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A SURVEY ON TRANSITIVITY IN DISCRETE TIME
DYNAMICAL SYSTEMS. APPLICATION TO SYMBOLIC

SYSTEMS AND RELATED LANGUAGES ∗
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Abstract. The main goal of this paper is the investigation of a rel-
evant property which appears in the various definition of determinis-
tic topological chaos for discrete time dynamical system: transitivity.
Starting from the standard Devaney’s notion of topological chaos based
on regularity, transitivity, and sensitivity to the initial conditions, the
critique formulated by Knudsen is taken into account in order to ex-
clude periodic chaos from this definition. Transitivity (or some stronger
versions of it) turns out to be the relevant condition of chaos and its
role is discussed by a survey of some important results about it with
the presentation of some new results. In particular, we study topologi-
cal mixing, strong transitivity, and full transitivity. Their applications
to symbolic dynamics are investigated with respect to the relationships
with the associated languages.
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1. Introduction

Discrete Time Dynamical Systems (DTDS) are mathematical objects studied
in a large number of disciplines with different purposes showing some behaviors
which are not always recovered by the continuous case. Formally a DTDS is a
pair 〈X, g〉, where the state space X is a nonempty set equipped with a metric d
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and the next state function g : X �→ X is a transformation of X continuous with
respect to the metric d. The next state function induces deterministic dynamics
by its iterated application starting from a given initial state. A DTDS 〈X, g〉
is said to be reversible or homeomorphic iff the next state map g : X �→ X is
bijective (one-to-one and onto) and bicontinuous (both g : X �→ X and its inverse
g−1 : X �→ X must be continuous). For a general introduction to DTDS with the
involded notions see [17, 22, 27].

Several theoretical properties (e.g., transitivity, ergodicity, sensitivity to the
initial conditions, expansivity, denseness of periodic orbits, . . . ) which describe
some behaviors of DTDS have been investigated. The more intriguing of these
properties, at least at a level of popular divulgement, is sensitive dependence to
the initial conditions which is recognized as a central notion in chaos theory since it
captures the feature that in chaotic systems small errors in experimental readings
lead to large scale divergence, i.e., the system is unpredictable. For instance in [18]
it is claimed that: “sensitive dependence on initial conditions is also expressed by
saying that the system is chaotic”. Its formal definition is the following one:

Definition 1.1 (Sensitivity). A DTDS 〈X, g〉 is sensitive to the initial condi-
tions iff

∃ε>0 ∀x∈X ∀δ>0 ∃y∈X ∃n∈N : d(x, y) < δ and d(gn(x), gn(y)) ≥ ε.

The constant ε is called the sensitivity constant. Note that if a DTDS is sensi-
tive then trivially it is perfect (that is, without isolated points) and also infinite,
moreover, the state y which is involved in this definition is necessarily y 	= x.

The sensitivity only, notwithstanding its intuitive glamor in defining a chaotic
DTDS, has the withdraw that, once taken as the unique condition characterizing
chaos, it is not sufficient or so intuitive as it seems at a first glance. These consid-
erations induce to investigate definitions of deterministic chaos in which, besides
sensitivity, some other properties characterizing chaos and avoiding this kind of
non–intuitive behaviors must be involved.

In the definition of topological chaos for DTDS introduced by Devaney in [17],
the essential components which are involved are transitivity, denseness of periodic
orbits (also called regularity), and sensitivity. Several studies treat the relation-
ships among these properties. An important result from the Devaney point of view
can be found in [5], where it is proved that for spaces of infinite cardinality the
two conditions of transitivity and regularity imply sensitivity. “That is, despite
its popular appeal, sensitive dependence is mathematically redundant–so that in
fact, [Devaney’s] chaos is a property relying only on the topological, and not on
the metric, properties of the space.” [15].

Knudsen in [24] proved the following results. Let 〈X, g〉 be a DTDS and 〈Y, g〉
be any sub-DTDS dense in X [i.e., g(Y ) ⊆ Y and Y = X ]. Then: (1) 〈X, g〉
is unpredictable iff 〈Y, g〉 is unpredictable; and (2) 〈X, g〉 is transitive iff 〈Y, g〉 is
transitive. Quoting Knudsen [24]:

“Let us describe some consequences of the two [results]. Take a dynamical
system [〈X, g〉] that is chaotic according to Devaney’s definition. Consider the
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restriction of the dynamics to the set of periodic points which is clearly invariant.
(Above (1) and (2)) imply that the restricted dynamical system (of all periodic
points) is topological transitive, and that the system exhibits dependence to initial
conditions. Together with the trivial fulfilled condition of denseness of periodic
points, this implies that the system is chaotic. Due to the lack of nonperiodicity
this is not the kind of system most people would consider labelling chaotic. It
might, of course, be argued that since for any periodic point there is another
periodic point close by with arbitrary high period, and therefore this is a kind
of chaos. Nevertheless, insisting on the distinction between a truly nonperiodic
orbit, say, a dense orbit, and a periodic orbit of even arbitrary high period, such
a system should not be termed chaotic.”

As a consequence of these results, Knudsen proposed “the following definition
of chaos which excludes chaos without nonperiodicity” [24] assuming that a DTDS
is Knudsen chaotic (or K-chaotic) iff it has a dense orbit and is sensitive.

Example 1.2. Let us consider the logistic DTDS 〈[0, 1], g〉 where g is defined as
∀x ∈ [0, 1], g(x) = 4x(1 − x). It is well known that this system is Devaney chaotic
and possesses a dense orbit. By removing from [0, 1] all the periodic points and
their pre-images, we obtain a DTDS which is transitive, sensitive and inherits the
dense orbit. Thus the obtained DTDS is Knudsen but not Devaney chaotic.

Let us recall that sensitivity implies perfectness and as shown below the exis-
tence of a dense orbit plus perfectness imply transitivity (see Prop. 2.9, Sect. 2);
hence Knudsen chaos implies a DTDS which is transitive and sensitive. In other
words, in this definition of chaos regularity is omitted.

However, we observe that the only condition obtained considering transitivity
and sensitivity together may not be sufficient to consider a DTDS as chaotic.
Indeed we illustrate a concrete example of transitive and sensitive DTDS in which
there exists a unique equilibrium point which attracts every orbit, this latter being
a quite non chaotic behavior. Before showing such a system, we recall that the
one-sided (resp., two-sided) full shift on the finite alphabet A is the DTDS

〈AK, σ
〉
,

with K = N (resp., K = Z), where σ is the left shift mapping on the space AK

defined as: ∀x ∈ AK, ∀i ∈ K, [σ(x)]i = xi+1. The set AK is endowed with the
Tychonoff metric dT (x, y) =

∑
i∈K

1
4|i| h(xi, yi), with h the Hamming distance

on A. Let us note that with respect to this metric, the left shift on AZ is a uniformly
continuous map. Moreover it is a bijection and thus it defines a reversible DTDS.

It is well known that any full shift is Devaney and Knudsen chaotic.

Example 1.3. The left shift on the state space Σ ⊂ AN of all definitively null
one-sided sequences on a given alphabet A containing a zero element 0 has the
null sequence 0 = (0, 0, 0, . . .) as the unique equilibrium point, which is a global
(finite steps) attractor. But this DTDS is transitive and sensitive to the initial
conditions due to the Knudsen results since Σ is dense in AN.

We remark (see Cor. 2.12, Sect. 2) that if a compact DTDS 〈X, g〉 is chaotic
in the sense of Devaney, then it is chaotic in the sense of Knudsen. Another
possibility is to define as chaotic a perfect DTDS which has a dense orbit and is
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regular. Let us note that if a DTDS is only perfect, then the existence of a dense
orbit implies transitivity (see Cor. 2.9, Sect. 2), having that also in this case the
new definition of chaos implies Devaney chaos. If one considers a compact and
perfect (or alternatively, compact and surjective) DTDS then the two definitions
of chaos coincide since in this case the existence of a dense orbit is equivalent to
transitivity (see Cor. 2.13, Sect. 2).

In the case of DTDS induced by Cellular Automata (CA) (for an introduction
to CA as DTDS and their realtionships to chaos see for instance [13]), the simple
condition of transitivity implies sensitivity [14] and it is conjectured (and proved
only for some classes [8, 9, 12]) that surjective CA, and then transitive CA, are
regular. For infinite Subshifts of Finite Type (SFT) and for DTDS on intervals
of the real line, transitivity is equivalent to Devaney chaos [11, 35]. Moreover,
topological transitivity is an important property of DTDS which is connected
to various other disciplines. Several studies deal with the relationships between
transitivity and ergodicity [7, 16, 22, 36, 37].

In this paper we focus our attention to the notion of transitivity as an im-
portant (but not unique) component of chaos since, as shown by the above brief
discussion, there exists alternative definitions of chaos centered in a modification
of transitivity, leaving invariant the sensitivity condition. As to this approach, in
literature one can found several definitions of “transitivity” and we make an in-
vestigation, with suitable results and counter-examples, about this notions. Once
renamed as positive transitivity the Devaney notion, we consider the notion of full
transitivity, which in the particular case of compact and homeomorphic DTDS
can be found in [16,36]. We study the relationships among these two notions and
other topological properties. In particular we show that these two notions coin-
cide in the following cases: the perfect DTDS and the DTDS whose states are all
non-wandering points (extending the same result already proved in [36] for com-
pact and homeomorphic DTDS). As a consequence, since regularity implies that
all states are non-wandering, we have that in the Devaney definition of chaos the
notion of transitivity can be substituted by the weaker notion of full transitivity.

We also consider some conditions stronger than positive transitivity, in par-
ticular the two notions of mixing and of strong transitivity. Similarly to a result
obtained by Kurka in [27] relatively to mixing, we show that a strongly transitive
DTDS with at least two disjoint periodic orbits is sensitive. In this way one obtains
two Knudsen–like definitions of chaos, i.e., without regularity, in which giving as
fixed the sensitivity condition some property which implies positive transitivity is
assumed to hold.

There are strongly transitive DTDS, as the one-sided full shift, which are both
Devaney and Knudsen chaotic, but there are also other DTDS, as the irrational
rotations of the circle (Rem. 2.21, Sect. 2), which are strongly transitive, not
regular and not sensitive (and so neither Devaney nor Knudsen chaotic). In effects
in the setting of homeomorphic and compact DTDS, strong transitivity reduces
to the classical notion of minimality (see for instance [21, 36]). As consequence of
this fact we have that no strongly transitive DTDS can be Devaney chaotic.
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Finally, we study the above properties in the case of Subshifts on a finite al-
phabet A. They are DTDS whose state space is constituted by a suitable set of
sequences of AK (either K = Z or K = N) which is endowed with the Tychonoff
metric. We recall that with respect to this metric AK turns out to be a Cantor
space (i.e., a compact, perfect and totally disconnected space, [38], p. 99). The
topology induced from the Hamming distance on the alphabet is the discrete one,
in which any collection of letters from the alphabet is a clopen subset. The topol-
ogy induced by the Tychonoff distance on AK is just the product topology induced
from the discrete topology of A. Let us recall that this topology is the coarsest
one with respect to the pointwise convergence of sequences.

The importance of Subshifts is due to the fact that to many DTDS it is pos-
sible to associate a suitable Subshift, encoding the states of the system as sym-
bolic sequences. In this way one can understand some dynamical aspects of the
original system by investigating the behavior of the associated Susbhift (see for
instance [22, 27]). Subshifts have also found significant application in different dis-
ciplines, e.g., data storage and transmission, coding and linear algebra [29], and
they are studied in the field of language theory [6,11,29]. Indeed a formal language
is canonically associated to any subshift. An important subclass of these symbolic
systems is constituted by Subshifts of Finite Type (SFT) [31], that is, by those
subshifts which can be described by a finite set of words and represented (and then
investigated) by a directed graph and a matrix [29]. In [10] the SFT behavior of
CA has been investigated and it has been illustrated how to associate to any SFT
a CA which contains it. Moreover it has been proved that the class of the SFT
turns out to coincide with the class of SFT contained in CA.

We conclude this section with a remark based on Example 1.3 where an un-
predictable system with a unique globally attracting equilibrium point has been
described. In order to avoid this kind of pathological behavior strictly linked to
the requirement that the sensitivity is obtained after a finite number of time steps
n making no requirement about the behavior in the successive instants, we also
propose a modified, and stronger notion of sensitivity

Definition 1.4 (Strong Sensitivity). A DTDS 〈X, g〉 is strongly sensitive to
the initial conditions iff

∃ε>0 ∀x∈X ∀δ>0 ∃y∈X ∃n0∈N : d(x, y) < δ and ∀n ≥ n0, d(gn(x), gn(y)) ≥ ε

where the main difference with respect to the definition 1.1 consists in the require-
ment that the distance between the two orbits must remain greater that ε for all
time steps after the first instant n0. It is easy to check that any full shift

〈AK, σ
〉

is strongly sensitive.
As a final conclusion of this introduction, we are aware that the Devaney defini-

tion of chaos is from different points of view unsatisfactory. For instance we have
above discussed the Knudsen criticisms about full periodic chaos, but of course it
is not the unique criticism. In our opinion, the two essential notions of chaos are
transitivity and sensitivity or some variations of their. This is particularly true
in the wide class of DTDS generated by (one-dimensional, two-sided) CA. Indeed,
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notwithstanding the simplicity of the local rule, the induced global dynamics show
a great variety of dynamical behaviors from the simpler ones (unique global at-
tracting equilibrium point) to the more and more complicated (shift and subshift,
fractal-like space-time diagram , see for instance [13]). In the CA global dynamics
transitivity implies sensitivity [14], and so transitivity is equivalent to K-chaos.
In the particular case of elementary (binary of radius 1, see [13]) CA we have the
stronger result that transitivity is equivalent to both K and D-chaos. So, at least
in this wide class of dynamical systems transitivity captures two of the possible
definitions of chaos.

These are the reasons which induce us to investigate in this paper transitivity,
with some of its variations such as full transitivity, topological mixing and strong
transitivity, with a particular regard to the context of symbolic dynamics. Of
course in literature one can recently find a discussion about variations of sensitiv-
ity [2, 25]. A particular interesting new definition of chaos can be found in [33]
with respect to a notion called of extreme sensitive dependence on initial condition;
it is interesting to note that one-sided full shift is both extremely sensitive and
strongly sensitive, since these conditions are based on the existence of some suit-
able state. The relationships among some of these variations will be the argument
of a forthcoming paper of ours.

2. Positive transitivity

In what follows, we denote by N the set of all natural numbers and by N+

the set of strictly positive natural number. The notion of transitivity given by
Devaney [17] is renamed by us according to the following definition.

Definition 2.1 (Positive Transitivity). A DTDS 〈X, g〉 is (topologically) pos-
itively transitive if and only if for any pair A and B of non empty open subsets of
X there exists an integer n ∈ N+ such that gn(A) ∩ B 	= ∅.

Intuitively, a positively transitive map g has points which under forward iter-
ation of g eventually move from one arbitrarily small neighborhood to any other.
An example of a positively transitive (and regular and strongly sensitive) DTDS
is the full shift.

Remark 2.2. If a DTDS is positively transitive, then for any pair A, B of
nonempty open subsets of X both the following conditions must hold:

PT1) ∃n1 ∈ N+ : gn1(A) ∩ B 	= ∅ PT2) ∃n2 ∈ N+ : gn2(B) ∩ A 	= ∅.

Example 2.3. A non positively transitive DTDS.
Let 〈N, gs〉 be the DTDS where the state space N is equipped with the trivial

metric dtr : N×N �→ R+, where dtr(x, y) = 1 if x 	= y and dtr(x, y) = 0 otherwise,
and gs : N �→ N is the successor mapping defined as follows: ∀x ∈ N, gs(x) = x+1.
The pair of open sets A = {3} and B = {5} verifies PT1) but not PT2) and thus
it is not a positively transitive DTDS.
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Let us observe that in literature there are alternative ways by which the notion
of transitivity is defined. In some works the intersection condition gn(A) ∩ B 	= ∅
of the 2.1 is replaced by A∩g−n(B) 	= ∅ (see for instance [2,7] in the context of sur-
jective DTDS on compact spaces) giving rise to an equivalent notion of transitivity.
In other works (see for instance [3,4,11,21]) there are definitions of transitivity in
which the integer n involved in Definition 2.1 is allowed to assume also the value
n = 0. It is easy to prove they are equivalent to the positive transitivity. For
further conditions equivalent to positive transitivity see for instance [1, 26, 36].

We recall that a subset A ⊆ X is said to be g positively (or forward) invariant
iff ∀a ∈ A, g(a) ∈ A (i.e., g(A) ⊆ A) and a pair 〈A, g〉 is a dynamical sub-system
of 〈X, g〉 if A is a topologically closed and positively invariant subset of X . In the
investigation of topological dynamics, if possible, it is useful to divide the space in
“basic” blocks which constitute a partition of the initial system in sub-dynamical
systems, and then to study the properties of each block. Positive transitivity is
a topological property which avoid such a partition. To clarify this aspect we
introduce the following

Definition 2.4 (Indecomposability). A DTDS 〈X, g〉 is indecomposable iff X
is not the union of two nonempty open, disjoint, and positively invariant subset.

Of course, if two open subsets decompose X , then they must be also closed. This
means that for an indecomposable DTDS the state space X cannot be split into
two (nontrivial) clopen sub-dynamical systems. Indecomposability is in a certain
sense an irreducibility condition [32]. Note that in [28] this property is also called
condition of invariant connection and X is said to be invariantly connected. It is
easy to check that a positively transitive DTDS is indecomposable.

In the sequel we denote by Bδ(x) the open ball centered in x ∈ X and of radius
δ > 0 and by γx : N �→ X the orbit (or positive motion) of initial state x ∈ X
defined as: ∀t ∈ N, γx(t) = gt(x). We give now the following

Definition 2.5 (Topologically Transitive Point). Let 〈X, g〉 be a DTDS. A
state x0 ∈ X is said to be topologically transitive iff the positive motion γx0 of
initial state x0 is dense in X , i.e., {gt(x0)}t∈N

= X .

Obviously, topological transitive points can occur only if the topological space
underlying the involved DTDS is separable (i.e., it admits a dense countable sub-
set). Let us note that in some works in which DTDS on compact spaces are
considered(see for instance [19, 22, 36]) the notion of transitivity is given in terms
of the existence of a topologically transitive point. It is easy to prove that a DTDS
which admits a topologically transitive point is indecomposable. It is important
to stress that the existence of topologically transitive point is not a sufficient con-
dition to guarantee the positive transitivity of a DTDS.

Example 2.6. A DTDS which possesses a dense orbit but which is not positively
transitive.

Let 〈N, gs〉 be the DTDS of Example 2.3. The orbit of initial state 0 ∈ N

coincides with the whole state space N and then it is a dense orbit.
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This behavior holds also in the case of compact DTDS.

Example 2.7. A compact and non positively transitive DTDS with a dense orbit.
Let us consider the state space X = {0} ∪ { 1

2n : n ∈ N} equipped with the metric
induced by the usual metric of R. This space is compact (and non perfect). Let
g : X �→ X be the continuous mapping defined as: ∀x ∈ X , g(x) = 1

2x. A possible
positive orbit dense in X is the sequence of initial state x = 1. But the dynamical
system is not positively transitive. Indeed, if we consider the two nonempty open
sets A = {1/2} and B = {1}, we have that ∀n ∈ N: gn(A) ∩ B = ∅.
Example 2.8. A positively transitive DTDS which does not possess any dense
orbit.

Let 〈Per(σ), σ〉 be the dynamical system constituted by all periodic points of
the two-sided full shift

〈AZ, σ
〉
. It is easy to show that this system is positively

transitive but it does not possess any dense orbit.

In the case of perfect DTDS, we have the following result:

Proposition 2.9 [34]. Let 〈X, g〉 be a perfect DTDS. If there exists a topologically
transitive point, then 〈X, g〉 is positively transitive.

We now recall some sufficient conditions involving the properties of the metric
space of a DTDS, in order that positive transitivity implies the existence of a dense
periodic orbit:

Proposition 2.10 [34]. Let 〈X, g〉 be a DTDS where the metric space (X, d) is
separable and of second category (for this latter see [23]). If 〈X, g〉 is positively
transitive, then it admits a topologically transitive point.

Corollary 2.11. Let 〈X, g〉 be a compact DTDS. If it is positively transitive then
it admits a topologically transitive point.

As a consequence of the previous result we have the following

Corollary 2.12. Let 〈X, g〉 be a compact DTDS. If 〈X, g〉 is Devaney chaotic then
it is Knudsen chaotic.

There are two cases in which the positive transitivity is equivalent to the exis-
tence of a dense orbit. The former is obtained as combination of the Corollary 2.11
with the Proposition 2.9.

Corollary 2.13. Let 〈X, g〉 be a compact and perfect DTDS. Then 〈X, g〉 is pos-
itively transitive if and only if it admits a topologically transitive point.

Proposition 2.14 [36]. Let 〈X, g〉 be a compact DTDS with a surjective next
state mapping g. Then 〈X, g〉 is positively transitive if and only if it admits a
topologically transitive point.

Another interesting consequence of the positive transitivity is that g(X) = X
(global denseness) which is in some cases strictly related to surjectivity of the
involved system. In fact, in the setting of compact DTDS, positive transitivity
implies that g(X) = X . We remark that the existence of a dense orbit is not a
sufficient condition to obtain g(X) = X , as the following example shows.
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Example 2.15. Let us consider the DTDS of Example 2.3. The set gs(X) =
{1, 2, . . .} is a closed subset of X , so gs(X) = gs(X) 	= X .

We introduce now some notions which refer to conditions stronger than positive
transitivity.

2.1. Mixing condition

Let us introduce the following

Definition 2.16 (Topological Mixing). A DTDS 〈X, g〉 is topologically mixing
iff for any pair A and B of non empty open subsets of X there exists an integer
n0 ∈ N such that for every n ≥ n0 we have gn(A) ∩ B 	= ∅.

In [11] it has been proved that a topologically mixing DTDS with cardinal-
ity strictly greater than 2 is necessarily perfect (and so infinite). The following
property can be useful in order to study the Knudsen-like chaotic (i.e., without
regularity) behavior of a DTDS:

Proposition 2.17 [27]. Any topologically mixing DTDS with at least three states
is sensitive to the initial conditions.

2.2. Strong transitivity and minimality

Another condition stronger than positive transitivity is the following:

Definition 2.18 (Strong Transitivity). A DTDS 〈X, g〉 is strongly transitive
iff for any nonempty open set A ⊆ X we have

⋃
n∈N

gn(A) = X.

Thus a strongly transitive mapping g has points which eventually move under
iteration of g from one arbitrarily small neighborhood to any other point. There-
fore g must be surjective. Let us note that in [21] the notion of strong transitivity
is called denseness of all backward orbits and some classes of DTDS where this
property is equivalent to positive transitivity are exhibited.

In analogy to the above quoted Kurka result about the relationship between
mixing and sensitivity, we can now prove the following relationship between strong
transitivity and sensitivity. Also in this case we have a condition which furnishes
a Knudesn-like chaotic (i.e., always without regularity) behavior.

Proposition 2.19. Any strongly transitive DTDS with at least two disjoint peri-
odic orbits is sensitive to the initial conditions.

Proof. Let 2ε be the minimum distance between two disjoint periodic orbits C1

and C2. Chosen a state x and a real δ > 0, there exist two states y1, y2 ∈ Bδ(x) and
an integer n ∈ N such that gn(y1) ∈ C1 and gn(y2) ∈ C2. Since d(gn(y1), gn(x)) +
d(gn(x), gn(y2)) ≥ d(gn(y1), gn(y2)) ≥ 2ε, we obtain that either d(gn(y1), gn(x)) ≥
ε or d(gn(y2), gn(x)) ≥ ε. �
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As an example of strongly transitive and regular (which trivially has at least
two disjoint periodic orbits) DTDS is the tent map T on [0, 1] defined as ∀x ∈
[0, 1], T (x) = 1 − |2x − 1|.

Let us note that in the case of homeomorphic DTDS on compact spaces Defi-
nition 2.18 can be rewritten as:

for any open set A 	= ∅ there exists k ∈ N such that
k⋃

n=0

gn(A) = X. (1)

The previous condition is the one considered in [20] in the case of compact but
not necessary homeomorphic DTDS. We now recall the classical condition of min-
imality.

Definition 2.20 (Minimality). A DTDS 〈X, g〉 is minimal iff the unique closed
and strictly invariant subsets of X are X and ∅.

Equivalently, a DTDS is minimal iff every positive motion is dense in X . Thus
minimality implies positive transitivity. Moreover, it is easy to show that a minimal
DTDS either does not possess any periodic point or it is constituted by a unique
periodic orbit.

Remark 2.21 (Private communication of François Blanchard). With a slight
modification of Theorem 5.1 in [36], it is not hard to prove that for homeomorphic
and compact DTDS minimality is equivalent to condition (1). Therefore, we have
the following result:

Proposition 2.22. Let 〈X, g〉 a homeomorphic and compact DTDS. 〈X, g〉 is
minimal if and only if it is strongly transitive.

As an immediate consequence of the previous facts, we have that homeomor-
phic, compact and strongly transitive DTDS cannot be regular (unless they are
constituted by a unique cycle), and then they cannot be Devaney chaotic. This
fact has also an intuitive explanation: some invertible minimal systems (irrational
rotations of the circle, adding machines, see for instance [21,27]) are considered to
be the “most” deterministic or “un-chaotic” dynamical systems, barring periodic
points and being not sensitive. Then they are neither Devaney nor Knudsen-like
chaotic. In conclusion, on compact spaces, strong transitivity is a property having
a completely different meaning in the homeomorphic case with respect to the non-
homeomorphic one. Let us recall that the two-sided full shift

〈AZ, σ
〉

is a home-
omorphic and compact DTDS which is Devaney chaotic and mixing but it is not
strongly transitive, while the one-sided full shift

〈AN, σ
〉

is a non-homeomorphic
DTDS which is Devaney chaotic, mixing and strongly transitive.

3. Full transitivity

Definition 3.1 (Full Transitivity). A DTDS 〈X, g〉 is (topologically) full tran-
sitive if and only if for any pair A and B of non empty open subsets of X there
exists an integer number t ∈ Z such that A ∩ g−t(B) 	= ∅.
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Full transitivity is a weaker condition than the positive one. In the particular
case of homeomorphic and compact DTDS, this notion is the one considered for
instance in [16,36,37], but let us stress that our definition precludes this restrictive
constraints. It is obvious that a positively transitive DTDS is full transitive. The
converse does not hold as we can see in the following example.

Example 3.2. A full transitive DTDS which is not positively transitive.
Let 〈N, gs〉 be the DTDS of Example 2.3. We prove that 〈N, gs〉 is full transitive.
Let A and B be two disjoint open subsets of N and a, b their corresponding minimal
elements. Then the integer t1 = b − a is such that gt1

s (A) ∩ B 	= ∅.
Note that the compact DTDS of Example 2.7 exhibits the same behavior of

the previous one. Trivially the existence of a dense orbit is a sufficient condition
to guarantee the full transitivity and it is easy to check that every full transitive
DTDS is indecomposable. As regards as global denseness we want to remark that
full transitivity is not sufficient condition to obtain g(X) = X (see Ex. 2.3).

We now consider the homeomorphic DTDS, with attention to compact spaces.
Let us introduce the following notion:

Definition 3.3 (Full Transitive Point). Let 〈X, g〉 be a homeomorphic DTDS.
A state x0 ∈ X is said to be full transitive iff the set {gt(x0)}t∈Z

is dense in X .

Obviously a topologically transitive state x0 of a homeomorphic DTDS is also
a full transitive point. The converse does not hold, not even under the condition
of a compact metric space (see Ex. 3.5). It is easy to check that the existence of a
full transitive point implies the full transitivity (but it is not a sufficient condition
to guarantee the positive one – see Ex. 3.4 – not even if X is a compact set – see
Ex. 3.5). The converse holds if the system is homeomorphic and compact. This
fact is proved in [16].

We ask whether full transitivity coincides to the positive transitivity for home-
omorphic DTDS. The answer is no.

Example 3.4. A homeomorphic and full transitive DTDS which is not positively
transitive.

Let X = Z be the set of integer numbers equipped with the trivial metric and
let gp : Z �→ Z be the mapping defined as follows: ∀x ∈ Z, gp(x) = x− 1. It is easy
to show that the system 〈Z, gp〉 is homeomorphic and full transitive, but it is not
positively transitive. Let us note that any state is a full transitive point.

This behavior also holds in the case of compact and homeomorphic DTDS.

Example 3.5. A homeomorphic, full transitive and compact DTDS which is not
positively transitive.

Let 〈S, σS〉 be the dynamical subsystem of the full shift on the binary alphabet
described as follows. A configuration x ∈ {0, 1}Z belongs to S iff either x = 0 =
(. . . , 0, 0, 0, . . .) or x = 1 = (. . . , 1, 1, 1, . . .) or x is of the kind (. . . , 0, 0, 0, 1, 1, 1, . . .)
The mapping σS is the restriction of the shift mapping σ to the set S. It is easy to
check that 〈S, σS〉 is a homeomorphic and compact DTDS (in effect it is a SFT, see
Ex. 4.9 of Sect. 4) which is non perfect. Let us note that each state x0 of S \{0, 1}
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generates a dense full orbit but the subshift does not possess any topologically
transitive point, and so the system is full transitive but not positively transitive.
Furthermore we observe that the system is not regular.

Let us recall that a state x ∈ X of a DTDS 〈X, g〉 is a non-wandering point iff for
any neighborhood U of x, there exists an integer n > 0 such that g−n(U)∩U 	= ∅.
We denote by Ω(g) the set of all the non-wandering points of the system.

The following theorems extends to a general DTDS the result given in [36] for
the homeomorphic and compact setting.

Theorem 3.6. Let 〈X, g〉 a DTDS. The system is positively transitive iff it is full
transitive and Ω(g) = X.

Proof. It is obvious that a positively transitive is full transitive and non wandering.
For the sequel of argument, let us suppose now that there exist two nonempty open
sets U, V ⊆ X such that ∀t > 0, gt(U)∩V = ∅. Since the system is full transitive,
there is an integer s ≥ 0 such that g−s(U) ∩ V 	= ∅ (equivalently, gs(V ) ∩ U 	= ∅).
Let us consider the nonempty open set A = g−s(U)∩ V . We now show that there
exists an integer N > s such that g−N(A) ∩ A 	= ∅. We suppose the contrary
(that is for any M ≥ s we have g−M (A) ∩ A = ∅). Let m ≤ s be the greatest
integer such that A′ = g−m(A) ∩ A 	= ∅ (such an integer exists). We have that
g−m′

(A′) ∩ A′ 	= ∅, for some m′ > 0. This fact implies that

∅ 	= g−m′ (
g−m(A) ∩ A

) ∩ g−m(A) ∩ A = g−m′−m(A) ∩ g−m′
(A) ∩ g−m(A) ∩ A

⊆ g−m′−m(A) ∩ A,

and then there exists an integer N > s such that g−N (A) ∩ A 	= ∅, and that
gN (A) ∩ A 	= ∅. Since gs (A) ⊆ gs (g−s(U)) ∩ gs(V ) = U ∩ gs(V ) ⊆ U we have
that gN(A) = gN−s(gs(A)) ⊆ gN−s(U). Recalling that A ⊆ V , we conclude that
∅ 	= gN (A) ∩ A ⊆ gN−s(U) ∩ V , contradiction. �
Example 3.7. Let us consider the system of Example 3.5. One can deduce that
the system is not positively transitive also from the fact that the unique non-
wandering points are 0 and 1.

As a consequence of the previous theorem, since regularity implies that all states
are non-wandering, we have that in the Devaney definition of chaos the notion of
transitivity can be substituted by the weaker notion of full transitivity. There
is an important case, involving condition of perfectness of the system, where full
transitivity implies positive transitivity.

Theorem 3.8. Let 〈X, g〉 a perfect DTDS. The system is positively transitive iff
it is full transitive.

Proof. We show that if the system is full transitive, then every state is a non-
wandering point. Let x ∈ X be a state and U be a neighborhood of x. We
know that there exists an integer t ∈ Z such that U ∩ g−t(U) 	= ∅. If t 	= 0,
we trivially have that x is non-wandering. Otherwise, using the fact that X is
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perfect there is a state y ∈ U with y 	= x. Now, we are able to find two disjoints
open set A, B ⊆ U containing x and y respectively and an integer s such that
A ∩ g−s(B) 	= ∅. Necessarily we have s 	= 0, so there exists an integer n > 0 such
that U ∩ g−n(U) 	= ∅. Theorem 3.6 concludes the proof. �

In conclusion full transitivity is a property which has a proper meaning in some
settings like DTDS with isolated points. In the next sections we will deal with
systems (such as the subshifts) which may be of this kind.

4. Subshifts and related languages

We define the cylinder of block u ∈ An and position m ∈ Z as the set Cm(u) =
{x ∈ AZ | xm · · ·xm+n−1 = u}. Note that cylinders form a basis of clopen subsets
of AZ for the topology induced by the Tychonoff metric.

Definition 4.1 (Subshift). A (two-sided) subshift over the alphabet A is a DTDS
〈S, σS〉, where S is a non empty closed, strictly σ-invariant (σ(S) = S) subset
of AZ, and σS is the restriction of the shift map σ to S.

In the sequel, in the context of a given subshift 〈S, σS〉, for the sake of simplicity
we will denote by Cm(u) the subset Cm(u) ∩ S, if there is no confusion. Let us
note that in relative topological space (S, dT ), where dT is the restriction to S of
the Tychonoff metric defined on AZ, the set Cm(u) ∩ S is open.

A subshift 〈S, σS〉 distinguishes the words or finite blocks constructed over the
alphabet A in two types: admissible blocks, i.e., blocks appearing in some con-
figuration of S and blocks which are not admissible, called forbidden, i.e., blocks
which do not appear in any configuration of S. We will write w ≺ x to denote
that the A–word w = (w1, . . . , wn) ∈ A∗ appears in the configuration x ∈ AZ,
formally ∃i ∈ Z s.t. xi = w1, . . . , xi+n−1 = wn (also indicated by x[i,i+n−1] = w).
We will denote by w 	≺ x the fact that w does not appear in the configuration x.
A word u = u1 · · ·um ∈ A∗ is a sub-block (or sub-word) of w = w1 · · ·wn ∈ A∗,
written as u � w, iff u = wi · · ·wj , for some 1 ≤ i ≤ j ≤ n. To every subshift we
can associate a formal language according to the following:

Definition 4.2 (Language of a Subshift). Let 〈S, σS〉 be a subshift over the
alphabet A. The language of S is the collection of all admissible blocks: L(S) =
{w ∈ A∗ : ∃x ∈ S s.t. w ≺ x} .

A canonical way to generate a subshift consists of fixing a collection of words
considered as forbidden blocks. Precisely, let F be any subset of A∗, and let us
construct the set S(F) = {x ∈ AZ : ∀w ∈ F , w 	≺ x}. Then S(F) is a subshift,
named the subshift generated by F . Let us note that two different families of
forbidden blocks may generate the same subshift.

Definition 4.3 (Subshift of Finite Type). A subshift is of finite type iff it can
be generated by a finite set F of forbidden blocks.
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In the case of a SFT, the finite set F generally is composed by blocks of different
length. Nevertheless, starting from F it is always possible to construct a set of
forbidden blocks F ′ consisting of the same length and generating the same subshift.
We have just to complete in all possible ways each block from F , up to reach the
length of the longest forbidden block in F . In the case of a SFT 〈S, σs〉 we will
denote by Fh a set of forbidden blocks in which all words w ∈ Fh have the same
length h and generating the subshift, i.e., S = S(Fh).

To every SFT we can associate a graph according to the following:

Definition 4.4 (Graph associated to a SFT). Let 〈S, σS〉 be a SFT generated
by a set Fh of forbidden blocks. The graph Gh(S) associated to S is the pair
〈V (S), E(S)〉 where the vertex set is V (S) = Ah−1 and the edge set E(S) con-
tains all the pairs (a, b) ∈ Ah−1 × Ah−1 such that a2 = b1, . . . , ah−1 = bh−2 and
a1a2 · · · ah−1bh−1 /∈ Fh. The block a1a2 · · ·ah−1bh−1 is called the word generated
by the blocks a and b.

Trivially, bi-infinite paths along nodes on the graph Gh(S) correspond to bi-
infinite strings of the SFT S. In the general case we can minimize the sub-
graph Gh(S) removing all the unnecessary nodes and the corresponding outgoing
and incoming edges. In this way the finite paths along nodes on the graph cor-
respond to the words of the language L(S). From now on, we will consider only
minimized graphs. We will denote by Ah(S) the adjacency matrix of the graph
Gh(S) associated to a SFT 〈S, σS〉 generated by a set Fh of forbidden blocks.

We recall now the following definitions concerning the notion of irreducibility
for a language and a square matrix.

Definition 4.5 (Irreducible Language). A language L ⊆ A∗ is irreducible iff
for every ordered pair of blocks u, v ∈ L there is a block w ∈ L such that uwv ∈ L.

Definition 4.6 (Irreducible Matrix). An order k square matrix M = [mi,j ] is
irreducible iff ∀i, j ∈ {1, . . . , k}, ∃p = p(i, j) ∈ N, p > 0 such that m

(p)
i,j 	= 0 , where

m
(p)
i,j is the (i, j)-component of the matrix Mp.

We now want to study some topological properties of subshifts as DTDS, char-
acterizing the corresponding languages, and for SFT, the associated matrixes and
graphs too.

In [11] three different techniques are explained to investigate if a SFT is posi-
tively transitive. These techniques involve the language, the graph, and the matrix
associated to the SFT.

Theorem 4.7 (see [29], with some improvements in [11]). Let 〈S, σS〉 be a SFT
generated by a set of forbidden blocks Fh. Then the following statements are
equivalent: i) 〈S, σS〉 is positively transitive; ii) L(S) is irreducible; iii) Gh(S)
is strongly connected; iv) Ah(S) is irreducible. Moreover, if one of the above
equivalent conditions holds, then 〈S, σS〉 is regular. Lastly, if 〈S, σS〉 has infinite
cardinality, the previous statements are equivalent to the following condition: v)
〈S, σS〉 is chaotic according to Devaney.
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Figure 1. Graph and adjacency matrix of Example 4.9.
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Figure 2. Bicyclic graph.

Let us stress that the equivalence between i) and ii) holds even if the subshift is
not a SFT. Furthermore, as a consequence of Corollary 2.12, positively transitive
and infinite SFT are also Knudsen chaotic. As to the characterization of topolog-
ically mixing and strongly transitive subshifts see for instance [11, 29]. We now
introduce some new definitions concerning languages, graphs, and matrices which
help us to establish if a subshift is full transitive.

Definition 4.8 (Weakly Irreducible Language). A language L ⊆ A∗ is weakly
irreducible iff for any pair of blocks u, v ∈ L there is a block w ∈ L, s.t. u, v � w.

Example 4.9. A weakly irreducible language which is not irreducible.
Let 〈S, σS〉 be the SFT over the alphabet A = {0, 1} generated by the set of

forbidden blocks F2 = {10} (see Fig. 1). The language L(S) is weakly irreducible.
However it is not irreducible. Indeed, if we consider the words u = 1 ∈ L(S) and
v = 0 ∈ L(S) we are not able to find any block w ∈ L(S) such that uwv ∈ L(S).

In the sequel we will refer to a connected component of a directed graph G as a
subgraph which is a connected component of the underlying undirected graph of
G obtained suppressing the orientations of all the edges of G. We now introduce
the following:

Definition 4.10 (Full Transitive Graph). A graph G is full transitive iff either
it is strongly connected or it is bicyclic, i.e., a graph of the kind 〈V, E〉 where the
vertex set is V = {U0, . . . , Um−1 = T0, . . . , Ti, . . . , Tl = W0, . . . , Wn−1} (m, n, l ∈
N+) and the edges are the pairs (Ui, U(i+1) mod m), for i = 0, . . . , m− 1, the pairs
(Ti, Ti+1), for i = 0, . . . , l−1 and the pairs (Wi, W(i+1) mod n), for i = 0, . . . , n−1.

In other words, a full transitive graph is a unique connected component which
is either strongly connected or it is constituted by two disjoint cycles and by a
unique path which connects them (see Fig. 2).
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Definition 4.11 (Full Transitive Matrix). Let M = [mi,j ] be an order k
matrix. Then, the matrix M is full transitive iff either it is irreducible or it is
bicyclic, i.e., a matrix of the kind

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1,1 · · · l1,m 0 0 · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

. . .
...

lm,1 · · · lm,m 1 0 · · · 0 · · · 0
0 · · · 0 0 1 · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

. . .
...

0 · · · 0 0 0 · · · 1 · · · 0
0 · · · 0 0 0 · · · r1,1 · · · r1,n

...
. . .

...
...

...
. . .

...
. . .

...
0 · · · 0 0 0 · · · rn,1 · · · rn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where L = [li,j ] and R = [ri,j ] are permutation matrices of order m and n respec-
tively, which have the element 1 in the positions (m, 1), (i, i+1) for i = 1, . . . , m−1
and (n, 1), (j, j + 1) for j = 1, . . . , n − 1 respectively, or there exist a permutation
matrix P such that P−1MP has the the structure expressed in 2.

Theorem 4.12. Let 〈S, σS〉 be a subshift. Then the following statements are
equivalent: i) 〈S, σS〉 is full transitive; ii) L(S) is weakly irreducible. In the case
of a SFT generated by a set Fh of forbidden blocks, the previous statements are
equivalent to the further conditions: iii) Gh(S) is full transitive; iv) Ah(S) is full
transitive.

Proof. i) ⇒ ii) Chosen arbitrarily u, v ∈ L(S), there exist a configuration z ∈
C0(u) and an integer t ∈ Z such that σt

S(z) ∈ Cn(v), where n = |u|. Since
σt

S(z) ∈ C−t(u), we have that the words u and v are sub-blocks of the word
w = σt

S(z)[min{−t,n},max{−t+n−1,n+|v|−1}] ∈ L(S).

ii) ⇒ i) Chosen arbitrarily u, v ∈ L(S) and m, n ∈ Z, let w ∈ L(S) be the block
such that u, v � w with u = wi · · ·wj and v = wk · · ·wl, for some 1 ≤ i ≤ j ≤ |w|
and some 1 ≤ k ≤ l ≤ |w|. Let us consider a configuration z ∈ Cm−i+1(w), we
have that z ∈ Cm(u) and then σt

S(z) ∈ Cm(v), with t = m − n + k − i ∈ Z.
The equivalence between i) and iv) can be found in [30]. Moreover the quiv-

alence between iii) and iv) directly follows from the structure of Gh(S) and
Ah(S). �

Example 4.13. A full transitive subshift which is not positively transitive.
Let us consider the subshift of Example 4.9. Since the graph is not strongly

connected the subshift is not positively transitive. However it is full transitive.

It is easy to prove that a SFT generated by a set Fh of forbidden blocks is
regular iff every connected component of the graph Gh(S) is a SCC. This fact
can be used to a direct proof that in the setting of SFT full transitivity and
regularity together imply positive transitivity. We now illustrate some conditions
under which a subshift is sensitive to the initial conditions. For this goal, let us
introduce a suitable notion of language.
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Definition 4.14 (Right (resp., left) 2-ways Extendible Language). A lan-
guage L ⊆ A∗ is right (resp., left) 2-ways extendible iff for any block u ∈ L there
exist two words w, w′ ∈ L, with w 	= w′ and |w| = |w′|, such that uw, uw′ ∈ L
(resp., wu, w′u ∈ L).

Definition 4.15 (Right (resp., left) 2-ways Extendible Path). A path π =
V1,
. . . , Vm (m > 1) on a graph G is right (resp., left) 2-ways extendible iff there
exists two paths π′ = V1, . . . , Vm, R′

1, . . . , R
′
n and π′′ = V1, . . . , Vm, R′′

1 , . . . , R′′
n

(n ≥ 1) (resp., π′
1 = L′

1, . . . , L
′
n, V1, . . . , Vm and π′′

1 = L′′
1 , . . . , L′′

n, V1, . . . , Vm) such
that R′

i 	= R′′
i for some i (resp., L′

i 	= L′′
i for some i).

We recall that a sensitive DTDS must be perfect, and with respect to perfectness
of subshift, the following result holds:

Proposition 4.16 [10]. A subshift is perfect iff its language is either left or right
2-ways extendible. Moreover a SFT generated by a set Fh of forbidden blocks is
perfect iff every path on the graph Gh(S) is either left or right 2-ways extendible.

Theorem 4.17 [10]. Let 〈S, σS〉 be a subshift. Then the following statements are
equivalent: i) 〈S, σS〉 is sensitive to the initial conditions with sensitivity constant
ε = 1; ii) L(S) is right 2-ways extendible. Moreover, in the case of a SFT gener-
ated by a set Fh of forbidden blocks, the previous statements are equivalent to the
following condition: iii) every path on the graph Gh(S) is right 2-ways extendible.

In other words a SFT is perfect iff every finite path on the corresponding graph
is extendible in at least two different ways either at the first or at the last vertex.
It is sensitive to the initial conditions iff this fact holds at the last vertex of every
path. As a consequence of Theorems 4.12 and 4.17, we can state that a full but
non positively transitive SFT is not sensitive to the initial conditions.

Example 4.18. A non perfect subshift.
Let us consider the subshift of Example 4.9. It is not perfect since the path (0)(1)

is not extendible in two different ways.

Example 4.19. A sensitive subshift.
Let 〈S, σS〉 be the SFT over the alphabet A = {0, 1} generated by the set of

forbidden blocks F3 = {100} (see Fig. 3). Every finite path on G3(S) is right
2-ways extendible. Thus 〈S, σS〉 is sensitive to the initial condition (and perfect).

Example 4.20. A perfect subshift which is not sensitive to the initial condition.
Let 〈S, σS〉 be the SFT over the alphabet A = {0, 1} generated by the set of

forbidden blocks F3 = {110} (see Fig. 4). Every finite path on the graph G3(S)
is left 2-ways extendible but the path (01)(11) is not right 2-ways extendible.

4.1. One-Sided Subshifts

Definition 4.21 (One-sided Subshift). A one-sided (two-sided) subshift over
the alphabet A is a DTDS 〈S, σS〉, where S is a non empty closed, σ-invariant
(σ(S) ⊆ S) subset of AN, and σS is the restriction of the shift map σ to S.
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Figure 3. Graph and adjacency matrix of Example 4.19.
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Figure 4. Graph and adjacency matrix of Example 4.20.

In contrast to the sided-sided case, 〈S, σS〉 is not a homeomorphic system.
The notions of language, SFT, graph, and matrix are similar to the ones of two-
sides subshifts. As to the results given in this section for two-sided subshifts and
involving some topological properties, like positive transitivity, full transitivity,
topological mixing, and sensitivity, we have that they hold also in the one-sided
case. As to strong transitivity we have that for SFT it is a condition equivalent
to positive transitivity [21]. Let us introduce the following definition.

Definition 4.22 (Expansivity and Positive Expansivity). A homeomorphic
DTDS (resp., a DTDS) is expansive (resp., positively expansive) iff there exists a
constant ε > 0 such that for every pair x, y ∈ X with x 	= y, there is an integer
t ∈ Z (resp., t ∈ N) such that d(gt(x), gt(y)) ≥ ε.

In the case of perfect DTDS, positive expansivity is a condition stronger than
sensitivity to the initial conditions. It is easy to prove that two-sided subshifts are
expansive, while one-sided subshifts are positively expansive.
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5. Conclusion

We have studied the notion of transitivity as an important but not unique
component of chaos and we made an investigation about the several definitions of
transitivity found in literature. We have considered the notions of positive and
full transitivity and we have studied the relationships among these two notion and
other properties. We have shown that these two notions coincide in the case of
perfect and non-wandering DTDS, having this latter as a consequence that in the
Devaney definition of chaos the notion of positive transitivity can be substituted by
full transitivity. We have also considered some conditions stronger than positive
transitivity, in particular the two notions of mixing and of strong transitivity.
Similarly to an existing result related to mixing, we have shown that a strongly
transitive DTDS with at least two disjoint periodic orbits is sensitive. In this
way one obtains two Knudsen-like definitions of chaos, i.e., without regularity,
in which giving as fixed the sensitivity condition some property which implies
positive transitivity is assumed to hold. We have remarked that in the setting
of homeomorphic and compact DTDS, strong transitivity reduces to the classical
notion of minimality, having as a consequence that no strongly transitive DTDS
can be Devaney chaotic. Finally, we have studied the above properties in the case
of Subshifts. We have characterized the languages associated to full transitive and
sensitive subshifts (and also the graphs for the SFT of this kind).
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