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A DISTRIBUTED VOTING SCHEME TO MAXIMIZE
PREFERENCES ∗

Peter Auer1 and Nicolò Cesa-Bianchi2

Abstract. We study the problem of designing a distributed voting
scheme for electing a candidate that maximizes the preferences of a set
of agents. We assume the preference of agent i for candidate j is a
real number xi,j , and we do not make any assumptions on the mecha-
nism generating these preferences. We show simple randomized voting
schemes guaranteeing the election of a candidate whose expected total
preference is nearly the highest among all candidates. The algorithms
we consider are designed so that each agent has to disclose only a few
bits of information from his preference table. Finally, in the impor-
tant special case in which each agent is forced to vote for at most one
candidate we show that our voting scheme is essentially optimal.
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Introduction

We consider the problem of choosing a candidate that maximizes the preferences
of a set of agents. We assume that, without any prior exchange of information, the
agents elect one of K possible candidates via a plurality vote in which each agent
may be allowed to vote for more than one candidate. The preference of agent i for
candidate j is represented by a number xi,j ∈ [0, 1]. We restrict our investigation
to distributed, or independent, voting schemes: an agent i has no information
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about the preferences of other agents, except for the fact that all preferences must
lie in the unit interval [0, 1]. The overall goal is to elect a candidate j maximizing
the total preference Gj = x1,j + · · · + xN,j , where N is the number of agents.

Our basic voting scheme, lvs (Linear Voting Scheme), is uniform and random-
ized. All agents use the same voting rule with independent randomizations. The
lvs rule is very simple: each agent i ∈ {1, . . . , N} casts a vote for each candidate
j ∈ {1, . . . , K} with probability λxi,j . As the N × K random choices are made
independently, each agent can vote for more than one candidate. We assume that
the same parameter 0 < λ ≤ 1 is used by all agents. To stress the dependence on
λ we write lvs(λ) to indicate that each agent is running lvs with parameter λ.

To take into account the important special case when an agent is forced to vote
for at most one candidate, we treat the choice λ = 1/K separately. When running
lvs(1/K), each agent i casts a single vote, and the vote is cast for candidate j with
probability xi,j/K. As 0 ≤ xi,j ≤ 1, there might be some remaining probability
1− 1

K

∑K
j=1 xi,j which is assigned to the event that agent i abstains. Although the

sample space associated to lvs(1/K) is different from the sample space associated
to lvs(λ) for the other choices of λ, in Section 2 we provide a simple unified
analysis that covers all cases.

A more restricted version of this problem was introduced and studied in [2]. In
the follow-up paper [1] a preliminary analysis of lvs(1/K) was given. This work
extends both these papers and provides a substantially more complete analysis of
the general rule lvs(λ).

Our election problem differs from those commonly analyzed in social choice
theory, where the preferences of each agent are expressed in terms of a ranking
of the candidates. This latter problem, known as rank aggregation, finds its root
in Condorcet’s voting theory (1785) and arises in disparate fields, including ma-
chine learning (collaborative filtering and meta-search) and database middleware
(combining results from multiple databases), see the paper by Dwork et al. [7]
for a review of existing results and for an application to the reduction of spam
influence on web search engines. Note that our analysis also differs from the stan-
dard approach in distributed computing (see, e.g., the papers by Papadimitriou et
al. [6, 9, 10] on distributed decision-making with incomplete information): instead
of studying how information can be exchanged in order to efficiently make an op-
timal decision we look at how good a decision can be made despite the fact that
information is kept distributed.

In our analysis of voting schemes we seek bounds on the “regret” Gbest−E[GA]
where Gbest = maxj Gj is the total preference of any optimal candidate and E[GA]
is the expected total preference achieved by a voting scheme A. As we make no
assumptions on how the preferences are generated, we are interested in bounds
that hold for any assignments of preferences to candidates. In Theorem 2.2 we
show that the regret of lvs(λ) is at most 4

√
(Gbest/λ) ln K for any λ ∈ (0, 1]. This

implies that the regret of lvs(1/K), where each agent casts at most one vote, is
upper bounded by 4

√
GbestK ln K. Theorem 3.2 matches this upper bound (up
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to constants), thus showing that the regret of lvs(1/K) is Θ(
√

GbestK ln K). The
most complex part of our analysis is the proof of a general lower bound (Th. 3.3)
showing that the regret of any (possibly nonuniform) voting strategy, casting at
most one vote per agent, is Ω(

√
KGbest).

A scenario where our election naturally arises is when agents want to keep secret
their preferences (see, for example, Ephrati and Rosenschein [8]). The above
results for lvs(λ) guarantee different degrees of approximation of the optimum
Gbest as a function of the amount of information, from Θ(lnK) to Θ(K ln K) bits,
revealed by each agent.

Extensions of our linear voting scheme have been used by Chang [3, 4] to ap-
proximately solve Markov decision processes and for the approximate solution of
multiobjective stochastic optimization problems.

Finally, we remark that all of our bounds hold also in the case where each agent
only knows unbiased estimates of its preferences.

1. Notation

Let K ≥ 1 be the number of candidates and N ≥ 1 the number of agents. Let
xi,j be the preference of agent i for candidate j. Throughout the paper, we assume
xi,j ∈ [0, 1] for all 1 ≤ i ≤ N and 1 ≤ j ≤ K. The generalization to preferences
xi,j ∈ [a, b] for arbitrary a < b is straightforward by appropriate rescaling.

Each agent i, based only on its preference table (xi,1, . . . , xi,K), can vote for
one or more canditates or withdraw from the election. The candidate obtaining
the largest number of votes gets elected, and ties are broken arbitrarily. The
overall goal of the election is to choose some candidate j ∈ {1, . . . , K} whose
total preference Gj =

∑N
i=1 xi,j is as close as possible to the maximum Gbest =

max1≤j≤K Gj . For each voting algorithm A, let GA be the total preference of the
candidate that gets elected when all agents use algorithm A (observe that GA is
a random variable depending on the random choices of the agents).

We define the set {Vi,j : 1 ≤ i ≤ N, 1 ≤ j ≤ K} of {0, 1}-valued random vari-
ables such that Vi,j = 1 if and only if i has voted for j. Finally, for each candidate
j ∈ {1, . . . , K}, let Vj =

∑N
i=1 Vi,j be the number of votes received.

2. Analysis of the lvs voting scheme

We use a standard result (see e.g. [11], p. 193) on the sum of independent
random variables to bound the probability that candidate j gets too many votes
when Gbest − Gj is large.

Lemma 2.1 (Bernstein’s inequality). Let X1, . . . , XN be independent random
variables with E[Xi] = 0 and |Xi| ≤ M for i = 1, . . . , N . If σ2 ≥ ∑N

i=1 var[Xi]
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then for all η > 0

P

{ N∑
i=1

Xi ≥ η

}
≤ exp

(
− η2/2

σ2 + Mη/3

)
·

We now state and prove an upper bound of the regret of lvs(λ).

Theorem 2.2. For all λ ∈ (0, 1], N ≥ 1, and K > 1

Gbest − E[Glvs(λ)] ≤ 4
√

(Gbest/λ) ln K.

Proof. As noted in the introduction, the sample space associated to the random-
ization of an agent running lvs(1/K) is different from the sample space associated
to lvs(λ) for λ �= 1/K. This is not a problem, since in our analysis the charac-
terizing property of a voting strategy are the expectations E[Vi,j ], which equal to
λxi,j for any choice of λ ∈ (0, 1] including λ = 1/K.

Let ∆j = Gbest − Gj . Let � ∈ {1, . . . , K} be some optimal candidate such that
G� = Gbest and let Vbest = V�. Note that, for all j,

E[Vbest − Vj ] =
N∑

i=1

λ(xi,� − xi,j) = λ(Gbest − Gj) = λ∆j

and

N∑
i=1

var[Vi,�−Vi,j ] ≤
N∑

i=1

E
[
(Vi,� − Vi,j)2

] ≤ N∑
i=1

(
E[Vi,�]+E[Vi,j ]

)
= λ(2Gbest−∆j).

Define Xi,j = E[Vi,�−Vi,j ]−(Vi,�−Vi,j). As each voter casts ballots independently,
for each j = 1, . . . , K the random variables X1,j, . . . , XN,j are independent. Fur-
thermore, |Xi,j | ≤ 2, E[Xi,j ] = 0, and

∑N
i=1 var[Xi,j ] =

∑N
i=1 var[Vi,� − Vi,j ] ≤

λ(2Gbest − ∆j). For any α > 0 we get

Gbest − E[GA] ≤ α P{Gbest − GA ≤ α} +
∑

j : ∆j>α

∆jP{Vj ≥ V�}. (1)
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We upper bound the first term of (1) by α. For the second term we find that

∑
j : ∆j>α

∆jP{Vj ≥ V�} =
∑

j:∆j>α

∆jP

{
E[V� − Vj ] − (V� − Vj) ≥ E[V� − Vj ]

}

=
∑

j:∆j>α

∆jP

{
N∑

i=1

Xi,j ≥ λ∆j

}

≤
∑

j:∆j>α

∆j exp

(
− λ2∆2

j/2
λ(2Gbest − ∆j) + (2/3)λ∆j

)
(2)

≤
∑

j:∆j>α

∆j exp

(
− λ∆2

j

4Gbest

)

≤ α (3)

for α = 2
√

(Gbest/λ) ln K. Inequality (2) is obtained applying Bernstein’s inequal-
ity to the sums

∑N
i=1 Xi,j for each j. Inequality (3) is proven by observing that

∆ e−λ∆2/(4Gbest) is decreasing in ∆ for ∆ > α and equal to α/K for ∆ = α. Thus
Gbest − E[GA] ≤ 2α. �

In the special cases lvs(1/K) and lvs(1), Theorem 2.2 immediately gives the
following bounds:

Gbest − E[Glvs(1/K)] ≤ 4
√

GbestK ln K

Gbest − E[Glvs(1)] ≤ 4
√

Gbest ln K.

Note that Theorem 2.2 can be generalized (with minor modifications in the proof)
to the case where each voter i does not know the exact value xi,j of the preference
assigned to each candidate j but only an unbiased estimate of this value.

3. Optimality of lvs(1/K)

A single-vote strategy is a voting strategy in which each agent can either cast
a single vote or abstain. In this section we show that lvs(1/K) is essentially
the best possible single-vote strategy. We start by exhibiting a particular set of
preference tables on which lvs(1/K) incurs regret Ω

(√
NK ln K

)
. Combining

this with Theorem 2.2 we have that the regret of lvs(1/K) is Θ
(√

NK ln K
)
. We

conjecture that the regret of any single-vote strategy A is at least Ω
(√

NK ln K
)
.

Although we are not able to prove this by a formal argument, in Section 3.2 we
give a proof of a slightly weaker (but very general) lower bound Ω

(√
NK

)
that

holds for any, even nonuniform, single-vote strategy.
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In the proofs we use the Berry-Esseen theorem [5], Theorem 3, Chapter 9.

Theorem 3.1 (Berry-Esseen). Let X1, X2, . . . be a sequence of independent ran-
dom variables with zero mean and finite variance. Let s2

n =
∑n

i=1 var[Xi]. If
E
[ |Xi|3

] ≤ ρvar[Xi] then

sup
x∈R

|Fn(x) − Φ(x)| ≤ c ρ

sn

for some constant c, where Fn is the distribution function of
∑n

i=1 Xi/sn and Φ is
the standard normal distribution function. For i.i.d. random variables Xi we have
c ≤ 3, for nonuniform Xi we have c ≤ 6.

3.1. A lower bound on the regret of algorithm lvs

We now prove that the bound of Theorem 2.2 is a quite tight estimate of the
worst-case regret for lvs(1/K).

Theorem 3.2. For all K ≥ 99 and N ≥ 20 K2 there are vectors x1, . . . , xN of
preferences such that

Gbest − E[Glvs(1/K)] ≥ 0.17
√

NK ln K.

Proof. Let K = 2k − 1 and define the preference vectors

x = 1, . . . , 1︸ ︷︷ ︸
k

,

k−1︷ ︸︸ ︷
0, . . . , 0 and y = 0, . . . , 0︸ ︷︷ ︸

k−1

,

k︷ ︸︸ ︷
1, . . . , 1 .

We feed preference vector x to N −n voters and preference vector y to the other n
voters where n, whose precise value will be determined by the analysis, is chosen
so that n ≤ N/2. Then Gbest = Gk = N and Gj ≤ N − n for all j �= k.

Before proceeding with the proof we give a sketch of the main ideas. With
the above assignment of preferences, the number of votes for candidates from 1
through k − 1 is approximately normally distributed with mean (N − n)/K and
variance (N − n) 1

K

(
1 − 1

K

)
. Thus, among these k − 1 candidates, the candidate

with the maximum number of votes receives about (N − n)/K + c
√

(N/K) lnK
votes for some constant c with constant probability. On the other hand, candidate
k receives about N/K votes. By choosing n = c

√
(NK) ln K we find that, with

constant probability, a candidate j �= k receives more votes than candidate k.
Since the preference for candidate k is at least n plus the preference of any other
candidate, this yields Gbest − E[Glvs(1/K)] = Ω

(√
NK ln K

)
.
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We start by observing that

Gbest − E[Glvs(1/K)] ≥ n P

{
max
j �=k

Vj > Vk

}

≥ n P

{
Vk ≤ N/K, max

j �=k
Vj > N/K

}

= n

(
P{Vk ≤ N/K} − P

{
Vk ≤ N/K, max

j �=k
Vj ≤ N/K

})

≥ n

(
P{Vk ≤ N/K} − P

{
Vk ≤ N/K, max

1≤j≤k−1
Vj ≤ N/K

})
= n P{Vk ≤ N/K}

×
⎡
⎣1 −

k−1∏
j=1

P

{
Vj ≤ N/K

∣∣∣Vk ≤ N/K, V1 ≤ N/K, . . . , Vj−1 ≤ N/K
}⎤⎦

≥ n P{Vk ≤ N/K}
[
1 −
(

P{V1 ≤ N/K}
)k−1

]
.

The last inequality holds because

P{Vj ≤ vj} ≥ P

{
Vj ≤ vj

∣∣∣V1 ≤ v1, . . . , Vt ≤ vt

}
for any t ≥ 1 and 1 ≤ j ≤ N , since each voter can vote only for one candidate.

We now apply the Berry-Esseen theorem with ρ = 1 and obtain

P{Vk ≤ N/K} = P

⎧⎨
⎩ Vk − N/K√

N
K

(
1 − 1

K

) ≤ 0

⎫⎬
⎭ ≥ Φ(0) − 3√

N
K

(
1 − 1

K

)
≥ 1

2
− 3√

10K
(
1 − 1

K

) ≥ 1
2
− 3√

990
≥ 2

5

where we used N ≥ 20 K2 and K ≥ 99. Furthermore,

P{V1 ≤ N/K} = P

⎧⎨
⎩V1 − (N − n)/K√

N−n
K

(
1 − 1

K

) ≤ N/K − (N − n)/K√
N−n

K

(
1 − 1

K

)
⎫⎬
⎭

= P

⎧⎨
⎩V1 − (N − n)/K√

N−n
K

(
1 − 1

K

) ≤ n√
(N − n)(K − 1)

⎫⎬
⎭

≤ Φ

(
n√

(N − n)(K − 1)

)
+

3√
N−n

K

(
1 − 1

K

) ·
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Let n = c
√

NK ln K where c will be determined in a moment. Then

n√
(N − n)(K − 1)

= c

√
NK ln K

(N − n)(K − 1)
≤ c

√
2

99
98

ln K =

√
ln K

2

for c =
√

49/198. The inequality holds because N − n ≥ n
2 and K

K−1 ≤ 99
98 due to

n ≤ N
2 and K ≥ 99. Note that, with the above choice of n, the condition n ≤ N

2 is
implied by N ≥ K ln K, which is in turn implied by our assumption N ≥ 20 K2.

Using the standard approximation

Φ(x) ≤ 1 − x

1 + x2
e−x2/2

we get

Φ

(
n√

(N − n)(K − 1)

)
≤ Φ

(√
ln K

2

)

≤ 1 −
√

(ln K)/2
(ln K)/2 + 1

exp
(
−1

4
ln K

)

= 1 −
√

2 lnK

ln K + 2
K−1/4.

Moreover, the assumption N ≥ 20 K2 implies

3√
N−n

K

(
1 − 1

K

) ≤ 1√
K

·

Thus

P

{
max
j �=k

Vj > Vk

}
≥ 2

5

⎡
⎣1 −

(
1 −

√
2 lnK

ln K + 2
K−1/4 + K−1/2

)k−1
⎤
⎦

=
2
5

⎡
⎣1 −

(
1 −

√
2 lnK

ln K + 2
K−1/4 + K−1/2

)K−1
2
⎤
⎦

≥ 2
5

[
1 − exp

(
−K − 1

2

(√
2 lnK

ln K + 2
K−1/4 − K−1/2

))]
.

The argument of exp( · ) is a function decreasing in K. The maximum value of the
exponential in the range K ≥ 99 is thus attained at K = 99 where it takes value
not larger than 0.11. Therefore

P

{
max
j �=k

Vj > Vk

}
≥ 2

5
(1 − 0.11) = 0.356.
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Thus we find that

Gbest − E[Glvs(1/K)] ≥ n P

{
max
j �=k

Vj > Vk

}

≥ 0.356

√
49
198

√
NK ln K

> 0.17
√

NK ln K

concluding the proof. �

3.2. A lower bound on the regret of any nonuniform voting strategy

Next, we prove the more general lower bound for arbitrary nonuniform single-
vote strategies. The proof is significantly more involved than the proof of the
previous lower bound.

Let a nonuniform voting strategy for N voters be a list A = 〈A1, . . . , AN 〉 of N
voting algorithms, where algorithm Ai is run by voter i = 1, . . . , N . Throughout
this section, we assume that A is single-vote; i.e., each Ai either casts a vote for
a single candidate or abstains.

Theorem 3.3. Let K ≥ 768 and N ≥ K3/64. Then there is a constant D >
1/2500 such that for any randomized nonuniform voting strategy A there exist
preference vectors x1, . . . , xN ∈ {0, 1}K for which

Gbest − E [GA] ≥ D
√

KN.

The proof follows the same idea given in Section 3.1, although some additional
issues have to be addressed. A source of difficulty is that we do not make any
assumptions on the voting algorithms A1, . . . , AN (apart from the fact that each
algorithm Ai should cast at most one vote).

All probabilities considered in the rest of this section are generated by an arbi-
trary, but fixed, voting strategy A.

We will make use of the following lemma, which is a special case of the Berry-
Esseen theorem.

Lemma 3.4. Let X1, . . . , XN be a sequence of independent random variables with

Xn =

⎧⎨
⎩

1 with probability pn,
0 with probability 1 − pn − qn,
−1 with probability qn.

Then the distribution F of the normalized sum

S =
∑N

n=1(Xn − E[Xn])√∑N
n=1 var[Xn]
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satisfies

sup
x∈R

|F (x) − Φ(x)| ≤ 12√∑N
n=1 var[Xn]

where Φ is the normal distribution function.

Proof. To apply the Berry-Esseen theorem we need to find ρ such that E
[ |Xn −

EXn|3
] ≤ ρvar

[
Xn

]
. Since var

[
Xn

]
= E

[
(Xn − EXn)2

]
and |Xn − EXn| ≤ 2,

we find that ρ = 2 is sufficient, which gives the lemma. �

Let pi,j(x) denote the probability that i votes for candidate j when given pref-
erence vector x and let Pj(x) =

∑N
i=1 pi,j(x). Let GA be the random variable

denoting A’s total preference. In the following, we assume there are K = 4k can-
didates. Denote by X the set of preference vectors x ∈ {0, 1}4k such that xj = 1
for exactly k indices j. Furthermore, denote by ei the preference vector with a
single 1 at position i.

The next result shows that whenever the difference in the expected number of
votes between an arbitrary pair of candidates is high for a given voting strategy,
then its regret is large.

Lemma 3.5. For any candidate j ∈ {1, . . . , 4k} and for any x ∈ X such that
xj = 1, if Nk ≥ 1000 and the voting strategy A is such that P�(x) ≥ Pj(x)+3

√
Nk

for some candidate � �= j, then there is a choice of preference vectors x1, . . . , xN

for which Gbest − E[GA] ≥ √
Nk/10.

Proof. Pick j and assume there is � such that P�(x) ≥ Pj(x)+3
√

Nk. We present
a sequence of preference vectors such that A elects a bad candidate with constant
probability. We give preference vector x to N −√

Nk voters and vector ej to the
remaining

√
Nk voters, so that Gj = N and Gh ≤ N −√

Nk for each h �= j. Then
E[V�] ≥ P�(x) −√

Nk and E[Vj ] ≤ Pj(x) +
√

Nk. Hence

E[V� − Vj ] ≥ P�(x) − Pj(x) − 2
√

Nk ≥
√

Nk.

Note that V� − Vj is a sum of independent random variables with values in
{−1, 0, +1}. If var[V� − Vj ] ≥ 900, we can apply Lemma 3.4 to find that V� > Vj

with probability at least 1/2− 12/30 = 1/10. Otherwise, by Chebyshev’s inequal-
ity, we get that P{V�−Vj ≤ 0} ≤ 900/(Nk) ≤ 9/10 for Nk ≥ 1000. Thus the regret
is lower bounded by (Gj − G�) P{V� > Vj} ≥ √

Nk P{V� > Vj} ≥ √
Nk/10. �

From Lemma 3.5 we get that whenever the same preference vector is fed to all
voters, then a good voting strategy must spread its votes evenly.

Corollary 3.6. For any candidate � ∈ {1, . . . , 4k} and for any preference vector
x ∈ X , if Nk ≥ 1000 and the voting strategy A is such that P�(x) ≥ N/k+3

√
Nk

then there is a choice of preference vectors x1, . . . , xN for which Gbest −E[GA] ≥√
Nk/10.
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Proof. To apply Lemma 3.5 we have to find some j with xj = 1 and Pj(x) ≤ N/k.
For the purpose of contradiction, assume that for all j with xj = 1, Pj(x) > N/k.
Then

∑4k
j=1 Pj(x) > N , which is not possible1. �

We are now ready to prove the theorem.

Proof of Theorem 3.3. We divide the N voters into disjoint groups N1, N2, N3,
and N4. Intuitively, group N1 contains the voters that vote with high probability
for candidate 1 or 2. Group N2 contains the voters whose voting distributions
give rise to a high variance in the number of votes for candidates 1 and 2. Group
N3 includes all the remaining voters but a small number proportional to

√
NK.

Finally, group N4 is used to favor either candidate 1 or candidate 2. Let the
preference vectors x, y, u, v ∈ X be chosen as follows

k − 1 k − 1 k − 1 k − 1

x =
(
1 0

︷ ︸︸ ︷
1 . . . 1

︷ ︸︸ ︷
0 . . . 0

︷ ︸︸ ︷
0 . . . 0

︷ ︸︸ ︷
0 . . . 0 0 0

)
y =

(
1 0 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 0 0

)
u =

(
0 1 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 0 0

)
v =

(
0 1 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0 0

)
.

We use Ng(w) to denote the voters in group Ng who receive preference vector w
and Vi,j(w) to denote the random variable Vi,j when voter i receives preference
vector w.

Let N1(x) contain all voters i with pi,1(x)+pi,2(x) ≥ 1/2. If there are more than
4N/k + 12

√
Nk such voters, then Corollary 3.6 already implies large regret. Thus

we may assume the opposite. We add to N1(x) arbitrary voters until |N1(x)| =
N/12.

Let N1(y) contain all voters i not already in N1(x), with pi,1(y)+pi,2(y) ≥ 1/2.
Again by Corollary 3.6, we may assume at most 4N/k + 12

√
Nk such voters. As

before, we add arbitrary voters to N1(y) until |N1(y)| = N/12. Similarly, we
define N1(u) and N1(v). We have

pi,1(w) + pi,2(w) ≤ 1/2 for each w ∈ {x, y, u, v} and each i �∈ N1. (4)

For N2(x) we choose those N/12 voters i from the remaining voters with the
highest variance var[Vi,1(x)−Vi,2(x)]. Analogously, we choose the groups N2(y),
N2(u), and N2(v). Let

σ2 =
∑

i∈N1∪N2

var [Vi,1 − Vi,2] .

1We believe that this is the only part in the proof where it is crucial to assume that each
voter casts just a single vote. Using this assumption, the corollary shows that each candidate
receives only about N/k votes. This – in the end – contributes the

√
K factor in the lower bound

of the regret.



400 P. AUER AND N. CESA-BIANCHI

By construction of the sets N2(w), we have

var [Vi,1(w) − Vi,2(w)] ≤ σ2

N/12

for any w ∈ {x, y, u, v} and any voter i �∈ N1 ∪ N2. Furthermore, pi,1(w) +
pi,2(w) ≤ 1/2 by (4), which implies var[Vi,1(w)−Vi,2(w)] ≥ (pi,1(w)+pi,2(w))/2.
Hence,

pi,1(w) + pi,2(w) ≤ 2var [Vi,1(w) − Vi,2(w)] ≤ 24σ2

N
· (5)

The set N3 is chosen arbitrarily and receives preference vectors so that

|N3(x)| = |N3(y)| = |N3(u)| = |N3(v)| = N/12 − c
√

Nk

where c will be determined by the following analysis. Note that, with respect to the
voters in the set N1∪N2∪N3, candidates 1 and 2 have the same total preference G,
whereas the total preference of all other candidates is only a constant fraction of G.
Finally, let N4 denote the remaining 4c

√
Nk voters. The way we assign preference

vectors to the voters in N4 will be determined by the following case analysis.
Case 1. σ2 ≤ C for some constant C > 0 which will be specified later.

For any choice of wi ∈ {x, y, u, v}, the probability that none of the voters in
N4 votes for 1 or 2 is at least∏

i∈N4

(
1 − pi,1(wi) − pi,2(wi)

)

≥ exp

(
−
∑
i∈N4

[
pi,1(wi) + pi,2(wi) +

(
pi,1(wi) + pi,2(wi)

)2
])

≥ exp
(
−4c

√
Nk

24σ2

N

(
1 +

24σ2

N

))

≥ exp

(
−96 c C

√
k

N

(
1 +

24C

N

))

where we used the inequality 1 − x ≥ e−x−x2
that holds for all 0 ≤ x ≤ 1/2.

Assume that

P

⎧⎨
⎩∑

i�∈N4

(Vi,1 − Vi,2) > 0

⎫⎬
⎭ ≥ 1

3
·

That is, with probability at least 1/3, candidate 1 receives, from all the voters not
in N4, more votes than candidate 2. Then

P {V1 > V2} ≥ 1
3

exp

(
−96 c C

√
k

N

(
1 +

24C

N

))
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for any choice of preference vectors for the voters in N4. Giving each preference
vector u and v to half of the voters in N4, we get Gj ≤ G1 ≤ G2 − 4c

√
Nk for

all j. Hence the regret is at least

4c

3

√
Nk exp

(
−96 c C

√
k

N

(
1 +

24C

N

))
·

The same argument applies if P

{∑
i�∈N4

(Vi,2 − Vi,1) > 0
}
≥ 1

3 .

If P

{∑
i�∈N4

(Vi,1 − Vi,2) = 0
}
≥ 1

3 , then we break the tie in favor of one of the
two candidates and apply again the same argument.
Case 2. σ2 ≥ C.

We assume that ∑
i�∈N4

E[Vi,1 − Vi,2] ≥ 0.

(For
∑

i�∈N4
E[Vi,1 − Vi,2] < 0 the proof proceeds analogously.)

We give each preference vector u and v to half of the voters in N4. By (5) we
get that

E[V1 − V2] ≥
∑
i∈N4

E[Vi,1 − Vi,2] ≥ −4c
√

Nk
24σ2

N
= −96 c σ2

√
k

N
·

Furthermore,
var[V2 − V1] ≥

∑
i∈N1∪N2

var[Vi,2 − Vi,1] = σ2. (6)

Set

F (x) = P

{
V2 − V1 − E[V2 − V1]√

var[V2 − V1]
≤ x

}
and a = E[V1 − V2]/σ. Then

12√
C

≥ 12
σ

≥ 12√
var[V2 − V1]

by (6)

≥ Φ(a) − F (a) by Lemma 3.4

= Φ(a) − F

(
−E[V2 − V1]

σ

)

≥ Φ(a) − F

(
− E[V2 − V1]√

var[V2 − V1]

)
by (6)

= Φ(a) − P

{
V2 − V1 − E[V2 − V1]√

var[V2 − V1]
≤ − E[V2 − V1]√

var[V2 − V1]

}
= Φ(a) − P{V1 − V2 ≥ 0}
≥ Φ

(
−96 c σ

√
k/N

)
− P{V1 − V2 ≥ 0} by (6).
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Hence, P{V1 ≥ V2} ≥ Φ
(−96 c σ

√
k/N

) − 12
/√

C. If
∑N

i=1 (pi,1 + pi,2) > 2N
k +

6
√

Nk, then Corollary 3.6 implies large regret. Thus, assuming the opposite and
using N ≥ k3, we have that

σ2 ≤ var[V1 − V2] ≤
N∑

i=1

(pi,1 + pi,2) ≤ 2
N

k
+ 6

√
Nk ≤ 8

N

k

implying σ
√

k/N ≤ √
8. Thus the regret is at least

4c
√

Nk

[
Φ
(
−96

√
8 c
)
− 12√

C

]
·

Choosing c = 1/500 and C = 2000 we get a regret of at least
√

KN/2500 in both
cases. �

4. Conclusions

In this paper we have investigated randomized voting schemes for electing a
candidate that maximizes the total preference expressed by a set of agents. We
have proven a general upper bound on the regret of the linear voting scheme lvs(λ)
which holds for any assignment of preferences. For the special case of single-vote
schemes, in which each agent casts at most one vote, we have proven a matching
lower bound for the regret of lvs(1/K), where K is the number of candidates.
Finally, we have shown that lvs(1/K) is optimal (up to logarithmic factors) with
respect to the class of (possibly nonuniform) randomized single-vote strategies.

A problem left open by our research is the derivation of general lower bounds on
the regret of voting strategies where each agent is allowed to vote for more than
one candidate. We conjecture that our lower bound techniques for single-vote
schemes could be extended to analyze that case as well. A second open problem
concerns the strenghtening of the general lower bound on the nonuniform single-
vote strategies (Th. 3.3) so to match, up to constant factors, the upper bound
proven for lvs(1/K). This result also appears to be within reach of our current
analytical techniques.
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