
RAIRO-Inf. Theor. Appl. 40 (2006) 303-313

DOI: 10.1051/ita:2006010

STRING DISTANCES AND INTRUSION DETECTION:
BRIDGING THE GAP BETWEEN FORMAL LANGUAGES

AND COMPUTER SECURITY

Danilo Bruschi1 and Giovanni Pighizzini1

Abstract. In this paper we analyze some intrusion detection strate-
gies proposed in the literature and we show that they represent the
various facets of a well known formal languages problem: computing
the distance between a string x and a language L. In particular, the
main differences among the various approaches adopted for building
intrusion detection systems can be reduced to the characteristics of the
language L and to the notion of distance adopted. As a further con-
tribution we will also show that from the computational point of view
all these strategies are equivalent and they are amenable to efficient
parallelization.

Mathematics Subject Classification. 68M99, 68Q17, 68Q45.

Introduction

Intrusion detection systems, initially introduced by Anderson [2] and
Denning [7], are security devices attempting to identify (in quasi real time) and
isolate computer systems intrusions. A very broad classification generally adopted
distinguishes between HIDS (Host Intrusion Detection System) and NIDS (Net-
work Intrusion Detection Systems). Host-based IDSs mainly monitor operating
system activities on specific hosts, in order to detect intrusion attempts, while
network-based IDSs examine network traffic.

Any category of IDS can be further divided into two subcategories on the basis
of the mechanisms adopted for detecting malicious activities. More precisely, we
distinguish between signature-based IDS (also referred to as misuse detection) and
anomaly detection IDS. A misuse detection IDS detects attacks as instances of
attack signatures, i.e., sets of rules or filters which characterize a malicious event.
Anomaly detection instead focuses on normal system behaviors, rather than attack

1 Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano,
via Comelico, 39, 20135 Milano, Italy; {bruschi,pighizzi}@dico.unimi.it

c© EDP Sciences 2006

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2006010

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2006010

304 D. BRUSCHI AND G. PIGHIZZINI

behaviors, i.e., a normal behavior profile is created for any activity performed on
the system, which has to be monitored, and any deviation from such a profile is
flagged as a potential attack. The misuse detection approach, adopted for almost
all the commercial products, enable a very accurate detection of known attacks,
but it is ineffective against previously unseen attacks, and it can be bypassed by
a slight variation of a known attack. On the other hand, anomaly detection can
solve such a problem but it is not still clear how to precisely define and capture
the “normal” behavior profile of the activities to be monitored.

In [9, 10] Forrest et al. introduced a methodology for building anomaly detec-
tion HIDS based on the observation that the behavior of any program can be
characterized by the sequence of system calls it makes. The HIDS they proposed
works as follows. Let P be the program to be monitored. During a training period,
sequences of system calls are collected by executing P many times in a sterile envi-
ronment. In the meantime characteristic patterns of the collected system calls are
placed in a database D, which will be subsequently used for intrusions detection.
For detecting P ’s misbehavior the following strategy is followed. Any execution of
P in a production environment is monitored and system calls are again collected in
a string x. At runtime they are compared against the contents of the database D.
The Hamming distance between x and the database content is computed, when
such a value is greater than a given threshold, an alarm is raised. It turns out
that in such a context the problem of detecting computer intrusions is equivalent
to compute the Hamming distance of regular languages.

Forrest’s et al. idea has inspired many authors who proposed many variants
of the original model, in order to obtain more efficient and more precise (i.e.,
which recognize broader classes of intrusions) anomaly detection HIDS (see Sect. 3
for further details). In the following we will show that all these approaches are
computationally equivalent. More precisely, they can be reduced to the problem
of computing distances between strings and languages, using various notions of
distance among those provided in literature. As a further contribution we will
show that from the computational point of view all the distance notions considered
are equivalent and that they can be computed by efficient (in terms of the classical
complexity theory) parallel algorithms.

The paper is organized as follows. In Section 1 some preliminary notions about
distances between languages and computational models will be recalled. In Sec-
tion 2 we recall the most prominent results about intrusion detection systems
related to our work and we will show the connections between the various notion
of intrusion detection system and distances. In Section 3 we will show that the
problem of computing all the notions of distances considered can be efficiently
parallelized. In Section 4 some final remarks will be provided.

1. Preliminaries

Given a finite alphabet Σ, we denote by Σ∗ the free monoid of strings over Σ,
and by ε the empty string. Given a string x ∈ Σ∗, we denote by |x| its length

STRING DISTANCES AND INTRUSION DETECTION 305

and by xi the ith symbol of x, i = 1, . . . , |x|. We recall that a string z ∈ Σ∗ is
a subword or factor of x if and only if there exist two strings u, v ∈ Σ∗ such that
x = uzv. If u = ε (v = ε, respectively) then z is a prefix (suffix, resp.) of x.

1.1. Distances

A distance over Σ∗ is a function d : Σ∗ × Σ∗ → N ∪ {∞} such that, for all
x, y, z ∈ Σ∗ the following holds

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x); and
iii) d(x, y) ≤ d(x, z) + d(z, y).

Strings over Σ∗ can be compared symbol by symbol. In particular, one can define
the Hamming distance between x and y as the number of positions where the
symbol of x is different from the symbol of y. More formally:

Definition 1.1. Given x, y ∈ Σ∗, the Hamming distance between x and y, denoted
by dH(x, y) is defined as:

dH(x, y) =
{

#{i | xi �= yi} if |x| = |y|
∞ otherwise.

The above definition of the Hamming distance is given by considering substitution
operations transforming a string into another one. If we consider, besides sub-
stitutions, the other two edit operations of insertion and deletion, we get another
notion of distance, called edit distance. More precisely, we can consider the binary
relation | over Σ∗ by setting for all x, y ∈ Σ∗, x| y if and only if there exist
u, v ∈ Σ∗, a, b ∈ Σ, with a �= b, such that either condition is satisfied

i) x = uav, y = ubv (substitution);
ii) x = uav, y = uv (deletion);
iii) x = uv, y = ubv (insertion).

Note that | is symmetric. As usual, we denote by | k the composition of |
with itself, k times.

Definition 1.2. Given two strings x, y ∈ Σ∗, the edit distance de(x, y) between x
and y is the minimum number of edit operations which transform x into y, i.e.,

de(x, y) = min {k | x| k y}.

306 D. BRUSCHI AND G. PIGHIZZINI

Two strings can be also compared by considering their longest common prefix,
suffix and subword, respectively. This leads to the following notions:

Definition 1.3. Given x, y ∈ Σ∗, the prefix, suffix and subword distance between
x and y, denoted respectively by dp(x, y), ds(x, y) and df (x, y), are defined as:

dp(x, y) = |x| + |y| − 2 max {|z| | x, y ∈ zΣ∗}
ds(x, y) = |x| + |y| − 2 max {|z| | x, y ∈ Σ∗z}
df (x, y) = |x| + |y| − 2 max{|z| | x, y ∈ Σ∗zΣ∗}.

Each distance over Σ∗ can be extended to a distance between strings and languages.
In particular, the distance between a string x and a language L is defined as the
minimum of the distances between x and the strings belonging to L. Thus

Definition 1.4. Let Σ be a finite alphabet, d : Σ∗ × Σ∗ → N ∪ {∞} a distance,
x ∈ Σ∗ a string, and L ⊆ Σ∗ a language. The distance between x and L is
defined as:

d(x, L) = d(L, x) =
{

min {d(x, y) | y ∈ L} if L �= ∅
∞ otherwise.

We recall that it is also possibile to define distances between languages in a stan-
dard way, by resorting to the Hausdorff distance. However, this notion is beyond
the scope of this paper. For a discussion and results on this topic we address the
interested reader to [4].

Sometimes, the edit distance is defined by considering a weight function asso-
ciating a cost with each edit operation. Also for other distance notions considered
in the paper, it is possible to consider weighted versions. Our results can be ex-
tended to such versions, however, for the sake of simplicity, here we consider only
non-weighted versions.

1.2. Computational models and complexity classes

The model of parallel computation we will consider is represented by uniform
families of circuits. More precisely, a family of circuits is a set {Cn | n ∈ N}
where Cn is a circuit for inputs of size n. {Cn} is logspace uniform if the function
n → Cn is computable on a deterministic Turing machine in logarithmic space.
NCk (ACk, SACk, respectively) denotes the class of problems solvable by logspace
uniform families of bounded (unbounded, semiunbounded1) fan-in Boolean circuits
of polynomial size and O(logk n) depth.

Unbounded fan-in circuits are equivalent to parallel random access machines
with both concurrent read and concurrent write (CRCW PRAM). In particular
the class AC1 coincides with the class of functions computed by CRCW PRAM
in O(log n) time, using a polynomial number of processors. For further notions

1In a circuit semiunbounded the fan-in of the AND gates is bounded, while the fan-in of the
OR gates is unbounded.

STRING DISTANCES AND INTRUSION DETECTION 307

�� ��

�� ��

��

��

�� ��

��

AC0 1–L

LOGSPACE 1–NL CFL

NL 1NAuxPDAp

LOGCFL=NAuxPDAp = SAC1

AC1

NC

P=AuxPDA

�= �= �=

�= �= �=

�=

Figure 1. Complexity classes.

of parallel computation and arithmetic circuits the reader is referred to Cook [6],
Karp and Ramachandran [13].

A one-way nondeterministic auxiliary pushdown automaton (1–NAuxPDA) (see
Brandenburg [3]) is a nondeterministic Turing machine having a one-way, end-
marked, read-only input tape, a pushdown tape, and a two-way, read/write work
tape with a logarithmic space bound. (For more formal definitions see, e.g., Hopcroft
and Ullman [12].)

We recall that without any bound on the running time, two-way nondeter-
ministic and deterministic auxiliary pushdown automata are equivalent, and they
characterize the class P (Cook [5]). On the other hand, two-way nondeterministic
auxiliary pushdown automata working in polynomial time characterize the class
LOGCFL of languages reducible in logarithmic space to context-free languages. As
proved in [19], the class LOGCFL coincides with the class of languages recognized
by semiunbounded circuits of polynomial size and logarithmic depth, i.e., SAC1

circuits. By 1–NAuxPDAp we denote the family of language accepted in polyno-
mial time by 1–NAuxPDA. Finally we recall that NL is the class of languages
accepted by logspace bounded nondeterministic Turing machines, while 1–NL is
the class of languages accepted by logspace bounded one-way nondeterministic
Turing machines.

In Figure 1, the relationships among these classes and other complexity classes
considered in the literature are summarized.

308 D. BRUSCHI AND G. PIGHIZZINI

2. Intrusion detection

In this paper we are interested in the host based intrusion detection model
initially introduced by Forrest et al. As mentioned earlier, such a model, also
known as N -gram model, is based on the intuition that the “normal” behavior of
a program can be characterized by the sequences of system calls it uses during its
executions in a sterile environment. The characteristic patterns of such sequences
are placed in a database, and they are subsequently used for detecting intrusions
in production environments. An essential insight of such an approach was that the
database could consist of short substrings, called N -grams, that may occur during
a program execution. Thus to detect intrusions, sequences of system calls of a given
length are collected and compared against the contents of the database, using the
Hamming distance. More precisely, given a language L ⊆ Σ∗ describing the normal
behavior of a process p and a string x describing the current behavior of p, the
HIDS computes d(L, x); if the result is greater than a threshold, experimentally
defined, an alarm is raised. In the original model, L is a regular language and the
adopted distance function is the Hamming distance.

One of the main drawbacks of the N -gram model is its accuracy, i.e., it is not
able to recognize particular forms of attacks and, as shown in [11], it is charac-
terized by a relatively high degree of false alarms. Many contributions appeared
in the literature suggesting improvements to the N -gram model. Here we are
particularly interested in [16, 18].

In [16] the behavior of a program is described by a deterministic FSA (Finite
State Automaton), which contrarily to N -grams is more suited to capture common
program structures such as branches, joins and loops, thus contributing to reduce
the degree of false alarms. The FSA is built by monitoring the normal program
execution at runtime. The states of the automaton are represented by the distinct
program counter values at which a system call is made, while transitions are labeled
with the syscall name. Such an automaton is then used to detect intrusions in the
following way. Anytime the monitored program executes a syscall s, a check is
performed for verifying if the location from where s was made corresponds to a
FSA state and if there exists a transition from the current state labeled with s;
if not, a transition to a “sink” state is performed. When the number of such
transitions, or equivalently the anomaly counter, exceeds a threshold, an alarm is
raised2. Thus in this case the HIDS operates on a regular language L, while the
notion of distance adopted for detecting intrusions attempts is the prefix distance.

The model previously described is not able to deal with a specific form of
computer attack firstly described in [18] and known as impossible path problem
(for further details see also [8]). In order to improve the resistance against this
type of attacks Wagner et al. introduced in [18], among others, a new HIDS model
called abstract stack model. Such a model, is still based on the assumption that the

2To be more precise the authors of [16] associate different weights with different kinds of
anomalies, and use such weights to compute the anomaly counter. It is not difficult to see that
this more general case can be handled by adopting a proper FSA.

STRING DISTANCES AND INTRUSION DETECTION 309

“normal” behavior of a program can be characterized by the sequence of system
calls used, but it derives such sequences via static analysis (instead of runtime as
the models previously described) of the source code, along with a fixed model of
the operating system. A program is modeled as a transition system which can
be simulated by a nondeterministic pushdown automata. In the detection phase,
intrusions are detected by recognizing strings of system calls which could not have
been generated by the underlying transition system. Any time the monitored
program makes a system call, one or more steps of the nondeterministic transition
system are simulated; if none of them reaches an admissible transition then an
alarm is raised. In this case the HIDS operates on a context-free language L,
while the notion of distance adopted is the prefix distance.

In [14] the N -gram model has been extended to work with distributed applica-
tions. In such a context it has been argued by the authors that instead of tracing
syscalls it was natural to trace calls from client to server, and that variable length
N -grams were more suitable to capture the anomalous behavior of applications.
It turns out that the Hamming distance was no more suitable for comparing pro-
cess current behavior against normal behaviors, and in such a case the authors
proposed to adopt the suffix distance.

So far, the Forrest’s approach has been used for implementing anomaly based
HIDS, however it can also implement misuse detection HIDS. In such a case,
the language L will contain all the traces of the malicious agents. The string x
describing the current behavior of a process p will be compared against strings
contained in L in order to verify whether it contains some of them. The detection
of intrusions will be performed by computing the subword distance between the
regular language L and x.

In conclusion, the various approaches adopted for the construction of anomaly
based HIDS can be unified by the problem of computing the distance between a
string x ∈ Σ∗ and a language L ⊆ Σ∗ for a suitable alphabet Σ. The differences
among the various approaches are determined by the characteristics of L and the
notion of distance chosen by the various authors.

In the following, we will provide a computational classification of such a problem
and individuate a class of languages for which it can be efficiently (in terms of the
classical complexity theory) solved.

3. Efficient computation of distances for languages
in 1–NAuxPDAp

In [15], it was shown that the edit distance of any language accepted in polyno-
mial time by one-way auxiliary pushdown automata can be efficiently computed.
More precisely, it belongs to the parallel complexity class AC1. In [1] a similar
result was proved for the maximal word function of a such a language. In this sec-
tion, we are able to show a better result for prefix, suffix, and subword distance.
In fact, we show that those distances are in the parallel complexity class SAC1.

310 D. BRUSCHI AND G. PIGHIZZINI

Let us start by presenting the following preliminary lemma that states a linear
upper bound on the length of the string belonging to a language and with minimal
distance with respect to a given string.

Lemma 3.1. Given a nonempty language L ⊆ Σ∗, there exists a constant β
such that for any σ ∈ {e, p, s, f}, for each x ∈ Σ∗ and for each y ∈ L with
dσ(L, x) = dσ(y, x), it holds that dσ(L, x) ≤ |x| + β and |y| ≤ 2|x| + β.

Proof. Let x0 be a string of minimal length belonging to L and β = |x0|. It is not
difficult to observe that dσ(L, x) ≤ dσ(x0, x) ≤ |x| + β.

Now, observe that dσ(y, x) ≥ |y| − |x|, for each string y. If dσ(y, x) = dσ(L, x),
this implies that |y| ≤ 2|x| + β. �

Given a language L and the constant β of Lemma 3.1, in order to compute the
prefix distance for L we introduce the following relation:

Rp = {(i, j, x) | ∃z, w, v ∈ Σ∗ s.t. x = zw, zv ∈ L, |z| = i and
0 ≤ |v| = j ≤ 2|x| + β}.

We now prove the following result, concerning the set Rp:

Lemma 3.2. dp(L, x) = min{|w| + j | ∃z ∈ Σ∗ s.t. x = zw and (|z|, j, x) ∈ Rp}.
Proof. Let y ∈ L such that dp(L, x) = dp(y, x) with |y| ≤ 2|x| + β. Hence, there
exist strings z, w, v such that x = zw, y = zv and dp(y, x) = |v| + |w| = dp(L, x).
It is easy to verify that the triple (|z|, |v|, x) belongs to Rp. Hence dp(L, x) ≥
min{|w| + j | ∃z ∈ Σ∗ s.t. x = zw and (|z|, j, x) ∈ Rp}.

Conversely, let (|z|, j, x) ∈ Rp, with x = zw, for some string w, such that |w|+j
gives the minimum on the right side of the equality. Then there is a string v of
length j such that zv ∈ L. Hence, dp(L, x) ≤ dp(zv, x) ≤ |w| + |v| = |w| + j. �

We now consider the following language encoding the relation Rp:

Lp = {z#w#j | ∃v ∈ Σ∗ s.t. zv ∈ L and 0 ≤ |v| = j ≤ 2|zw| + β}.

It is immediate to observe that a string z#w#j belongs to the language Lp if and
only if the triple (|z|, j, zw) belongs to the relation Rp.

Now, we study the relationships between the complexities of languages L and Lp.
In particular, we prove the following result:

Theorem 3.3. Given L ⊆ Σ∗, let Lp be the language above defined.

• L ∈ 1–NAuxPDA implies that Lp ∈ 1–NAuxPDA.
• L ∈ 1–NAuxPDAp implies that Lp ∈ 1–NAuxPDAp.
• L ∈ 1–NL implies that Lp ∈ 1–NL.

STRING DISTANCES AND INTRUSION DETECTION 311

Proof. First suppose that L is accepted by the 1–NAuxPDA M We define a
1–NAuxPDA Mp accepting Lp that, on an input string of the form z#w#j , works
in three phases, as described in the following.

In the first phase, Mp directly simulates a computation of M on the input
prefix z. During this phase Mp also keeps tracks, using its work tape, of the length
of z. In the second phase Mp scans the factor |w| to count its length. With this
information Mp can compute, using its logarithmic worktape, the number 2|zw|+β.
In the third phase, Mp scans the input suffix #j . In this phase Mp continues the
simulation of M of the first phase, by guessing, for each scanned symbol, an input
symbol for M . If during this phase Mp discovers that j > 2|zw|+ β, then it stops
and reject. Otherwise, let v be the string of j symbols guessed by Mp in the third
phase. Mp accepts at the end of the computation if and only if the simulated
computation of M on input zv is accepting.

It is immediate to verify that if M works in polynomial time then also Mp works
in polynomial time. Moreover, if M does not use the pushdown store, namely, it
is a one-way machine working in logarithmic space, then Mp is a machine of the
same kind.

This completes the proof of the theorem. �

We informally recall that a function f : {0, 1}∗ → {0, 1}∗ is NC1 reducible to a
function to g : {0, 1}∗ → {0, 1}∗ if and only if f can be computed by a family of
NC1 circuits, extended with oracle gates that compute values of g, subject to the
restriction that no two oracle gates lie on the same input-output path (for more
details see, e.g., [13]). Under a suitable encoding, the notion of NC1-reducibility
can be extended in order to consider not only binary inputs and outputs.

Lemma 3.4. The prefix distance for L is NC1-reducible to the language Lp.

Proof. (outline) Given an input string x, the circuit realizing the reduction uses
the oracle gate Gi,j , for 0 ≤ i ≤ |x| and 0 ≤ j ≤ 2|x|+β, in order to check whether
or not (i, j, x) ∈ Rp, i.e., z#w#j ∈ Lp, where zw = x and |z| = i.

The output of the circuit, i.e., dp(L, x), is the minimum of all integers n− i + j
such that the oracle gate Gi,j gives answer “yes”.

Because the minimum of a polynomial set of numbers can be computed in
AC0 and, hence, in NC1 [17], it is not difficult to verify that this is an NC1-
reduction. �

Using Lemma 3.4 we are now able to prove the main result of this paper:

Theorem 3.5. For each language L ∈ 1–NAuxPDAp, the prefix, suffix and sub-
word distances of L are in SAC1.

Proof. It is immediate to see that SAC1 is closed under NC1-reductions. Hence, if
L ∈ 1–NAuxPDAp ⊆ SAC1 then by Lemma 3.4 it turns out that its prefix distance
is in SAC1.

For the suffix and subword distances the proof can be given using similar steps.
In particular, in the case of the suffix distance it is useful to consider the following

312 D. BRUSCHI AND G. PIGHIZZINI

relation:

Rs = {(i, j, x) | ∃z, w, v ∈ Σ∗ s.t. x = wz, vw ∈ L, |z| = i, and
0 ≤ |v| = j ≤ 2|x| + β},

while in the case of the subword distance the relation:

Rf = {(i, j′, j′′, x) | ∃w′, w′′, v′, v′′, z ∈ Σ∗ s.t. x = w′zw′′, v′zv′′ ∈ L,

|z| = i, |v′| = j′, |v′′| = j′′, and 0 ≤ j′ + j′′ ≤ 2|x| + β}. �

Using a similar technique, it is easy to prove the following:

Theorem 3.6. For each language L ∈ 1–NL, the prefix, suffix and subword dis-
tances of L are in NL.

4. Conclusions

We have revisited the notion of host intrusion detection system from a formal
languages point of view. We have shown that the various models of HIDS based
on the approach proposed in [9] represent instances of the problem of computing
the distance between a string x and a language L, using various notion of distance
as well as referring to different type of formal languages. We also showed that such
a problem is highly parallelizable. Ongoing research efforts are trying to evaluate
the practical impact of such results.

Acknowledgements. The authors thank the anonymous referees whose hints contributed
a lot to improve the quality of the final version of the manuscript. In particular, a referee
suggestion helped us to improve our original result.

References

[1] E. Allender, D. Bruschi and G. Pighizzini, The complexity of computing maximal word
functions. Comput. Compl. 3 (1993) 368–391.

[2] J.P. Anderson, Computer security threat monitoring and surveillance. Tech. Rep., James P.
Anderson Company, Fort Washington (1980).

[3] F. Brandenburg, On one-way auxiliary pushdown automata, in Proc. 3rd GI Conference.
Lect. Notes Comput. Sci. 48 (1977) 133–144.

[4] C. Choffrut and G. Pighizzini, Distances between languages and reflexivity of relations.
Theoret. Comput. Sci. 286 (2002) 117–138.

[5] S. Cook, Characterization of pushdown machines in terms of time–bounded computers. J.
ACM 18 (1971) 4–18.

[6] S. Cook, A taxonomy of problems with fast parallel algorithms. Inform. Control 64 (1985)
2–22.

[7] D.E. Denning, An intrusion detection model. IEEE Trans. Software Engineering 13 (1987).
[8] H. Feng, O. Kolesnikov, P. Fogla, W. Lee and W. Gong, Anomaly detection using call stack

information, in Proc. IEEE Symposium on Security and Privacy. IEEE Press (2003).

STRING DISTANCES AND INTRUSION DETECTION 313

[9] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff, A sense of self for Unix processes, in
Proc. IEEE Symposium on Security and Privacy. IEEE Press (1996).

[10] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff, Intrusion detection using sequences
of system calls. J. Comput. Security 6 (1998) 151–180.

[11] A.K. Ghosh and A. Schwartzbard, A study in using neural networks for anomaly and misuse
detection, in Proc. USENIX Security Symposium. USENIX Association (1999).

[12] J. Hopcroft and J. Ullman, Introduction to automata theory, languages, and computations.
Addison-Wesley, Reading, MA (1979).

[13] R. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory ma-
chines, in Handbook of Theoretical Computer Science, Vol. A. North Holland (1990).

[14] C. Marceau, Characterizing the behavior of a program using Multiple length N-grams, in
Proc. New Security Paradimg Workshop. ACM Press (2000) 101–110.

[15] G. Pighizzini, How Hard is Computing the Edit Distance? Inform. Comput. 165 (2001)
1–13.

[16] R. Sekar, M. Bendre, D. Dhurjati and P. Bollineni, A fast automaton-based method for de-
tecting anomalous program behaviors, in Proc. IEEE Symposium on Security and Privacy.
IEEE Press (2001).

[17] Y. Shiloach and U. Vishkin, Finding the maximum, merging and sorting in a parallel com-

putation model. J. Algorithms 2 (1981) 88–102.
[18] D. Wagner and D. Dean, Intrusion detection via static analisys, in Proc. IEEE Symposium

on Security and Privacy (2001).
[19] H. Venkateswaran, Properties that characterize LOGCFL. J. Comput. Syst. Sci. 43 (1991)

380–404.

To access this journal online:
www.edpsciences.org

