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NOTE ON THE COMPLEXITY OF LAS VEGAS
AUTOMATA PROBLEMS ∗

Galina Jirásková1

Abstract. We investigate the complexity of several problems con-
cerning Las Vegas finite automata. Our results are as follows. (1)
The membership problem for Las Vegas finite automata is in NL. (2)
The nonemptiness and inequivalence problems for Las Vegas finite au-
tomata are NL-complete. (3) Constructing for a given Las Vegas finite
automaton a minimum state deterministic finite automaton is in NP.
These results provide partial answers to some open problems posed by
Hromkovič and Schnitger [Theoret. Comput. Sci. 262 (2001) 1–24)].

Mathematics Subject Classification. 68Q19, 68Q17.

1. Introduction

A Las Vegas finite automaton is a probabilistic finite automaton (with a single
initial state) whose states are divided into three disjoint groups: accepting states,
rejecting states, and neutral (“I don’t know”) states. For any input string, the
automaton never errs and the probability of giving the answer “I don’t know” is
at most 1/2.

Las Vegas finite automata (LVFAs) were introduced by Hromkovič and
Schnitger [4], where the authors showed that there is at most a quadratic differ-
ence between deterministic finite automata and Las Vegas finite automata. They
proved the result by using a reduction to one-way Las Vegas communication pro-
tocols. A direct proof of the above result, based on information theory, was given
by Hirvensalo and Seibert in [2]. The relation between the power of determin-
ism, Las Vegas, and nondeterminism for two-way finite automata was studied by
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Hromkovič and Schnitger in [5]. In the paper, the authors stated several problems
concerning Las Vegas finite automata:

“... One-way Las Vegas finite automata work in linear time and
so they are a reasonable data structure for regular languages if
one wants to decide the membership problem. But the efficiency
of the use of LVFAs for regular language representation depends
on the kind of manipulations one would like to realize with the
representation. How hard is to find a minimal LVFA? How hard
is to construct the minimal DFA for a given LVFA? The straight-
forward approach uses the construction of an equivalent DFA for
a given NFA, and so the space complexity of this algorithm is ex-
ponential. Does there exist a more efficient way? How hard is it
to decide the equivalence problem for LVFAs?”

In the present paper, we give partial answers to some of the above questions.
Our results are as follows.

(1) The membership problem for Las Vegas finite automata is in NL.
(2) The nonemptiness and inequivalence problems for Las Vegas finite au-

tomata are NL-complete.
(3) Constructing for a given Las Vegas finite automaton a minimum state

deterministic finite automaton is in NP.
We recall that the nonemptiness problem for DFAs or NFAs, and the inequivalence
problem for DFAs are known to be NL-complete [10,11], the equivalence and min-
imization for DFAs are NL-complete as well [1], while the inequivalence problem
for NFAs is PSPACE-complete [16]. Further results on the complexity of decision
problems for finite-state automata can be found in [6, 8, 9, 18, 19].

The paper consists of five sections, including this introduction. The next section
contains basic definitions and notations used throughout the paper. In Section 3,
we investigate the complexity of the membership, nonemptiness, and inequivalence
problems for Las Vegas Finite automata. Section 4 studies the question of how
hard is it to construct the minimal deterministic finite automaton equivalent to a
given Las Vegas finite automaton. The last section contains concluding remarks
and open problems.

2. Preliminaries

In this section, we recall some basic definitions and notations. For further
details, we refer to [2, 4, 15].

Let Σ be an alphabet and Σ∗ the set of all strings over Σ including the empty
string ε. The length of a string w is denoted by |w| and the ith symbol of a string
w is denoted by w[i]. A language over an alphabet Σ is a subset of Σ∗. Given
a language L ⊆ Σ∗, Lc denotes its complement, i.e., the set {w ∈ Σ∗ | w /∈ L}.
The cardinality of a set A is denoted by |A| and its power-set by 2A.

A (row) vector is stochastic if all its entries are greater than or equal to zero
and sum to 1. A matrix is stochastic if all its row vectors are stochastic.
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A deterministic finite automaton (DFA) is a 5-tuple A = (Q, Σ, δ, q0, F ), where
Q is a finite nonempty set of states, Σ is a finite alphabet, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states. The transition function δ can be extended to the domain Q × Σ∗ in the
natural way. A string w in Σ∗ is accepted by the DFA A if the state δ(q0, w) is
an accepting state of the DFA A.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, Σ, δ, q0, F ),
where Q, Σ, q0, and F are defined as for a DFA, and δ : Q×Σ → 2Q is the transition
function which can be naturally extended to the domain Q×Σ∗. A string w in Σ∗

is accepted by the NFA A if the set δ(q0, w) contains an accepting state of the
NFA A. Clearly, the NFA A accepts a string w of length m if a sequence of states
s0, s1, . . . , sm exists in Q such that s0 = q0, si ∈ δ(si−1, w[i]) for i = 1, 2, . . . , m,
and sm ∈ F.

A Las Vegas finite automaton (LVFA) is a 6-tuple A = (Q, Σ, M, q0, A, R),
where Q, Σ, and q0 are as above, M is a function from Σ into the set of all
(|Q| × |Q|)-dimensional stochastic matrices, A and R are disjoint subsets of Q,
A is the set of accepting states, R is the set of rejecting states. The states that
are neither accepting nor rejecting are called neutral. For any symbol a in Σ, the
matrix M(a) is a stochastic matrix whose rows and columns are indexed by the
states of Q (in some fixed order) and the value M(a)[p, q] is the probability that
the LVFA A moves from state p to state q after reading symbol a. A computation
of the LVFA A on a string w of length m is a sequence of states s0, s1, . . . , sm

such that s0 = q0, and M(w[i])[si−1, si] > 0 for i = 1, 2, . . . , m. The probability
of a computation of the LVFA A on a string w is the product of the transition
probabilities along the path of the computation. Moreover, the following two
conditions must hold:

(i) for no input string there exist two computations of the LVFA A ending up
in an accepting and rejecting state, respectively, and

(ii) for any input string the LVFA A reaches a neutral state with the proba-
bility at most 1/2.

A string w in Σ∗ is accepted by the LVFA A if there is a computation of A on w
ending up in an accepting state. Note that if a string is accepted by an LVFA, then
the probability of reaching an accepting state is at least 1/2 and the probability of
reaching a rejecting state is zero, and if a string is not accepted by an LVFA, then
the probability of reaching a rejecting state is at least 1/2 and the probability of
reaching an accepting state is zero.

The language accepted by a finite automaton A (deterministic, nondeterministic,
or Las Vegas), denoted L(A), is the set of strings accepted by the automaton A.
Two automata are said to be equivalent if they accept the same language.

Any DFA can be easily converted to an equivalent LVFA with the same state
set, the same accepting and rejecting states (and no neutral states), and transition
probabilities 1 for all transitions of the DFA and zero otherwise. On the other
hand, any LVFA can be converted to an equivalent NFA by ignoring transition
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probabilities and by adding the neutral states to the set of rejecting states. Thus,
the LVFAs accept the family of regular languages.

A DFA A is called minimal if all DFAs that are equivalent to A have at least
as many states as the DFA A. By a well-known result, each regular language has
a unique minimal DFA, up to isomorphism.

In the rest of the paper, NL denotes the class of problems that can be solved by
a nondeterministic Turing machine operating in O(log n) space, NL-completeness
is with respect to log-space reductions, and NP denotes the class of problems
that can be solved by a nondeterministic Turing machine operating in polynomial
time. Finally, we assume that all stochastic matrices (given at the input) consist
of rational numbers.

3. The complexity of decision problems for LVFAs

In this section, we investigate the complexity of the following problems for Las
Vegas finite automata: (i) membership: Given an LVFA A with the input alphabet
Σ and a string w in Σ∗, is w ∈ L(A)? (ii) nonemptiness: Given an LVFA A, is
L(A) �= ∅? (iii) inequivalence: Given LVFAs A1 and A2, is L(A1) �= L(A2)?

The first theorem shows that the membership problem for Las Vegas finite
automata is in NL. The next two theorems show that the nonemptiness and in-
equivalence problems for Las Vegas finite automata are NL-complete, so are of the
same complexity as the corresponding problems for deterministic finite automata
(cf. [10, 11]).

Theorem 1. The membership problem for Las Vegas finite automata is decidable
in nondeterministic logarithmic space.

Proof. The nondeterministic algorithm for the membership problem starts at the
initial state of the given LVFA. Then it nondeterministically guesses the steps of
an accepting computation on the given input string. If its guess is successfull, then
it accepts, otherwise it rejects:

Algorithm for LVFA membership problem

Input: An LVFA A = (Q, Σ, M, q0, A, R) and a string w in Σ∗

Task: Find whether w ∈ L(A)

s := q0; m := |w|;
for i := 1 to m do

guess a state q ∈ Q such that M(w[i])[s, q] > 0;
s := q;

od;
if s ∈ A then accept else reject;

Clearly, the algorithm runs in log space. �
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Theorem 2. The nonemptiness problem for Las Vegas finite automata is
NL-complete.

Proof. The language accepted by an LVFA of n states is nonempty if and only if
the LVFA accepts a string of length less than n. The following nondeterministic
algorithm starts with the initial state (given at the input) and a counter which is
initialized to the number of states of the given LVFA. At each step it decrements
the counter, guesses a symbol from the input alphabet and a state which can
be reached from the current state after reading the guessed symbol with nonzero
probability. The algorithm concludes when either the counter reaches zero or the
last state it guessed is accepting:

Algorithm for LVFA nonemptiness problem

Input: An LVFA A = (Q, Σ, M, q0, A, R)
Task: Find whether L(A) �= ∅
s := q0; n := |Q|;
while n > 0 do

if s ∈ A then accept and halt;
n := n − 1;
guess a symbol a ∈ Σ;
guess a state q ∈ Q such that M(a)[s, q] > 0;
s := q;

od
reject;

The algorithm only needs to store s, n, a, q, and a pointer to A, so it uses log
space.

To prove NL-hardness of the problem, we give a log space reduction from
NL-complete problem PATH [15]: Given an oriented graph G and its two ver-
tices s and t, has the graph G a directed path from s to t?

Let G be an oriented graph with the set of vertices V and let s and t be two
vertices in V. We construct an LVFA A in log space, such that the language L(A)
is nonempty if and only if the graph G has an oriented path from s to t.

Define an LVFA A = (Q, Σ, M, q0, A, R), where Q = Σ = V, q0 = s, A = {t},
R = V \ {t}, and for any p and q in Q and any a in Σ,

if (p, a) is an edge of the graph G, then

M(a)[p, q] =
{

1, if q = a,
0, if q �= a,

otherwise

M(a)[p, q] =
{

1, if q = p,
0, if q �= p,

i.e., the LVFA A moves from state p to state a on reading symbol a with probability
1 if (p, a) is an edge of the graph G, otherwise it moves from state p to state p
on reading symbol a with probability 1 (in fact, A is a deterministic automaton).
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The reduction operates in log space and, clearly, the language L(A) is nonempty
if and only if the graph G has an oriented path from s to t.

Thus our proof is complete. �

We now turn our attention to the inequivalence problem for Las Vegas finite
automata. The next lemma shows that given two LVFAs, we can easily construct
a nondeterministic finite automaton for the symmetric difference of the languages
accepted by the given LVFAs.

Lemma 1. Let L1 and L2 be regular languages accepted by Las Vegas finite au-
tomata of m and n states, respectively. Then there is an mn-state nondeterministic
finite automaton accepting the language (L1 ∩ Lc

2) ∪ (Lc
1 ∩ L2).

Proof. Let A1 = (Q1, Σ, M1, q01, A1, R1) and A2 = (Q2, Σ, M2, q02, A2, R2) be Las
Vegas finite automata accepting languages L1 and L2, respectively. Construct the
nondeterministic finite automaton A = (Q, Σ, δ, q0, F ), where

Q = {(p, q) | p ∈ Q1 and q ∈ Q2},
q0 = (q01, q02),
F = (A1 × R2) ∪ (R1 × A2),
and for any (p, q) ∈ Q and any a ∈ Σ,
δ((p, q), a) = {(p′, q′) ∈ Q | M1(a)[p, p′] > 0 and M2(a)[q, q′] > 0}.

We are going to prove that the NFA A accepts the language (L1∩Lc
2)∪ (Lc

1 ∩L2).
If a string w of length m is accepted by the NFA A, then a sequence of

states (r0, s0), (r1, s1), . . . , (rm, sm) exists in Q such that (r0, s0) = (q01, q02),
(ri, si) ∈ δ((ri−1, si−1), w[i]) for i = 1, 2, . . . , m, and (rm, sm) ∈ F. Thus the state
(rm, sm) is in the set A1 × R2 or in the set R1 × A2. In the first case, the compu-
tation r0, r1, . . . , rm is a computation of the LVFA A1 on the string w ending up
in an accepting state rm, and s0, s1, . . . , sm is a computation of the LVFA A2 on
the string w ending up in a rejecting state sm. Hence w ∈ L1 ∩ Lc

2. Similarly in
the second case, the string w is in the language Lc

1 ∩ L2.
Conversely, let a string w of length m is in L1∩Lc

2 or in Lc
1∩L2. In the first case,

there is a computation q01, r1, . . . , rm of the LVFA A1 on the string w ending up
in an accepting state rm, and a computation q01, s1, . . . , sm of the LVFA A2 on the
string w ending up in a rejecting state sm. Then (q01, q02), (r1, s1), . . . , (rm, sm)
is an accepting computation of the NFA A on the string w, i.e., the string w is
accepted by the NFA A. The second case is similar.

Thus the NFA A accepts the language (L1 ∩ Lc
2) ∪ (Lc

1 ∩ L2). �

We are now ready to prove the following result.

Theorem 3. The inequivalence problem for Las Vegas finite automata is
NL-complete.

Proof. Consider the following nondeterministic algorithm for LVFA inequivalence
problem.
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Algorithm for LVFA inequivalence problem

Input: Two LVFAs A1 = (Q1, Σ, M1, q01, A1, R1) and A2 = (Q2, Σ, M2, q02, A2, R2)

Task: Find whether L(A1) �= L(A2)

s := q01; t := q02; n :=| Q1 | · | Q2 |;
while n > 0 do

if (s ∈ A1 and t ∈ R2) or (s ∈ R1 and t ∈ A2) then accept and halt;

n := n − 1;

guess a symbol a ∈ Σ;

guess a state p ∈ Q1 such that M1(a)[s, p] > 0;

guess a state q ∈ Q2 such that M2(a)[t, q] > 0;

s := p; t := q;

od

reject;

The correctness of the algorithm follows directly from Lemma 1. Only a fixed
number of memory cells are used each of which is either a binary number bounded
by a polynomial in the size of A1 and A2, or can be represented by a pointer to
A1 or A2. Thus the algorithm operates in log space.

To prove NL-hardness of the problem, note that the LVFA nonemptiness prob-
lem is log space reducible to the LVFA inequivalence problem since for any LVFA
A, the language L(A) is nonempty if and only if the LVFA A and the 1-state LVFA
accepting the empty set are inequivalent. By Theorem 2, the LVFA nonemptiness
problem is NL-complete, hence the theorem follows. �

4. LVFA to minimal DFA problem

It is well-known that there are NFAs of n states that need 2n deterministic
states [12–14]. Thus, the construction of the minimal DFA equivalent to a given
NFA may require an exponential space. However, for LVFAs, the following quite
surprising result was proved in [4], Theorem 4.1.

Theorem 4 [4]. Let A be a Las Vegas automaton of n states. Then the minimal
deterministic finite automaton equivalent to the LVFA A has at most n2 states.

The above result was shown in [4] by using a reduction to one-way Las Vegas
communication protocols. A direct proof of the result, based on information the-
ory, was given by Hirvensalo and Seibert in [2]. Thus, there is at most a quadratic
difference between Las Vegas and deterministic finite automata. In this section,
we deal with the question of how hard is it to construct the minimal DFA for
a given LVFA? We will show that the construction can be done in nondeterminis-
tic polynomial time and so in polynomial space (this was the original question of
Hromkovič and Schnitger).

Lemma 2. Testing the equivalence of a Las Vegas finite automaton and a deter-
ministic finite automaton can be done in nondeterministic logarithmic space.
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Proof. The nondeterministic log space algorithm from Theorem 3 for the inequiva-
lence of LVFAs can be easily modified to test the inequivalence of the LVFA A1 and
a DFA A2 = (Q, Σ, δ2, q02, A2), R2 = Q \ A2: instead of guessing a state q ∈ Q2,
we take the state q = δ2(t, a). Since NL is closed under complementation by the
well-known result of Immerman and Szelepcsényi [7,17], testing the equivalence of
an LVFA and a DFA is also in NL. �

Theorem 5. The minimal deterministic finite automaton equivalent to a given Las
Vegas finite automaton can be constructed in nondeterministic polynomial time.

Proof. The following nondeterministic algorithm first guesses a DFA of |Q|2 states,
where Q is the state set of the given LVFA. Then, it tests whether the guessed
DFA is equivalent to the given LVFA. If they are equivalent, then the guessed DFA
is minimized:

Algorithm for LVFA to minimal DFA problem

Input: An LVFA A = (Q, Σ, M, q0, A, R)
Output: The minimal DFA B equivalent to the LVFA A
n := |Q|2; S := {1, 2, . . . , n} ; s := 1; F := ∅;
for all q ∈ S do

for all a ∈ Σ do
guess a state p ∈ S;
δ(q, a) := p;

od
guess a j ∈ {0, 1};
if j = 1 then F := F ∪ {q};

od
let B = (S, Σ, δ, s, F );
if the LVFA A and the DFA B are equivalent then minimize B;
output (B);

By Theorem 4, the minimal DFA for the LVFA A has at most |Q|2 states. By
Lemma 2, testing the equivalence of the LVFA A and the DFA B is in NL, and
so in P. Minimization of the n-state DFA B can be done in O(n log n) time [3].
Hence the algorithm runs in polynomial time and the theorem follows. �

5. Conclusions

In this paper, we have obtained several results concerning the complexity of
some problems for Las Vegas finite automata. We have shown that:

• the membership problem for Las Vegas finite automata is in NL;
• the nonemptiness and inequivalence problems for Las Vegas finite au-

tomata are NL-complete;
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• the construction of the minimal deterministic finite automaton for a given
Las Vegas finite automaton can be done in nondeterministic polynomial
time.

It remains open whether the membership problem is NL-hard and whether the
LVFA to minimal DFA problem is NP-hard. The complexity of the minimization
problem for Las Vegas finite automata [5] remains open as well.
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for our helpful discussions on the topic.

References

[1] S. Cho and D.T. Huynh, The parallel complexity of finite-state automata problems. Inform.
Comput. 97 (1992) 1–22.

[2] M. Hirvensalo and S. Seibert, Lower bounds for Las Vegas automata by information theory.
RAIRO-Inf. Theor. Appl. 37 (2003) 39–49.

[3] J.E. Hopcroft, An n log n algorithm for minimizing the states in a finite automaton, in The
Theory of Machines and Computations, edited by Z. Kohavi. Academic Press, New York
(1971) 171–179.
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