n, i.e. p̂f = mial
(xb−1).

Then,
πi0p0p

n−a
b p̂f ≤ Pi0(x

n) ≤ πi0p0p
n−a

b −1,

whence
πi0p0p

−a
b p̂f

(
p

1
b

)n

≤ Pi0(x
n) ≤ πi0p0p

−( a
b +1)

(
p

1
b

)n

.

Therefore, Pi0(xn) = Θ(αn), with α = p
1
b . Since the initial state i0 may assume

k different values, reasoning as above we can determine k constants α1, . . . , αk ∈
[0, 1] (which are not all null) such that Pj(xn) = Θ(αn

j ) for j = 1, . . . , k. Thus,
considering β = max1≤j≤k{αj}, we have

PrM(xn) = Θ(αn
1 ) + Θ(αn

2 ) + · · · + Θ(αn
k ) = Θ(βn). �

The previous lemma plays a role similar to classical pumping lemma in formal
languages in the sense that it can be used to show that a given probabilistic model
is not Markovian.

Corollary 2.2. Given a map P : A∗ → [0, 1], assume that for each n ∈ N the
restriction of P to the set An is a probability function. If there exists a word
x ∈ A+ such that P(xn) is not of the order Θ(βn) for any constant β ≥ 0, then
there is no Markovian model M over A such that PrM = P.

The previous models can generate the traditional Markov sequences of order
m over A where the probability of the next symbol occurrence only depends on
the previous m symbols. To define these sources in our context we say that a
Markovian model M over A is of order m if for every word w ∈ Am either there
exists j such that δM(i, w) = j for every i ∈ Q or δM(i, w) = ⊥ for every i ∈ Q,
and m is the smallest integer with such a property.

A relevant case occurs when m = 1. In this case, the set of states Q can
be reduced to A and PrM is called Markov probability measure in [9]. Also
observe that there exist Markovian models that are not of order m for any m ∈ N .
For instance, if M is defined by the following (weighted) finite automaton, then
δM(1, anb) �= δM(2, anb) for every n ∈ N.

1 ����������1
b, 1

2
��

a, 1
2

��
��������2

b, 2
3

��

a, 1
3

��
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2.2. Sequential models

A natural extension of the previous model can be obtained by allowing nondeter-
minism in the corresponding finite state device. In this way the model corresponds
to a stochastic sequential machine, as defined in [15], with a unary input alpha-
bet. Moreover, it is characterized by the rational probability measures, i.e. the
probability measures on A∗ that are rational formal series in R+〈〈A〉〉 [9].

Formally, we define a sequential stochastic model over A as a pair Q = (π, M)
where π ∈ [0, 1]k is a stochastic vector and M is a function M : A → [0, 1]k×k such
that T =

∑
a∈A M(a) is a stochastic matrix.

As in the previous model, M defines a monoid morphism between A∗ and
[0, 1]k×k. Analogously, the probability of a word x = x1x2 · · ·xn ∈ A∗ is

PrQ(x) = π′M(x1)M(x2) · · ·M(xn)1

=
∑

i0,i1,...in∈{1,2,...,k}
πi0M(x1)i0i1M(x2)i1i2 · · ·M(xn)in−1in .

As in the previous case, (π, T ) is the underlying Markov chain and PrQ is a ra-
tional formal series taking on values in [0, 1]. It admits the linear representation
〈π, M,1〉 and defines a probability function over An for every positive integer n.
Furthermore, it is easy to see that PrQ is a probability measure on A∗ and hence it
is a rational probability measure; on the other hand, for every rational probability
measure f on A∗ there exists a sequential model Q such that f = PrQ [9].

The pair Q = (π, M) can be interpreted as a finite state automaton equipped
with probabilities associated with transitions, the main difference now is that the
automaton is nondeterministic. For any a ∈ A, every nonnull entry M(a)ij is the
weight of the transition from i to j labeled by a and, for every word x, PrQ(x) is
the sum of the weights of all paths labeled by x in the corresponding transition
diagram.

Since PrQ is a rational formal series, the series FQ = Φ(PrQ) is rational in
R[[A]] and it can be given by FQ = π′(I −∑a∈A P (a)a)−11. Note that FQ is the
generating function of the probabilities of occurrences of symbols in A. In other
words,

FQ =
∑
i∈Ns

FQ(i) ai,

where, for all i ∈ N
s such that i1 + · · · + is = n, FQ(i) = PrQ{x ∈ An : |x|a1 =

i1, . . . , |x|as = is}.
Example 2.3. Consider the sequential model Q = (π, M) over the alphabet
A = {a, b}, where π = (1, 0),

M(a) =
[

1/3 1/3
0 1/3

]
and M(b) =

[
1/3 0
2/3 0

]
,
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defining the following weighted automaton:

1 ����������1
a, 13

��

a, 1
3

��

b, 1
3

��
��������2

b, 2
3

��

a, 1
3

��

Here FQ(a, b) = 9(a2 − 6a− ab− 3b + 9)−1 and, for every integer n ≥ 1, we have
PrQ(an) = (n + 1)3−n . Hence, by Corollary 2.2, PrQ cannot be the probability
function of any Markovian model.

In passing, we observe that sequential models are equivalent to Markov chains
with states labeled by symbols of the alphabet. To state this equivalence precisely,
let us define a A-colored Markov chain as a triple CM = (ξ, S, e), where (ξ, S) is a
Markov chain over a set of states Q and e : Q −→ A is a labelling function. This
model associates each word x = x1x2 · · ·xn in An with the probability

PrCM(x) =
∑

i0,i1,...,in∈Q

e(ij)=xj, j=1,...,n

πi0Si0i1Si1i2 · · ·Sin−1in .

By standard argument, one can prove that, for every sequential model Q over
A, there exists a A-colored Markov chain CM such that, for every word x ∈ A∗,
PrCM(x) = PrQ(x); viceversa, for every A-colored Markov chain CM there exists
a sequential model Q over A such that PrQ(x) = PrCM(x), for every x ∈ A∗.

2.3. Rational models

Consider a rational formal series r ∈ R+〈〈A〉〉 and, for every positive integer n,
assume r(w) �= 0 for some w ∈ An. Then r defines a probability function over An,
given by

Prr(x) =
r(x)∑

w∈An r(w)
for every x ∈ An . (3)

Observe that if r is the characteristic series χL of a regular language L ⊆ A∗, then
Prr represents the uniform probability function over L ∩ An, for each n.

Since r is rational it admits a linear representation (ξ, µ, η) and hence

Prr(x) =
ξ′µ(x)η
ξ′T nη

for every x ∈ An, (4)

where T =
∑

a∈A µ(a). Also observe that Prr is a sort of Hadamard division of
two rational formal series.

It is clear that every sequential model over A is a rational model over the same
alphabet. Moreover, also in this case we can define Fr = Φ(Prr) and we have

Fr =
+∞∑
n=0

∑
i1+···+is=n

Fr(i) ai, where Fr(i) =
∑

|x|a1=i1,...,|x|as=is

Prr(x) .



216 M. GOLDWURM AND R. RADICIONI

Theorem 2.4. There exists a rational series r ∈ R+〈〈A〉〉 such that Fr is not
holonomic.

Proof. Consider the rational series r over the alphabet {a, b}, defined by the linear
representation (ξ, µ, η) such that

ξ =
(

1
0

)
, µ(a) =

(
0 1
0 0

)
, µ(b) =

(
1 0
1 0

)
, η =

(
1
0

)
.

In this case, r is the characteristic series of the language L = (b + ab)∗ and we
have

Prr(x) =
{ 1

f|x|+1
if x ∈ L

0 otherwise,
and

Φ(r) = Fr(y, z) =
∑

k,n≥0

∑
|x|a=k, |x|b=n

Prr(x)ykzn,

where fn is the nth Fibonacci number. Then, the function Φ(r) = Fr(y, z) is
holonomic only if its section

Fr(0, z) =
∑
n≥0

Prr(bn)zn =
∑
n≥0

1
fn+1

zn

is holonomic (see Prop 2.5 in [13]). Now, assume by contradiction that Fr(0, z) is
holonomic. Then there exist k + 1 polynomials p0(n), p1(n), . . . , pk(n) satisfying
the following linear recurrence equation for every n ∈ N large enough:

p0(n)
fn

= −
k∑

i=1

pi(n)
fn−i

, with p0(n), pk(n) �= 0. (5)

We can also assume that k + 1 is the smallest number of polynomials satisfying
the previous property. The properties of the Fibonacci numbers allow us to write
fn = fn+2 − fn+1. Thus, each fn−i can be rewritten as cifn + difn−1 for suitable
ci, di ∈ Z. Thus, we get

p0(n)
fn

=
k∑

i=1

pi(n)
cifn + difn−1

·

Multiplying both members by fn, we obtain

p0(n) = −
k∑

i=1

pi(n)

ci + di
fn−1
fn

· (6)

Since fn = αn + βn, with α = 1+
√

5
2 and β = 1−√

5
2 , we have

fn−1

fn
=

αn−1 + βn−1

αn + βn
=

1
α

+ O(εn),
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for some ε such that 0 < ε < 1. Therefore, replacing ci + di/α by ei, equation (6)
becomes

p0(n) = −
k∑

i=1

pi(n)
ei + diO(εn)

= −
k∑

i=1

pi(n)

ei

(
1 + di

ei
O(εn)

)

= −
k∑

i=1

pi(n)
ei

·
(

1 +
di

ei
O(εn) + O(ε2n)

)

= −
k∑

i=1

pi(n)
ei

+

(
k∑

i=1

di

ei
pi(n)

)
O(εn).

Since p0(n) is a polynomial, this relation is true only if the last sum is identi-
cally null. Then, the equation

∑k
i=1

di

ei
pi(n) = 0 must hold, which implies that

pk(n) linearly depends on p1(n), . . . , pk−1(n). As a consequence, in equation (5),
pk(n) can be replaced by a linear combination of p1(n), . . . , pk−1(n), obtaining an
equation of order k − 1, which is a contradiction because of the choice of k. �
Proposition 2.5. The chain of inclusions Bernoullian models ⊂ Markovian models
⊂ Sequential models ⊂ Rational models is strict.

Proof. It is clear that the Markovian models cannot be simulated by Bernoullian
models. The second inclusion is strict because of Corollary 2.2 and Example 2.3.
Finally, the probability function of sequential models is obviously rational and
Theorem 2.4 shows that there exist rational models r such that Fr is not rational
and hence they cannot be simulated by sequential models. As a consequence also
the last inclusion is strict. �

3. Rational models as conditional sequential models

In this section we show how any rational model can be obtained from an absorb-
ing sequential model by conditioning the process to terminate in a given transient
state. The new model is obtained by adding two states, one for simulating the
array η of final weights, the other for equaling the total weight of the transitions
from each state. Intuitively, this result associates the rational models with the
behaviour of sequential models during the transient phase. We recall that there
exist quite natural processes that can be represented by such a behaviour [10].

For our purpose, let us introduce some further notations. Consider a sequential
model Q = (π, M) over an alphabet A and let Q = {1, 2, . . . , k} be its set of
states. For any word x ∈ An and any q ∈ Q we denote by PrQq(x) the probability
of generating x after n steps and terminating in q. This value, for x = x1x2 · · ·xn,
is given by

PrQq(x) = π′ M(x1)M(x2) · · ·M(xn) eq ,

where eq is the characteristic vector of q (i.e. the vector having 1 in the entry
corresponding to state q and 0 elsewhere).



218 M. GOLDWURM AND R. RADICIONI

On the other hand, we denote by PrQ|q(x) the probability of generating x after
n steps conditioned to the event of terminating the process in q. We can express
this measure as

PrQ|q(x) =
PrQq(x)
π′ T n eq

=
π′ M(x1)M(x2) · · ·M(xn) eq

π′ T n eq
,

where T =
∑

a∈A M(a).
We say that the sequential model Q is absorbing if in the underlying Markov

chain there exists just one absorbing state q ∈ Q and all states p �= q are transient.

Theorem 3.1. For every rational series r ∈ R+〈〈A〉〉 admitting a linear represen-
tation of size k there exists an absorbing sequential model Q over A of k +2 states
such that for every x ∈ A+

Prr(x) = PrQ|q(x) ,

where q is the absorbing state of Q.

Proof. Let 〈ξ, µ, η〉 be a linear representation of r of size k and let l be the cardi-
nality of A. We construct an absorbing sequential model Q = (π, M), of dimension
k + 2, where the state k + 2 is absorbing and the conditional probability PrQ|k+1

is equal to Prr. The components of the initial vector π are πi = ξi/ξ if 1 ≤ i ≤ k
and zero otherwise, where ξ = ξ′1.

In order to define the matrices M(a) for every a ∈ A, let R(a) be the k-vector
µ(a)(1 + η) and set

u = max {R(a)i | a ∈ A, i = 1, 2, . . . , k} .

For every i, j ∈ {1, . . . , k}, we define

M(a)ij =
µ(a)ij

lu
, M(a)i k+1 =

(µ(a)η)i

lu
, M(a)i k+2 =

u − R(a)i

lu
·

The components M(a)k+1 j and M(a)k+2 j are equal to l−1 if j = k + 2, and zero
otherwise. It is easy to see that the matrix N =

∑
a∈A M(a) is stochastic. Indeed,

for all i = 1, . . . , k we have

k+2∑
j=1

Nij =
∑
a∈A

k+2∑
j=1

M(a)ij =
1
lu

∑
a∈A

[(µ(a)1)i + (µ(a)η)i + u − R(a)i] = 1,

while
∑k+2

j=1 Nk+1 j =
∑k+2

j=1 Nk+2 j = 1. Now, by the form of the matrices M(a),
the generating process of a word x = x1x2 · · ·xn terminating in state k + 1 never
transits through state k + 2 and has probability

PrQ,k+1(x) =
k∑

i=1

ξi

ξ

µ(x1) · · ·µ(xn−1) µ(xn) η

(lu)n
=

ξ′ µ(x) η

ξ (lu)n
·
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Moreover, denoting with T =
∑

a∈A µ(a) the stochastic matrix associated to µ,
the probability of terminating in state k + 1 after generating a word of length n is
πNnek+1 = (ξ(lu)n)−1ξ′T nη, and then

PrQ|k+1(x) =
PrQ,k+1(x)
π′ Nn ek+1

=
ξ′ µ(x) η

ξ′ T n η
= Prr(x). �

Example 3.2. Consider the linear representation (ξ, µ, η) and the series r defined
in the proof of Theorem 2.4. We recall that r is the characteristic series of L =
(b + ab)∗, while (ξ, µ, η) corresponds to the following automaton:

1 ����������	
��
���1
a,1

��

b,1

��
��������2

b,1

��

Applying Theorem 3.1 we get the sequential model Q = (π, M) such that

π =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ M(a) =

⎛
⎜⎜⎝

0 1/4 0 1/4
0 0 0 1/2
0 0 0 1/2
0 0 0 1/2

⎞
⎟⎟⎠ M(b) =

⎛
⎜⎜⎝

1/4 0 1/4 0
1/4 0 1/4 0
0 0 0 1/2
0 0 0 1/2

⎞
⎟⎟⎠ .

The corresponding weighted automaton is described by the following picture:

1 ����������1

b,1/4

��
a,1/4 ��

b,1/4

��

a,1/4

����������2

b,1/4

		
b,1/4 ��

a,1/2




��������3 a,1/2 ��

b,1/2

����������4

a,1/2





b,1/2

��

As a matter of fact, it is not difficult to see that PrQ|3(x) = Prr(x), for every
x ∈ A∗.

4. Primitive models

As in the theory of Markov chains, the asymptotic behaviour of our models
depends on the properties of the primitive cases. In this section we consider
sequential and rational models under a primitivity hypothesis and study some
standard parameters defined with respect to a symbol a ∈ A, as for instance, the
time of first occurrence of a and its number of occurrences in a word generated
by the process. We give some properties easily deducible from the definitions and
extend certain results appeared in the literature.
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4.1. Limit probability of symbol occurrence

A sequential model Q = (π, M) over A is primitive if the matrix T =
∑

a∈A M(a)
is primitive. As a consequence, by equation (2), T n = 1u′ + O(εn) where u is the
left eigenvector of T corresponding to the eigenvalue 1 normed so that u′1 = 1
and 0 < ε < 1. Let x1x2 · · ·xn ∈ An be a word generated by Q. Then, for every
a ∈ A, we have

Pr(xn = a) = π′T n−1M(a)1 = u′M(a)1 + O(εn) .

Thus, the set of values {u′M(a)1 | a ∈ A} defines the limit distribution of oc-
currence of symbols in A as the number of steps increases. Note that it does not
depend on the initial probabilities πi’s and, intuitively, it plays the analogous of
the stationary distribution in ergodic Markov chains.

The previous analysis can be extended to the rational models. Consider a
rational formal series r ∈ R+〈〈A〉〉 and let (ξ, µ, η) be a linear representation of
r. Also define T =

∑
x∈A µ(x). For every symbol a ∈ A and every word x =

x1x2 · · ·xn ∈ An generated at random in this model we have

Prr(xn = a) =
ξ′T n−1µ(a)η

ξ′T nη
, (7)

Prr(xm = a) =
ξ′T m−1µ(a)T n−mη

ξ′T nη
, for any m < n . (8)

We say that (ξ, µ, η) is primitive if T is primitive. In this case let λ be the Perron-
Frobenius eigenvalue of T and let u, v be its left and right eigenvectors normed so
that u′v = 1. We know that T n = λn(vu′ + O(εn)) for some 0 < ε < 1, and hence
from the previous equations we get

lim
n→+∞Prr(xn = a) =

u′µ(a)η
λu′η

,

lim
m→+∞

(
lim

n→+∞Prr(xm = a)
)

=
u′µ(a)v

λ
·

Now, let us define two probability functions over A, i.e.

α : A −→ [0, 1], α(a) =
u′µ(a)η
λu′η

∀a ∈ A ,

β : A −→ [0, 1], β(a) =
u′µ(a)v

λ
∀a ∈ A .

Thus, α represents the limit distribution of symbol occurrence at the end of a word.
Note that it does not depend on the initial vector ξ. Analogously, β represents
the limit distribution of symbol occurrence in the middle of a long word. It is
independent of both the initial and the final vector.
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4.2. Fundamental matrix in primitive rational models

It is well-known that in every ergodic Markov chain the number of passages
through a given state in the first n steps has a Gaussian limit distribution [10],
Section 4.3.5. The same property can be proved for the number of occurrences
of a given symbol in words generated by primitive rational models and, more
generally, by rational models having a unique dominant component, that is a
primitive component with a maximum eigenvalue. In [4,8] more general conditions
are given that guarantee a Gaussian limit distribution for the same quantity in
rational models. Here, we want to give a further analogy between Markov chains
and rational models concerning the fundamental matrix Z given in Section 1.

Consider again a primitive rational model (ξ, µ, η) and let T, λ, u, v be defined
as in the previous subsection. Then we know that, for every n ∈ N, there exists
a real matrix C(n) such that T n = λn(vu′ + C(n)) and C(n) = O(εn), for some
0 < ε < 1. Therefore the matrix C =

∑
n≥0 C(n) is well defined and one can

prove the following property

Proposition 4.1. The matrix C defined above satisfies the relation

C =
(

I −
(

T

λ
− vu′

))−1

.

Proof. First recall that, for every square matrix X , if Xn → 0 then (I − X)−1

exists and (I −X)−1 =
∑

n Xn. In our case, for every positive integer n, we have

(
T

λ
− vu′

)n

=
T n

λn
+

n−1∑
k=0

(
n

k

)
T k

λk
(−1)n−kvu′

=
T n

λn
+

n−1∑
k=0

(
n

k

)
(−1)n−kvu′ =

T n

λn
− vu′ = C(n) .

This implies (T/λ − vu′)n → 0 and hence by the property above the matrix
(I − (T/λ − vu′))−1 =

∑
n≥0(T/λ − vu′))n exists, which proves the result. �

The matrix C appears in the asymptotic expression of the variance of the ran-
dom variable yn(a) that represents the number of occurrences of a in a word of
length n generated by rational model defined by (ξ, µ, η) [3]. Indeed one can prove
that the mean value of yn(a) is given by E(yn(a)) = β(a)n + O(1), while its
variance is

Var(yn(a)) = γ(a)n + O(1) , where γ(a) =
(

β(a) − β(a)2 + 2
u′µ(a)Cµ(a)v

λ2

)
.

One can also prove that γ(a) �= 0 if and only if T �= µ(a) �= 0 and, in this case,
the random variable (yn(a)− β(a)n)/

√
γ(a)n has a Gaussian limit distribution of

mean value 0 and variance 1.
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4.3. Time of first symbol occurrence

This quantity can be easily evaluated in case of primitive sequential models.
Let Q = (π, M) be defined as in Section 4.1 and, for any a ∈ A, let τa denote the
position of the first occurrence of a. Defining B as the matrix B = T −M(a), for
every integer i > 0 we have Pr(τa = i) = π′Bi−1M(a)1 .

Proposition 4.2. Let Q = (π, M) be a primitive sequential model over A and set
a ∈ A. If M(a) �= 0 then

E(τa) = π′(I − B)−11 ,

Var(τa) = π′(I − B)−1(I + B − 1π′)(I − B)−11 .

Proof. Since M(a) �= 0, B is equivalent to the restriction of a stochastic matrix
to a transient class. Then, by equation (1), (I − B)−1 =

∑
i≥0 Bi is well-defined.

Analogously, (I − B)−2 =
∑

i≥0 iBi−1 and thus we can write

E(τa) =
∑
i≥0

iπ′Bi−1M(a)1 = π′(I − B)−2M(a)1 .

This proves the first result, since (M(a) + B)1 = 1 and hence M(a)1 = (I −B)1.
Moreover, the variance V ar(τa) = E((τ2

a ) − (E(τa))2) satisfies the equality

V ar(τa) =
∑
i≥0

i2π′Bi−1M(a)1 − (
π′(I − B)−11

)2
= π′(I − B)−1(B + I)(I − B)−11 − π′(I − B)−11π′(I − B)−11 ,

which implies the second equation. �

By a similar computation one can prove that the moment generating function
of τa, defined by E(etτa) =

∑
i≥0 eitPr(τa = i), satisfies the identity

E(etτa) = π′et(I − etB)−1M(a)1 .

5. Models for pattern statistics

The major problem in pattern statistics is to estimate the frequency of pattern
occurrences in a random text. A formal model for such a statistics is given by a
language of patterns L ⊆ A∗ and a function P : A∗ −→ [0, 1] defining a probability
function on each subset An, for n > 0. The associated statistics On(L,P) is defined
as the number of occurrences of strings of L in a text x generated at random in An

with probability P(x). Here an occurrence is a position where a pattern terminates
in the text x. Hence On(L,P) is a random variable taking on values in {0, 1, . . . , n}.

In [3] it is proved that for every regular set L ⊆ A∗ and every Markovian
model M of order 1 there exists a rational formal series s ∈ R+〈〈{a, b}〉〉 such that
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On(L, PrM) and On(a, Prs) have the same distribution for every integer n > 0.
That is a sort of reduction property from Markovian models of order 1 to rational
models: the frequency of regular patterns in the former model can be reduced
to the frequency of a single symbol in the latter. Here we extends this result
by showing two analogous reductions concerning the rational and the sequencial
models, respectively. This also implies that the frequency of regular patterns in any
Markovian model is reducible to the frequency of a single symbol in a sequential
model, so stressing the role of nondeterminism in such a relationship.

Theorem 5.1. For every regular language L ⊆ A∗ and every rational formal
series r ∈ R+〈〈A〉〉 there exists a rational formal series s ∈ R+〈〈{a, b}〉〉 such that,
for every integer n > 0 and every k = 0, 1, . . . , n

Prob{On(L,Prr) = k} = Prob{On(a,Prs) = k} .

Proof. Let 〈Q, A, p, δ, F 〉 be the deterministic automaton recognizing the language
A∗L and let 〈ξ, µ, η〉 be a linear representation of r, with ξ, η ∈ R

m
+ , µ : A −→

R
m×m
+ . Moreover, let l be the cardinality of A. We define the linear representation

〈ρ, ν, τ〉 as follows:
ρ, τ ∈ R

Q′
+ , ν : {a, b} −→ R

Q′×Q′
+ ,

where Q′ = Q × {1, . . . , m} × A and

ρ(q,j,σ) =
{

ξj/l if q = p
0 otherwise,

τ(q,j,σ) = ηj ,

ν(a)(q,j,σ)(q′,j′,σ′) =
{

µ(σ′)j,j′ if δ(q, σ′) = q′ and q′ ∈ F
0 otherwise,

ν(b)(q,j,σ)(q′,j′,σ′) =
{

µ(σ′)j,j′ if δ(q, σ′) = q′ and q′ �∈ F
0 otherwise.

We show that 〈ρ, ν, τ〉 is the linear representation we are looking for. Let f :
A+ −→ {a, b}+ be the function such that, for every word σ1σ2 · · ·σn ∈ A+,
f(σ1σ2 · · ·σn) = x1x2 · · ·xn, where xi = a if δ(p, σ1σ2 · · ·σi) ∈ F , and xi = b oth-
erwise. We now prove that, for every x ∈ {a, b}+, ρ′ ν(x)τ =

∑
ω∈f−1(x) ξ′µ(ω)η.

Indeed,

ρ′ ν(x)τ =
∑

q0,...,qn∈Q
1≤i0,...,in≤m

σ0,...,σn∈A

ρ(q0,i0,σ0)

⎛
⎝ n∏

j=1

ν(xj)(qj−1,ij−1,σj−1)(qj ,ij ,σj)

⎞
⎠ τ(qn,in,σn).

By construction, the last sum is equal to

∑
q0=p

1≤i0,...,in≤m
σ0,...,σn∈A

ρ(q0,i0,σ0)

⎛
⎝ ∏

δ(qj−1,σj)=qj

ν(xj)(qj−1,ij−1,σj−1)(qj ,ij ,σj)

⎞
⎠ τ(qn,in,σn),
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where, once σ1σ2 · · ·σn ∈ An is fixed, the sequence q0, q1, . . . , qn is defined by
q0 = p and qj = δ(qj−1, σj), for j = 1, . . . , n. The terms of this sum are different
from zero only if σ1σ2 · · ·σn ∈ f−1(x). Thus, since ρ(p,i0,σ0) = ξi0/l, we have

ρ′ ν(x)τ =
∑

1≤i0,...,in≤m

σ1···σn∈f−1(x)

ξi0

⎛
⎝ ∏

δ(qj−1,σj)=qj

µ(σj)ij−1,ij

⎞
⎠ ηin

=
∑

σ1···σn∈f−1(x)

ξ′ µ(σ1σ2 · · ·σn) η.

Therefore, ∑
x∈{a,b}n

ρ′ ν(x)τ =
∑

ω∈An

ξ′ µ(ω)η

and hence, for every n and k, we have∑
ω∈An, |ω|L=k

ξ′ µ(ω)η

∑
ω∈An

ξ′ µ(ω)η
=

∑
x∈{a,b}n, |x|a=k

ρ′ ν(x)τ

∑
x∈{a,b}n

ρ′ ν(x)τ
,

which proves the result. �
By adapting the previous proof to sequential models, we obtain the following

statement.

Theorem 5.2. For every regular language L ⊆ A∗ and every sequential model Q
over A there exists a sequential model N over {a, b} such that, for every integer
n > 0 and every m = 0, 1, . . . , n,

Prob{On(L,PrQ) = m} = Prob{On(a,PrN ) = m} .

We conclude observing that the construction given in the last proof yields a non-
deterministic automaton and hence it cannot be used to show the same reduction
between Markovian models. However, it shows that the frequency of a regular set
of patterns in a word generated by a Markovian model is always equivalent to the
frequency of a single symbol in a binary text generated in a sequential model.
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