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TOWARDS A THEORY OF PRACTICE
IN METAHEURISTICS DESIGN:
A MACHINE LEARNING PERSPECTIVE*
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Abstract. A number of methodological papers published during the
last years testify that a need for a thorough revision of the research
methodology is felt by the operations research community — see, for
example, [Barr et al., J. Heuristics 1 (1995) 9-32; Eiben and Jelasity,
Proceedings of the 2002 Congress on FEvolutionary Computation
(CEC’2002) 582-587; Hooker, J. Heuristics 1 (1995) 33-42; Rardin
and Uzsoy, J. Heuristics 7 (2001) 261-304]. In particular, the perfor-
mance evaluation of nondeterministic methods, including widely stud-
ied metaheuristics such as evolutionary computation and ant colony
optimization, requires the definition of new experimental protocols. A
careful and thorough analysis of the problem of evaluating metaheuris-
tics reveals strong similarities between this problem and the problem
of evaluating learning methods in the machine learning field. In this
paper, we show that several conceptual tools commonly used in ma-
chine learning — such as, for example, the probabilistic notion of class
of instances and the separation between the training and the testing
datasets — fit naturally in the context of metaheuristics evaluation.
Accordingly, we propose and discuss some principles inspired by the
experimental practice in machine learning for guiding the performance
evaluation of optimization algorithms. Among these principles, a clear
separation between the instances that are used for tuning algorithms
and those that are used in the actual evaluation is particularly impor-
tant for a proper assessment.
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INTRODUCTION

At the current stage of development of the fields of operations research and
combinatorial optimization, a thorough revision of the research methodology is
required. This need is apparently shared by many members of the research com-
munity as it is testified by the interest raised during the last years by a number of
methodological works such as those proposed in [1,10,18,30]. With this paper, we
intend to complement the above mentioned works with a conceptual analysis of
some fundamental issues that have remained so far under-explored. In particular,
we propose an original point of view on the research methodology in combinatorial
optimization that is inspired by the machine learning field.

What is wrong with the currently employed methods? The problem is best
illustrated by an old physicists’ joke:

One chap, who was very fond of horses and horse races, decided
to be scientific about it and asked his physicist friend to make
a scientific prediction of the outcome of the next race. An hour
before the race he came to his friend, but the latter replied that he
was still working on the problem. The same thing happened half
an hour before the race. .. and then five minutes before. .. A week
later the physicist, looking very proud of himself, came back with
a pile of papers, featuring a lot of diagrams and equations.

Our race-fond chap glanced at the diagrams and the equations:
“What does all this mean?” — he asked. “Well, so far I have
managed to solve the problem for spherical horses in vacuum...”

It is our strong belief that a similar joke could spread throughout our own com-
munity: a non negligible part of operations research in the last two decades was
concerned, at least in some sense, with spherical horses in vacuum. This claim
can, perhaps, be clarified by considering the largely overlooked issue of modeling
within operations research.

Obviously, the main source of interest in operations research stems (or, at least,
stemmed in the early days of the field) from the practical applications of its meth-
ods. Moreover, it is apparent, but possibly under emphasized, that the problems
traditionally considered in operations research are abstractions of problems actu-
ally encountered in practice. In other words, they are mathematical models of
real-life problems. Indeed, traditional operations research models are better un-
derstood as a hierarchy of abstractions:

(1) At the lowest level of the hierarchy, we find straightforward mathematical
models of some well defined practical problems. This first level is the one
usually adopted by industrial researchers and practitioners: their goal is
to solve a specific problem instance rather than generalize their results and
understand the properties of a class of instances.

(2) At a second level of the hierarchy, we encounter classical problems such as
the traveling salesman problem (TSP), the quadratic assignment problem
(QAP), and so on. Each of these problems is defined as a class of specific
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problem instances (as introduced at the previous level) that share similar
characteristics, as for example the kind of constraints imposed on feasible
solutions.

(3) Ascending further, we finally reach highly abstract problems, such as NK
landscapes [20] or deceptive problems [15].

These three levels should not be seen as an exhaustive description of the hierarchy
of abstraction but just as the three main steps of the ladder. Indeed, a finer-grained
analysis would reveal that other levels of the hierarchy should be considered which
lie in between. As an example, let us consider the case of the dynamic routing
problem, which is often cast into a simpler and better understood static TSP. Such
a model problem lies indeed between the first and the second level of the hierarchy.
In the rest of the paper, it will be sufficient to restrict our attention to the three
levels described above.

At this point, it seems beneficial to recall what were the reasons for this sim-
plification and for the introduction of the various levels of the above described
hierarchy of abstractions. The first reason is apparently the obvious aspiration
to reduce the implementation effort in scientific research. A more scientifically
sound reason is to try to isolate problem characteristics that have a significant
impact on the performance of algorithms. This, in fact, was the main motivation
for introducing the highly abstract problems mentioned above. For a more general
discussion of the role and of the importance of modeling in optimization, we refer
the reader to [24,27].

Unfortunately, with time, the understanding that all these problems are but
models has receded. This in turn resulted in the shift of the research focus. Re-
search often became concentrated on the model per se, leading to the development
of complexity theory, NP-completeness theory in particular [12]. Although com-
plexity theory represented a major breakthrough in the field of operations research,
it should be emphasized that this theory is concerned only with the worst-case dif-
ficulty of the whole class of model problems, rather than the particular problem
instances actually encountered in practice (or even simplified models thereof). For
example, the fact that the TSP is NP-hard only means that, unless NP = P, there
is no polynomial algorithm, which finds the optimal solution for all the possible
TSPs. This, however, does not imply anything about the difficulty of a particular
class of real-life routing problems, or even of the corresponding subclass of TSPs
used to model these routing problems.

There is however a positive side to this development. The NP-completeness
theory played an important role in making clear that, without restricting the class
of problems considered in the scientific research, it is impossible to predict the
performance of algorithms on real-life problems. This idea was further reinforced
by the non-dominance result known as No Free Lunch Theorem [35] that states
that, under certain assumption, no optimization algorithm is better than any
other, if the performance is averaged over all possible optimization problems. In
particular, this means that no algorithm can be uniformly better than any other
one. As a consequence, the combinatorial optimization field faced a significant
increase in the amount of experimental work. This concerned in particular the
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so called metaheuristics, including simulated annealing [21], tabu search [13,14],
iterated local search [23], evolutionary algorithms [11,15,17,31], and ant colony
optimization [5,7-9], for which the theoretical analysis seems particularly difficult.
However, partly because the research on the models per se became a dominant
approach, the experimental standards have little bearing to the actual design of
algorithms in practice. This is not to say that the experimental research using
abstract model problems has nothing to offer as far as practice is concerned. Inso-
far as the model manages to capture the essential characteristics of the practical
problem, the experimental results with this abstract model can be very illuminat-
ing, provided that the experimental design is modeling the setting in which the
algorithms are used in practice. In fact, as we argument in the following, a major
problem with current research in metaheuristics is not the lack of adequate test
problems, but rather their inadequate use in empirical studies.

The remainder of this paper is dedicated to the development of a formal frame-
work for the design of metaheuristics and for their experimental analysis that
captures the essential characteristics of practical operations research: the urgently
needed theory of practice.

1. MOTIVATIONS AND GOALS

The need for a formal framework for the design and empirical analysis of meta-
heuristics became evident to us during our involvement in the Metaheuristics Net-
work, a Research and Training Network funded by the Improving Human Poten-
tial program of the Commission of the European Community. The activity of
the network included a large-scale empirical analysis and comparison of a number
of metaheuristics, including evolutionary computation, ant colony optimization,
iterated local search, tabu search, and simulated annealing. This analysis ne-
cessitated an in-depth study of the existing methodological literature — including
articles discussing experiments with algorithms in general, such as [19,26], and ar-
ticles specifically concerned with metaheuristics, such as [1,30]. In the process, it
became clear that, while including many valuable observations and recommenda-
tions regarding the experimental design and the statistical analysis of the results,
the existing works are often limited to general discussion and references to general-
purpose statistical methods. Moreover, most of the existing works ignore the link
between the combinatorial optimization research and real-life optimization, and
do not question some common, though problematic, elements of the experimental
practice.

Accordingly, this paper is orthogonal to the existing literature and our main
concerns are related to the following two issues:

e the definition of a meaningful class-dependent measure of performance for
the tested algorithms;

e the definition of an experimental methodology that guarantees obtaining
a meaningful estimate of the chosen measure of performance.
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These issues are complementary to those already addressed in the existing method-
ological literature. More specifically, we observe that the commonly adopted ex-
perimental practice renders the results of the performance evaluations both sta-
tistically and practically meaningless, partly because the performance criteria are
not well-defined, and partly because statistically unsound tuning procedures are
employed.

In the following, the required formal framework for the experimental evaluation
of metaheuristics is derived from first principles. We start with an analysis of the
real-life setting in which optimization algorithms are used. This analysis reveals
a considerable similarity between the formal structure of the evaluation of meta-
heuristics and the typical machine learning problems. Accordingly, we observe
that several conceptual tools commonly used in the statistical machine learning
field, such as the probabilistic notion of class of instances or the separation between
the training and the testing datasets, fit naturally in the context of metaheuristics
evaluation. We address some possible criticisms against our approach, present
a critical analysis of several existing experimental techniques commonly used in
today’s metaheuristics research, and conclude with an outline of future research
directions.

2. THE REAL-LIFE SETTING

The main justification to the very existence of the combinatorial optimization
field comes from the (sometimes forgotten) fact that traditional combinatorial op-
timization problems are abstract models of real-life problems encountered in prac-
tice. Consequently, it is commonly believed that the performance of an algorithm
on these model problems is indicative of its performance on real-life problems.
However, what is typically ignored is that, in order for the studies conducted on
models to be of any practical relevance, it is absolutely necessary to mimic not
only the characteristics of problems, but also the whole life-cycle that optimization
algorithms follow in practice. We borrow here the concept of product life-cycle
commonly considered in manufacturing. Given the immaterial nature of optimiza-
tion algorithms, this concept assumes here the same connotations it assumes in the
field of software engineering. For an organic presentation of this concept, we refer
the reader to any manual of software engineering, for example [33]. In the real
world, the life-cycle of optimization algorithms might be quite diverse. Different
life-cycle models can be appropriate: linear (also known as cascade or waterfall),
spiral, and so on. In this paper, we will implicitly consider a simple linear life-cycle
model in which the algorithm undergoes a design/tuning phase and is then em-
ployed in production. Beside being the simplest life-cycle model, the linear model
is also the building block composing more complex models such as the spiral which,
in this context, can be described as a sequence of interleaved design/tuning phases
and production phases: At the end of each production phase, sufficient informa-
tion is gathered which can be employed in the following design/tuning phase for
improving the algorithm. From this description of the spiral model, it is apparent
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FIGURE 1. Model problems are abstractions of real-life problems.
Similarly, the experimental setting should mimic the real-life sit-
uations in which optimization algorithms are developed and prac-
tically used.

that the conclusion we draw referring to the linear model immediately extend to
the general case.

Obviously, there is no need to exactly mimic all the details of a life-cycle. Sim-
ilarly to the problem modeling, some sort of abstraction is needed, as suggested
in Figure 1. In the following, we examine the setting in which optimization al-
gorithms are employed in real-life applications and we extract several high-level
characteristics that we consider essential.

As a general rule, real-life optimization does not involve a single problem, but
rather a class thereof: consider for example a scheduling problem that needs to
be solved on a daily basis. It should be noted that the single-problem setting is
simply a degenerate case, where the problem class has only one member. Even in
this case, the results on a particular problem are interesting only as far as they
suggest some more general trend.

As already mentioned, when a linear life-cycle model is assumed, an algorithm
undergoes first a development phase and then the actual production phase. In the
latter, the problems to be solved can be considered to be roughly homogeneous.
An important observation is that the problems to be solved during the production
phase are not available during the development phase. This implies the following
rule that should be observed in any serious empirical study:

First experimental principle: The problems used for assessing the perfor-
mance of an algorithm cannot be used in the development of the algorithm
itself.

The need for introducing such a principle is best illustrated by the following reduc-
tio ad absurdum argumentation, which applies to the vast and practically relevant
class of combinatorial optimization problems for which the solution space is fi-
nite, such as, for example, traveling salesman, quadratic assignment, timetabling,
scheduling, etc. Let us consider the following trivial algorithm that takes as a
parameter a natural number and, for any given problem instance, returns a fixed
solution indexed by the parameter. Let us further assume that a single problem
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instance is used both for tuning the parameter of the algorithm and then for as-
sessing the performance of the tuned algorithm. In this case, since by hypothesis
the number of solutions of an instance is finite, provided we spend enough time
in tuning the parameter — that is, in actually trying to solve the instance — the
tuned algorithm will be typically able to return instantaneously a high quality
solution of the instance under analysis. Moreover, if the size of the instance is
not prohibitively large, the tuning of the parameter — that is, the solution of the
instance — can be performed with an exact algorithm. This will guarantee that the
tuned algorithm will be able to solve instantaneously to optimality the instance
under analysis. Clearly, this hardly suggests that our trivial algorithm is of any
practical value.

While these observations are obvious and might even be considered trivial by
our reader, still the first experimental principle is routinely violated in the current
literature, as we discuss in the following.

It should be emphasized that this principle does not imply that domain-specific
knowledge cannot be used in the development of algorithms. Such knowledge can
influence the development process in two ways. First, in case explicit knowledge
is available (either based on domain theory or on the previous experience of the
algorithm designer), it can clearly affect the design of the algorithm. Second, in
many cases, problems similar to the ones used in production are available and pilot
runs on these problems can be used to fine-tune the algorithm. These observations
lead us to a second principle, which is complementary to the first:

Second experimental principle: The designer can take into account any
available domain-specific knowledge as well as make use of pilot studies on
similar problems.

Finally, in real-life applications, the time available for either the development or
the production phases is limited, hence the corresponding fairness principle, also
advocated in [30], should be observed in any comparative experiment:

Third experimental principle: When comparing several algorithms, all
the algorithms should make use of the available domain-specific knowledge,
and equal computational effort should be invested in all the pilot studies.
Similarly, in the test phase, all the algorithms should be compared on an
equal computing time basis.

Now, given the three principles described above, we are in a position to present a
formal description of the experimental methodology.

3. THE CONFIGURATION PROBLEM

In this paper, we focus our attention on metaheuristics. Nonetheless, most of
the methodological recommendations apply also to experimental studies of ap-
proximation or even exact algorithms.

As already pointed out in several methodologically-minded papers such as, for
example [19,26], any experimental study can only assess the performance of a
particular implementation rather than a general abstract algorithm. It should be
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noted, however, that an implementation is defined not only by structural decisions
such as problem representation, data-structures, and so on, but also by a particu-
lar configuration, that is, a certain set of values of the parameters of the algorithm
as, for example, the evaporation rate and the sample size in ant colony optimiza-
tion [6,7], the tabu-list size in tabu search [13], or the mutation rate and the
cross-over operator in evolutionary computation [15]*. This leads to the following
observation, which is often ignored in the current research:

Whenever the free parameters of the algorithms to be compared are
fixed through some unspecified procedures, performance evaluation
and comparison are only meaningful with respect to the particular
configurations considered.

This means that a conclusion like:
1) Algorithm Alg 4 is better than algorithm Alg g,

cannot be drawn from experiments, unless specific reference is made to the proce-
dure used to select the configurations to be tested. In the general case, the only
claim that can be formulated on the basis of an empirical comparison sounds like:

2) The tested configuration of Alg 4 performs better than the tested
configuration of Algp.

In order to compare Alg, and Algp without restricting oneself to particular con-
figurations, the appropriate statement to be tested should be

1) The pair Alg 4 + Conf, performs better than Algg + Conf,.

Where Conf, and Conf, are two configuration procedures. Whenever it is possi-
ble, one should adopt the same configuration procedure for both algorithms. This
will contribute to isolate as much as possible the effects of the algorithmic ideas
on the overall performance. In this case, the relevant statement to be tested is:

17) The pair Alg 4 + Conf performs better than Algg + Conf.

Also here, the superiority of one algorithm over the other cannot be assessed in
absolute terms, but only with respect to the selected configuration procedure.

Unfortunately, this is not a common practice in the current literature and, in
many papers involving comparisons of a newly proposed method against some pre-
viously published approach, a better performance of the new algorithm is often
merely the result of a more careful tuning, that is, of a more sophisticated con-
figuration procedure, rather than an indication of the superiority of the proposed
algorithmic ideas. This has been shown, for example, in a thorough study concern-
ing the performance of several metaheuristics on the MAX-SAT problem: when an
equal tuning effort was invested in all the compared algorithms, the performance
was virtually identical [38].

11t should be emphasized at this point that, in this paper, we are only concerned with static
parameters, whose value is set by the algorithm designer. In case some parameters are set on
the fly by the program itself, they are not considered to be part of the configuration. In the
evolutionary computation literature, examples of such on-the-fly tuning can be found already
in [31,32] and, more recently, in [22, 34].
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In light of this observation, the configuration problem becomes one of the central
issues in the evaluation and comparison of metaheuristics. In fact, one can go as
far as claiming that, unless the experimenter is only interested in a particular
configuration, the configuration procedure becomes an inseparable part of the
algorithm.

In the following, we present a formal framework for the description of the con-
figuration problem. We observe that, when rigorously formulated, the configura-
tion problem is extremely similar to the parameter selection problem in machine
learning. Consequently, we show that several important conceptual tools from
the statistical machine learning field, such as the probabilistic characterization
of a class of problems and the parameter setting methodology, can be naturally
translated into the optimization setting.

3.1. NOTATION

In order to give a formal definition of the general problem of configuring a
metaheuristic, the following notations will be used:

e O is the set of candidate configurations and 6 € © is a particular configu-
ration.

e [ is the set of possible instances and ¢ € I is a particular instance.

e { is the available computation time, in abstract units, for the algorithm.

e ¢(0,i,t) is the cost of the best solution found by running configuration 6 on
instance ¢ for a time t. In the following, for the sake of a lighter notation,
the dependency of the cost ¢ on the time ¢ will be often omitted. Since
we wish to consider both deterministic and randomized algorithms, we
assume that the cost is a random variable distributed according to some
probability measure Po, where C' is the range of values possibly assumed
by c. In the deterministic case, the probability measure Pc is degenerate,
with the whole probability mass concentrated in a single point.

Now, in designing an optimization algorithm, one wishes to use a configuration,
which is, informally speaking, “the best” one for the particular class of problems
being solved. In order to be able to formally specify the configuration problem,
a precise definition of the best configuration is needed. Consequently, one needs
a formal definition of the concept of class of problems and some precisely defined
class-dependent performance measure C(6). These two issues are addressed in the
following sections.

3.2. WHAT IS A PROBLEM SUBCLASS?

For some years now, the metaheuristic research community reached the under-
standing that uniform dominance of one algorithm over another is highly unlikely,
even for particular combinatorial problems. As a result, more and more studies
attempt to compare algorithms on problem subclasses. However, up to now, the
notion of problem subclass remained extremely vague, and the term is often used
simply to refer to particular sets of benchmark problems. Clearly, this use of the
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term does not capture all of the properties that are intuitively expected from a
problem subclass?. For example, in order to be of any practical interest, a problem
subclass should be large — perhaps, even infinite. Moreover, there is typically no
well-defined boundary delimiting the subclass in question. Finally, some sort of
homogeneity is expected from the problems belonging to a same subclass.

Following the statistical machine learning field, where a similar notion of class
is considered, a problem subclass in combinatorial optimization can be defined in
a probabilistic way [2,3]. In the following, we identify a subclass with a proba-
bility measure P; defined over the set of possible instances. We will use the two
concepts of problem subclass and of probability measure Py interchangeably. For
simplicity of presentation, in this paper the instances to be solved will be assumed
to be generated from P; in an independent way, although it is straightforward to
generalize the analysis to a less restrictive setting such as, for example, a Markov
chain generating mechanism — see [2] for a discussion of the issue.

A number of clarifications are needed here in order to prevent possible misun-
derstandings:

e While the probabilistic definition of a subclass is not explicitly used in the
current research, it is nonetheless implicitly assumed in any experiment
in which results are averaged over a number of test problems or in which
some statistical test of significance is employed.

e The probabilistic definition of the problem subclass allows for the appli-
cation of a precise meaning to the common belief that the benchmark
problems are representative in some sense of the wider problem class. The
precise meaning of representative in this case is that the benchmark prob-
lems are sampled from the probability distribution associated with the
class.

e One should not confuse the high-level notion of a definition in probabilistic
terms of a problem subclass with the practical implementation of a specific
probabilistic benchmark generator. In fact, adopting a probabilistic defini-
tion of a problem subclass does not imply that the generating distribution
is known to the algorithm designer. The instance-generating mechanism is
only assumed to have a certain qualitative form —namely, independent and
identically distributed (IID) sampling — without assuming anything about
the particular quantitative form of this mechanism. The assumption of
IID sampling is clearly an abstraction of the real-life instance generation,
but it should be remembered that so are, for example, the model-problem
instances typically considered in combinatorial optimization.

2Eiben and Jelasity [10] discuss the properties that a problem subclass should have for serving
the purpose of testing and comparing evolutionary computation algorithms. In their discussion,
Eiben and Jelasity do not need to provide a precise definition of the concept of problem subclass
and therefore they use this concept in a somehow informal way. The definition of the concept
that we propose in the following is motivated by their same concerns, but it has the merit of
being formal and fully rigorous. It remains nevertheless perfectly consistent with the analysis
proposed in [10].
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3.3. PERFORMANCE EVALUATION

Having given a precise meaning to the notion of problem subclass, we are now
in the position to discuss the issues connected to the evaluation of the performance
of a configuration of an algorithm with respect to a certain problem subclass.

First, let us consider a single run of the algorithm on a fixed problem instance.
Let us assume that c is the cost of the best solution found within this single run.
The observed cost, by itself, does not typically provide a meaningful evaluation of
the quality of a solution. It is customary therefore to somehow refer the observed
cost to the cost of the optimal solution®. Consequently, one is typically interested
in the value of the approzimation error with respect to the cost of the optimal
solution cop¢(2). The absolute error |c — copt(t)| has many obvious shortcomings.
For example, it is not invariant under a simple linear scaling of the cost function.

However, as noted in the seminal work by Zemel [36], also the more commonly
used relative approzimation error, |c¢— copt(i)|/copt(7), is not invariant with respect
to some trivial transformation of the problem. For example, in the TSP, an affine
transformation of the weights leaves the problem essentially the same but changes
the value of the relative error of all solutions. Accordingly, several alternatives
were considered in the literature. For example, in [36], it was shown that:

e(e,i) = c_‘cOpt(i) —, (1)
Cyworst (Z) - Copt (Z)

where cyorst (2) is the cost of the worst solution for instance 4, is invariant under
several trivial transformations of the problem. However, the problem with this
measure of performance, referred to in the literature as differential approximation
measure [4] or z-approximation [16], is that it requires calculation of the cost of the
worst possible solution, which is often as difficult as finding c,p¢(2). To overcome
this problem, an alternative error measure was proposed in [38]:

¢ — Copt (1)
B (i) — cope (i)’ @

e(e,1) =

where Eyn;y denotes expectation with respect to the uniform distribution of the
solutions. While remaining invariant under trivial problem transformations, the
error measure (2) has two important advantages over (1). First, Eync(i) can be
computed efficiently for many problems. Second, under (2), the expected error of
a random solution is equal to 1, hence the proposed measure indicates how well
a considered algorithm performs in comparison to the most trivial algorithm — a
random generator of solutions. An additional useful consequence is that the error
is automatically normalized across different problems.

3In order to simplify the presentation, in this paper, we assume that the cost of the optimal
solution is known. See [30] for an excellent overview of different approaches for dealing with the
situations in which the optimal solution is not known.
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Having defined the error measure for a given solution of a particular instance,
we may now consider a more general case of evaluation of the performance of a con-
figuration with respect to a problem subclass. Recall that we have two sources of
variability: the randomness of the algorithm, as captured by the distribution P¢,
and the variability of the instances, described by the measure P;. The question
is how to define a single value of performance C(8) = C(0|©,1, P;, Pc,t) on the
basis of these two distributions*. One natural definition of a class-dependent per-
formance measure is the expected value of the error e(c, i) [2,3]:

C(8) = By cle(c(0.1).9)] = /1 /Ce(c(e,i),i) AP (cl6, i) Py (). 3)

Instead of the expectation, one can also consider other functionals of the error
distribution, such as the median, the third inter-quartile or other quantiles, the
probability of having an error below some threshold, and so on. The value C(6)
has a double role. On the one hand, by definition, C(6) is used to measure the
performance of the algorithm during the test phase (production). On the other
hand, if C(#) were known for each 6, it could also be used during the design phase
for selecting the best configuration. However, as a rule, the measures P; and Pg
are not explicitly available and hence the analytical computation of C(6) is not
possible.

For the performance evaluation, it is a common practice to measure the per-
formance of the algorithm by the average error over the test runs on the test
instances. This measure is, in fact, nothing else than an unbiased finite-sample
estimate of (3). It is tempting to apply the same approach also for the second use
of C(#), namely the configuration problem. However, in light of the first experi-
mental principle discussed in Section 2, the test instances cannot be used during
the development phase. Still, according to the second experimental principle, one
may use during the development stage other instances from the same problem
class (when available). Consequently, one may approximate the criterion (3) by
an empirical mean over the set of these training instances. Hence, similarly to ma-
chine learning, we propose an experimental methodology in which the algorithm’s
performance is measured using the test error and during the design phase one
strives to choose a configuration with as low a training error as possible®.

Now, the most straightforward way to practically carry out the training would
be the brute-force approach, which tries every possible configuration and chooses
the best one, that is, the one with the smallest training error. However, this
approach can be infeasible in practice, due to the typically large size of the con-
figuration space. Moreover, in many cases, the parameters are continuous and,
accordingly, the configuration space is infinite. In order to deal with this problem,

4One may also consider a multi-objective optimization setting, with several relevant measures.
This extension is beyond the scope of this paper.
5This methodology is also advocated in [10].
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one may use the variety of parameter selection methods employed in machine learn-
ing. For example, in [2,3] it was shown that the so called racing algorithms [25,28]
can be successfully adapted to the metaheuristics configuration task.

4. THE PROPOSED METHODOLOGY AND THE ALTERNATIVES

Let us summarize the general outline of the experimental design to be used in
metaheuristics evaluation and comparisons:

e For every algorithm specify the configuration space, that is, the space of
all the allowed combinations of parameters. If some domain knowledge is
used to narrow down the configuration space, it should be equally applied
to all the considered algorithms.

e Choose the configurations of the algorithms by using the same configu-
ration procedure, possibly based on training instances generated from
the same problem class, as the problems on which the algorithms are to
be tested®.

e Run the resulting configurations, with the same computational re-
sources (e.g., computation time?, memory, etc.), on the available test
instances and calculate the empirical approximation of the measure of
performance defined by equation (3).

Hence, in the proposed methodology the training stage corresponds to the devel-
opment phase in the real-life setting, while the testing stage corresponds to the
production phase. Strictly speaking, the training stage is preceded by the actual
implementation, but since the tuning is typically much more time-consuming, one
may safely ignore the code-writing per se.

In the second step, the configuration procedure depends on the exact context of
the experiment. For example, one may use some (possibly, approximate) training
error minimization procedure, as discussed in the previous section. It could be
argued that in some cases the training instances required for such a procedure are
not available. In such cases, the alternatives implicitly considered in the literature
are either to use the test instances themselves for choosing the tested configura-
tion or to choose the configuration based solely on the prior experience with the
algorithm. Let us examine these two alternatives in more details.

The first approach, namely the use of the test instances, is commonly used in the
current literature. In its explicit form, some sort of average test error minimization
procedure, typically based on some pilot studies, is used to choose the parameter
values. In the second form, the configuration problem is not addressed explicitly,

6In order to guarantee that one is evaluating metaheuristics rather than a particular con-
figuration method, one should use, for all the algorithms, the same configuration method, with
the same computational resources and the same training instances. However, it might be also
interesting to study the performance of different configuration methods on a same metaheuristic.

TWhenever a comparison involves an algorithm with a well-defined stopping condition (such
as constructive algorithms or local search), an iterated version with the same overall computation
time should be studied [30].
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but rather the results of the best performing configuration are reported for every
instance. However, both explicit and implicit forms of this approach violate the
first experimental principle from Section 2, which is based on the observation that
the problems to be solved during the production phase are not available during the
development phase. Consequently, the results obtained with this approach do not
produce any well-defined performance evaluation.

Another alternative is not to apply any configuration procedure, but rather
to use some configuration, which was previously used in the literature or which
is known to be “good” from the previous personal experience of the researcher.
This approach can be criticized on two grounds. First, typically the configurations
reported in the literature are chosen following some pilot experimentation, that
is, one is simply using some empirical error minimization procedure implicitly. If
the pilot studies were conducted using the same benchmark problem set, then one
uses (perhaps, without even being aware of it) the test-instances-based approach,
which we have just shown to be invalid. If, on the other hand, a different problem
set was used for these pilot studies (or the experimental setting was different),
then the employed configuration may be suboptimal for the problem at hand. In
particular, this approach may easily introduce a bias towards one of the tested
algorithms, due to uneven tuning effort. Clearly, the more recent algorithms are
often more carefully tuned in comparison to the older ones, whose developers did
not have access to today’s computing power.

To summarize, most of the configuration procedures used today are based, either
explicitly or implicitly, on the empirical error minimization. However, unlike the
systematic methodology advocated in this paper, the existing approaches either
involve some sort of “cheating”, in the form of using the test instances during the
development phase, or, alternatively, do not guarantee that all the algorithms are
configured equally well.

Zlochin and Dorigo [38] adopted the methodology discussed here for comparing,
on standard MAX-SAT benchmark problems, the performance of a number of mod-
ern metaheuristics belonging to the so-called Model Based Search approach [37].
Although the superiority of each of the considered approaches over the others
had been claimed in previously published works, the results proposed in [38] have
shown that, by providing equal tuning resources to all the compared methods,
their performance became virtually identical.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have presented a conceptual analysis of the real-life setting
in which metaheuristics are used. Following this analysis, we have presented an
experimental methodology based on a precisely defined notion of problem class
and a related class-dependent measure of performance. We observe that the for-
mal structure of the metaheuristic evaluation/comparison procedure is extremely
similar to the one of machine learning. Accordingly, we propose an experimental
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methodology similar to the one used in statistical machine learning. We have also
shown that existing alternative approaches all contain some fundamental flaws.

Clearly, the proposed experimental principles still leave much freedom to the
researcher to specify an exact experimental design depending on the context and
questions one wishes to address in the experiment. In this sense, as already men-
tioned earlier, this study is complementary to existing methodological literature.
Even for the configuration problem, which was the main focus of this paper, many
possible realizations of the proposed methodology are possible. For example, when
studying the influence of some parameter on the performance of an algorithm, one
can either fix the remaining parameters or, alternatively, one can optimize them
for every considered value of the parameter of interest. Also, when one wishes
to study the robustness of the algorithm with respect to the parameters’ setting,
obvious changes need to be made to the experimental design.

Naturally, in order to make the best use of the proposed methodology, efficient
configuration procedures are needed. One approach, already mentioned above,
is to make use of the racing algorithms [2,3]. Other alternatives include using
related methods developed in the simulation field (such as [29] and references
therein) or applying general purpose stochastic optimization methods, such as ant
colony optimization or genetic algorithms. These issues are the subject of ongoing
research.

Finally, performance is not the only criterion for choosing a particular algorithm
in practice. Clearly, the attractiveness of a particular algorithm is also determined
by subjective factors such as simplicity of the algorithmic ideas and ease of imple-
mentation. Moreover, the human factor can, in principle, also affect the efficiency
of the algorithm’s implementation, hence influencing the measured performance.
Still, while not discarding these subjective factors, this paper sheds some light on
the objective problems plaguing the current research in metaheuristics and suggests
a systematic methodology for overcoming these problems.
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