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UNDECIDABILITY OF INFINITE POST
CORRESPONDENCE PROBLEM FOR INSTANCES

OF SIZE 9

Vesa Halava1 and Tero Harju1

Abstract. In the infinite Post Correspondence Problem an instance
(h, g) consists of two morphisms h and g, and the problem is to deter-
mine whether or not there exists an infinite word ω such that h(ω) =
g(ω). This problem was shown to be undecidable by Ruohonen (1985)
in general. Recently Blondel and Canterini (Theory Comput. Syst.
36 (2003) 231–245) showed that this problem is undecidable for do-
main alphabets of size 105. Here we give a proof that the infinite Post
Correspondence Problem is undecidable for instances where the mor-
phisms have domains of 9 letters. The proof uses a recent result of
Matiyasevich and Sénizergues and a modification of a result of Claus.
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1. Introduction

An instance of the Post Correspondence Problem (PCP, for short), consists of
two morphisms h, g : A∗ → B∗, where A and B are (finite) alphabets. In the
Post Correspondence Problem it is asked whether or not an instance (h, g) has a
solution w, i.e., a nonempty word w ∈ A∗ such that h(w) = g(w). The size of the
instance (h, g) is defined to be the cardinality |A| of its domain alphabet A.

It is well known that the PCP is undecidable in its general form; see Post [10].
The borderline between decidable and undecidable sets of instances has been inves-
tigated in several occasions by restricting the instances of the PCP. For example,
it is an easy exercise to show that the unary PCP, where the domain alphabet has
only one letter, is decidable. An instance (h, g) of size two is said to be binary.
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It was proved in [3] that the PCP is decidable for binary instances; see also [5] for a
somewhat simpler proof. On the other hand, the PCP is undecidable for instances
with domain alphabets A satisfying |A| ≥ 7; Matiyasevich and Sénizergues [9].

In this paper we shall consider infinite solutions of the instances (h, g). Two
(finite) words u and v are said to be comparable, if one is a prefix of the other. Let
ω = a1a2 · · · be an infinite word over A where ai ∈ A for each index i = 1, 2, · · ·
Note that h(ω) = g(ω) if the morphisms h and g agree on ω, that is, if h(u) and
g(u) are comparable for all finite prefixes u of ω. We also say that such an infinite
word ω is an infinite solution of the instance I = (h, g).

The problem whether or not a given instance of the PCP has an infinite solu-
tion is called naturally the infinite PCP, or ωPCP, for short. It was shown by
Ruohonen [11] that there is no algorithm to determine whether a general instance
of the PCP has an infinite solution. It was proved by Blondel and Canterini [1]
using undecidability of the halting problem of the Turing machine that the ωPCP
is undecidable for instances of size 105.

It was proved in [4] that the ωPCP is decidable for marked instances of the PCP.
Later, using the previous result, it was shown in [6] that the ωPCP is decidable
for all binary instances.

In this paper we shall prove that the ωPCP is undecidable for instance of size 9.
Our proof rests on a result of Matiyasevich and Sénizergues [9], which states that
there exists a 3-rule semi–Thue system with undecidable termination problem.
From that, by modifying a construction of Claus [2], we obtain the desired result.
We also prove that it is undecidable for instances of size 6, whether they have
non-ultimately periodic infinite solution.

We shall now fix some notation. Let A be an alphabet. For a set K ⊆ A+ of
finite words, let

Kω = {w1w2 · · · | wi ∈ K for all i ≥ 1}
be the set of all infinite concatenations of words from K. For a singleton set
K = {w}, we let wω denote {w}ω. In particular, Aω consists of all (one-way)
infinite words a1a2 · · · over the alphabet A. An infinite word ω ∈ Aω is called
ultimately periodic, if it can be written in the form ω = uvω for some finite words
u and v.

The empty word is denoted by ε. A word u ∈ A∗ is said to be a prefix of a word
v ∈ A∗, denoted by u ≤ v, if v = uw for some w ∈ A∗.

2. Semi–Thue systems

A semi–Thue system T = (Σ, R) consists of an alphabet Σ = {a1, a2, . . . , an}
and a relation R ⊆ Σ∗ × Σ∗, the elements of which are called the rules of T . For
two words u, v ∈ Σ∗, we write u −→T v, if there are words u1 and u2 such that

u = u1xu2 and v = u1yu2 where (x, y) ∈ R.
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Let −→∗
T be the reflexive and transitive closure of the relation →. Therefore, we

have u −→∗
T v if and only if either u = v or there exists a finite sequence of words

u = v1, v2, . . . , vn = v such that vi −→T vi+1 for each i = 1, 2, . . . , n − 1.
The word problem for a semi–Thue system T = (Σ, R) is stated as follows: given

two words w1, w2 ∈ Σ∗ determine whether or not w1 −→∗
T w2 holds in T . In the

individual word problem we are given a fixed word w0 and we ask, for input words
w, whether or not w −→∗

T w0 holds.
Let w0 ∈ Σ∗ be a word, and T = (Σ, R) a semi–Thue system. If there does

not exist any infinite sequences of words w1, w2, . . . such that wi −→T wi+1 for
all i ≥ 0, then we say that T terminates on w0. Thus T terminates on w0 if all
derivations starting from w0 are of finite length. In the termination problem we
are given a word w0 and a semi–Thue system T and it is asked whether or not T
terminates on w0.

The following remarkable results were proved in [9].

Theorem 1. There exists 3–rule semi–Thue system with undecidable individual
word problem and there exists 3–rule semi–Thue system with undecidable termi-
nation problem.

3. Bounds for ωPCP

The next Theorem for the general Post Correspondence Problem is due to
Claus [2].

Theorem 2. If there is a semi–Thue system with n rules having an undecidable
word problem, then the PCP is undecidable for instances of size n + 4.

We shall now recall the construction of Claus, because it gives a nice partial
result for undecidability of the ωPCP(see also [7, 8]). Let T = (Σ, R) be a semi–
Thue system. Note first that we may assume that Σ is binary. Indeed, for Σ =
{a1, a2, . . . , ak}, define a coding ϕ : Σ∗ → {a, b}∗ with ϕ(ai) = abia for all i.
Then let R′ = {(ϕ(u), ϕ(v)) | (u, v) ∈ R} be a new set of rules, and define T ′ =
({a, b}, R′). It is immediate that w −→T w′ in T if and only if ϕ(w) −→T ′ ϕ(w′) in
T ′. It follows that if T has undecidable (individual) word problem or termination
problem, then so does the semi–Thue system T ′.

Next we define two special morphisms. For any alphabet Y and a nonempty
word s ∈ Z∗, let �s, rs : Y ∗ → (Y ∪ {s})∗ be the left and right desynchronizing
morphisms defined by

�s(a) = sa and rs(a) = as

for all letters a ∈ Y . Notice that for all words w, we have �s(w) · s = s · rs(w).
Later, we shall mostly use these morphisms for a single letter s = d or its second
power s = d2.

Assume that T = ({a, b} , R) is a semi–Thue system, where R = {t1, t2, . . . , tn}
such that ti = (ui, vi). We may suppose without restriction that the rules ti ∈ R
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are encoded with ϕ, i.e., ui, vi ∈ (abb∗a)∗. In the following we shall consider R
also an alphabet. Let f = aa be a special word used as marker. Note that aa is
not an image of ϕ.

Let u, v ∈ {a, b}∗ be two given words. We define morphisms

h, g : ({a, b, d, e} ∪ R)∗ → {a, b, d, e}∗

by

h(x) = �d(x), g(x) = rd(x), for x ∈ {a, b} ,

h(ti) = �d(vi), g(ti) = rd(ui), for ti ∈ R,

h(d) = �d(uf), g(d) = d,

h(e) = de, g(e) = r(fv)e.

It can be proved, see e.g. [2] or [7], that the solutions (if exist) of (h, g) are
necessarily of the form

dw1fw2f · · · fwme,

where each wi has the form

wi = xi0 ti1xi1ti2 · · · tpixpi (1)

for some words xij not containing letters from R. Moreover, we have wi −→∗
T wi+1

for i = 1, 2, . . . , m − 1. Note that it is possible that pi = 0, in which case wi

contains no letters from R.
For decision problems concerning infinite solutions, the construction of Claus

is not directly useful. Indeed, the instances defined above have trivial infinite
solutions, for example, d(uf)ω is always an infinite solution. Still, we are able to
prove

Lemma 1. If the termination problem is undecidable for n-rule semi–Thue sys-
tem, then it is undecidable for instances of the PCP size n+3 whether or not there
exists an infinite solution that is not ultimately periodic.

Proof. Let T = ({a, b} , R) be a n-rule semi–Thue system with undecidable termi-
nation problem provided by Theorem 1, and let the rules in T be ti = (ui, vi) for
i = 1, 2, . . . , n. Let u be the input word. Define the instance (h, g) as above except
that the letter e is omitted, i.e., h, g : ({a, b, d} ∪ R)∗ → {a, b, d}∗. We need to
prove that there is an infinite derivation in T starting from u if and only if (h, g)
has an infinite solution that is not ultimately periodic.

Assume first that there is an infinite derivation

u = w1 −→T w2 −→T · · · ,

where u = w1 = x1ui1y1 and wj = xj−1vij−1yj−1 = xjuij yj for all j ≥ 2. By the
construction of the morphisms h and g, we have that h(xjtij yj) = �d(wj+1) and



UNDECIDABILITY OF ωPCP FOR INSTANCES OF SIZE 9 555

g(xjtij yj) = rd(wj), and this gives us an infinite solution

ω = dx1ti1y1fx2ti2y2f · · · (2)

of the instance (h, g). If ω is not ultimately periodic, we are done. Therefore,
assume that ω is ultimately periodic. Notice that for all w ∈ {a, b, d}∗, we have
h(w) = �d(w) and g(w) = rd(w). Therefore we can define a new infinite solution by

ω′ = d(w1f)x1ti1y1f(w2f)2x2ti2y2f(w3f)3 · · ·

which is not ultimately periodic for any ω, since the words wi ∈ {a, b, d}∗ do not
contain letters from R.

In the other direction, assume that there is a non-ultimately periodic infinite
solution ω of the instance (h, g). Then, necessarily ω = dw1fw2f · · · , where each
wi is as in (1). Since ω is not ultimately periodic, the set I = {i | pi > 1 for wi}
is infinite. Indeed, if I is finite and z = max I, then clearly wi = wz+1 for all
i ≥ z + 1, which makes ω ultimately periodic; a contradiction. It is obvious that
infinite I yields an infinite derivation for u in T .

Since the termination problem is undecidable for T , we conclude that the ex-
istence of non-ultimately periodic solutions to instances (h, g) is also undecid-
able. �

With Theorem 1, the previous lemma yields a nice corollary.

Corollary 1. It is undecidable for an instance I of size 6 of the PCP whether or
not I has an infinite solution that is not ultimately periodic.

Next we shall now prove our main result. In the previous construction of the
instance (h, g), the problem is the existence of trivial infinite solutions. We need
to redefine h and g so that in each infinite solution there will be a letter from R
between every two occurrences of the special word f . For this, we need a two more
letters in the domain alphabet.

Lemma 2. If the termination problem is undecidable for a semi–Thue system T
with n rules, then the ωPCP is undecidable for instances of size n + 6.

Proof. Let again T = ({a, b} , R) be a n-rule semi–Thue system with undecidable
termination problem provided by Theorem 1, and let the rules in T be ti = (ui, vi)
for i = 1, 2, . . . , n. We can assume that the rules ti are encoded with ϕ. Let u be
the input word.

The domain alphabet of our instance will be A = {a1, a2, b1, b2, d, #}∪R, where
d is for begin and synchronization and # is special separator of the words in a
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derivation. Define the morphisms h, g : A∗ → {a, b, d, #}∗ by

h(x1) = dxd, g(x1) = xdd, for x ∈ {a, b} ,

h(x2) = ddx, g(x2) = xdd, for x ∈ {a, b} ,

h(ti) = d−1�d2(vi), g(ti) = rd2(ui), for ti ∈ R,

h(d) = �d2(u)dd#d, g(d) = dd,

h(#) = dd#d, g(#) = #dd.

In the special case, where vi = ε, we define h(ti) = d.
Each infinite solution of (h, g) is of the form

dw1#w2#w3# · · · , (3)

where
wj = xjtij yj (4)

for some tij ∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j. Indeed, the image
g(w) is always of the form rd2(v), and therefore, by the form of h, between two
separators # there must occur exactly one letter t ∈ R. Also, the separator # must
be followed by words in {a1, b1}∗ before the next occurrence of a letter t ∈ R. By
the form of h(t) the following word before next separator must be in {a2, b2}∗. The
form (3) follows when we observe that there must be infinitely many separators
# in each infinite solution. Indeed, all solutions begin with a d, and there is one
occurrence # in h(d) and no occurrences of # in g(d). Later each occurrences of
# is produced from # by both g and h. Therefore there are infinitely many letters
# in each infinite solution.

Define a mapping α : {a1a2, b1, b2, d}∗ → {a, b}∗ which removes the indices and
the letters d, i.e., α(zi) = z for all z ∈ {a, b}, and α(d) = ε. For wj from
(4), we have α(g(wj)) = α(xj)uij α(yj) and α(h(wj)) = α(xj)vij α(yj). Since
the morphism h runs ahead of g, necessarily α(g(wj)) = α(h(wj−1) for j ≥ 2 and
α(g(dw1)) = u = α(h(d))#−1. Let then ui = α(g(wi)). Now, it is easy to conclude
that (h, g) has an infinite solution (3) if and only if

u = u1 −→ u2 −→ u3 −→ . . . ,

which proves the claim. �

Theorem 1 and Lemma 2 yield our main result,

Corollary 2. It is undecidable whether or not an instance of size 9 of the PCP
has an infinite solution.

Note that it is not known whether the ωPCP is undecidable for instance of size
3 ≤ n ≤ 8.

Finally, we note that in Theorem 4.1 of [1] it was proved that if the ωPCP
is undecidable for instances of size n, then the isolation threshold problem for
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the probalistic finite automata with two letters and 4n states and the isolated
threshold existence problem for probalistic finite automata with two letters and
22n+44 states, are undecidable (for definitions, see [1]). It follows from Corollary 2
the these problems are undecidable for 36 and 242 states, respectively. The bounds
proven in [1] were 420 and 2354 states.
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