
RAIRO-Inf. Theor. Appl. 41 (2007) 157–175

DOI: 10.1051/ita:2007013

SEQUENTIAL MONOTONICITY FOR RESTARTING
AUTOMATA ∗

Tomasz Jurdziński
1

and Friedrich Otto
2

Abstract. As already 2-monotone R-automata accept NP-complete
languages, we introduce a restricted variant of j-monotonicity for re-
starting automata, called sequential j-monotonicity. For restarting au-
tomata without auxiliary symbols, this restricted variant still yields
infinite hierarchies. However, for restarting automata with auxiliary
symbols, all degrees of sequential monotonicity collapse to the first
level, implying that RLWW-automata that are sequentially monotone
of degree j for any j ≥ 1 only accept context-free languages.

Mathematics Subject Classification. 68Q45.

1. Introduction

Analysis by reduction is a technique used in linguistics to analyse sentences of
natural languages. It consists of a stepwise simplification of a given sentence so
that the (in)correctness of the sentence is not affected. Restarting automata were
introduced by Jancar et al. as a theoretical model for the analysis by reduction [5].
These automata can do a bottom-up syntactic analysis for natural languages as
well as for formal languages. The notions developed during the study of restarting
automata give a rich taxonomy of constraints for various models of analysers [12].
Already several programs used in Czech and German (corpus) linguistics are based
on the idea of restarting automata [11, 16].

Keywords and phrases. Restarting automaton, sequential monotonicity, hierarchies.

∗ This work was supported by a grant from the Deutsche Forschungsgemeinschaft. It was
mainly performed while Tomasz Jurdziński was visiting the University of Kassel. The results
have been announced at ITAT 2004, which was organized by the Department of Computer
Science of Pavol Jozef Šafárik University, Košice, at Popradské Pleso, September 2004.
1 Institute of Computer Science, University of Wroc�law, 51-151 Wroc�law, Poland;
tju@ii.uni.wroc.pl
2 Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany;
otto@theory.informatik.uni-kassel.de

c© EDP Sciences 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2007013

http://www.edpsciences.org
http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2007013

158 T. JURDZIŃKI AND F. OTTO

A (two-way) restarting automaton, RLWW-automaton for short, is a device M
that consists of a finite-state control, a flexible tape containing a word delimited
by the sentinels c and $, and a read/write window of a fixed size. This window is
moved along the tape by performing move-right and move-left instructions until
the control decides (nondeterministically) that the content of the window should
be rewritten by some shorter string, in this way shortening the tape. In general,
through a rewrite operation auxiliary (that is, non-input) symbols may be intro-
duced into the tape content. After a rewrite, M can continue to move its window
until it either halts and accepts, or halts and rejects, or restarts, that is, it places
its window over the left end of the tape, reenters the initial state, and continues
with the computation. Thus, each computation of M can be described through a
sequence of cycles.

In addition to this general model, various restricted versions of the restarting
automaton have been considered. First of all there is the RRWW-automaton,
which is the one-way variant of the RLWW-automaton, as it does not use the
move-left instruction. Then there is the RWW-automaton, which is an RRWW-
automaton that is required to perform a restart immediately after executing a
rewrite operation. Thus, in each cycle an RWW-automaton only sees the part of
the tape between the left sentinel c and the position where the rewrite step is
performed. Then there is the RLW-automaton, which only uses the letters of the
input alphabet in its rewrite operations. A further restriction leads to the RL-
automaton, where each rewrite operation is actually just a delete operation, that
is, during each rewrite operation some letters from the content of the read/write
window are simply deleted. Obviously the restrictions on the restart operation
and the restrictions on the rewrite operation can be combined, which yields the
R(R)W-automaton and the R(R)-automaton.

Also a monotonicity property was introduced for the various types of restarting
automata which is based on the idea that from one cycle to the next in a computa-
tion, the actual place where a rewrite operation is performed must not increase its
distance from the right end of the tape. Monotone restarting automata essentially
model bottom-up one-pass parsers. It was shown that monotone RWW-, RRWW-,
and RLWW-automata characterize the class CFL of context-free languages, and
that the monotone version of the deterministic R(R)(W)(W)-automaton charac-
terizes the class DCFL of deterministic context-free languages [6]. Thus, monotone
restarting automata do not have sufficient expressive power to capture all aspects
of the analysis by reduction of natural languages. On the other hand, general
RLWW-automata even accept some NP-complete languages [7, 10], which means
that they cannot be implemented efficiently.

Therefore, the notion of j-monotonicity (j ≥ 1) was introduced in [14, 15] as a
generalization of the notion of monotonicity. This notion models the generalization
from bottom-up one-pass parsers to bottom-up multi-pass parsers, and it allows us
to measure the level of non-monotonicity of a language. Further, this new notion
seems to be much better suited to the real task of modelling analysis by reduction.
A restarting automaton is called j-monotone for an integer j ≥ 1 if, for each of
its computations, the corresponding sequence of cycles can be partitioned into at

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 159

most j (in general interleaving) subsequences that are each monotone (see Sect. 2
for exact definitions). It is shown in [15] that the expressive power of j-monotone
RRW-automata increases with the value of the parameter j.

Unfortunately, it turned out that already 2-monotone R-automata accept NP-
complete languages [8]. This fact means in particular that one should not expect
that there exist efficient general algorithms for recognizing languages defined by
j-monotone restarting automata. Therefore a different generalization of the notion
of monotonicity is needed to capture the phenomena of natural languages.

Here we introduce an alternative generalization of monotonicity, called sequen-
tial j-monotonicity, which is a restricted variant of the notion of j-monotonicity. It
differs from the ‘classical’ notion of j-monotonicity in that the (i+1)-st monotone
subsequence only starts after the last cycle of the i-th monotone subsequence. In
other words, it is not allowed that the j monotone subsequences interleave. Se-
quential j-monotonicity is a much more natural generalization of monotonicity
than j-monotonicity, and as such it is an interesting notion.

After giving the necessary definitions in Section 2, we study the expressive
power of sequentially j-monotone automata without auxiliary symbols. We show
in Section 3 that there exist strict infinite hierarchies with respect to the level of
sequential monotonicity for all variants of nondeterministic restarting automata
without auxiliary symbols. Then we investigate restarting automata with auxiliary
symbols in Section 4. We show that all degrees of sequential monotonicity collapse
to the first level in this case, implying that such automata accept only context-
free languages. On the one hand this fact ensures the existence of polynomial
time recognition algorithms for all languages defined by sequentially j-monotone
automata. On the other hand this result is somewhat ‘frustrating’, as it shows that
the expressive power of sequentially j-monotone restarting automata is severely
limited. However, this result can be seen as another example of the ‘expressibil-
ity’ of the family of languages defined by context-free grammars, as sequentially
j-monotone restarting automata are in some respects a much less restricted ma-
chine model than pushdown automata. In fact, sequential j-monotonicity may be
expressed intuitively as a possibility to ‘reuse’ the pushdown store j times.

In Section 5 we consider sequential j-monotonicity for deterministic restart-
ing automata. For automata that are not allowed to perform move-left transi-
tions, all levels of sequential j-monotonicity collapse to the first level, which is
an immediate consequence of the corresponding result for the ‘classical’ notion of
j-monotonicity. On the other hand, we obtain an infinite hierarchy for determin-
istic restarting automata without auxiliary symbols that are allowed to perform
move-left transitions.

2. Definitions and notation

We start by restating in short the definition of the various models of the restart-
ing automaton that will be considered in this paper. For more details concerning
the notions introduced we refer to [12, 13].

160 T. JURDZIŃKI AND F. OTTO

A two-way restarting automaton, RLWW-automaton for short, is a one-tape
machine that is described by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ), where Q is a
finite set of states, Σ is a finite input alphabet, and Γ is a finite tape alphabet
containing Σ, where the letters in Γ � Σ are called auxiliary symbols. Further, the
symbols c, $ �∈ Γ serve as markers for the left and right border of the work space,
respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window,
and δ is the transition relation that assigns a finite set of transitions to each pair
(q, u) consisting of a state q ∈ Q and a possible content u of the read/write window.
There are five different types of transition steps:

1. A move-right step is of the form (q′, MVR) ∈ δ(q, u), where q′ ∈ Q and
u �= $. If M is in state q and sees the string u in its read/write window,
then this move-right step causes M to shift the read/write window one
position to the right and to enter state q′. However, if the content u of
the read/write window is just the symbol $, then no shift to the right is
possible.

2. A move-left step is of the form (q′, MVL) ∈ δ(q, u), where q′ ∈ Q and u
does not start with the symbol c. It causes M to shift the read/write
window one position to the left and to enter state q′.

3. A rewrite step is of the form (q′, v) ∈ δ(q, u), where q′ ∈ Q, u �= $, and
v is a string such that |v| < |u|. It causes M to replace the content u of
the read/write window by the string v, thereby shortening the tape, and
to enter state q′. Further, the read/write window is placed immediately
to the right of the string v. However, some additional restrictions apply
in that the border markers c and $ must not disappear from the tape nor
can new occurrences of these markers be created. Further, the read/write
window must not move across the right border marker $, that is, if the
string u ends in $, then so does the string v, and after performing the
rewrite operation, the read/write window is placed on the $-symbol.

4. A restart step is of the form Restart ∈ δ(q, u). It causes M to place its
read/write window over the left end of the tape, so that the first symbol
it sees is the left border marker c, and to reenter the initial state q0.

5. An accept step is of the form Accept ∈ δ(q, u). It causes M to halt and
accept.

If δ(q, u) = ∅ for a pair (q, u), then M necessarily halts, and we say that M rejects
in this situation. In addition, the transition relation must satisfy the requirement
that, ignoring move-right and move-left steps for the moment, rewrite operations
and restart steps alternate in every computation, with a rewrite operation coming
first.

A configuration of M is a string αqβ, where q ∈ Q∪{Accept}, and either α = ε
and β ∈ {c} ·Γ∗ · {$} or α ∈ {c} ·Γ∗ and β ∈ Γ∗ · {$}; here q represents the current
state (or the fact that M has accepted), αβ is the current content of the tape,
and it is understood that the read/write window contains the first k symbols of β
or all of β when |β| ≤ k. A restarting configuration is of the form q0cw$, where

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 161

w ∈ Γ∗; if w ∈ Σ∗, then q0cw$ is an initial configuration. A halting configuration
is a configuration αqβ in which M cannot perform any transition; it is called
accepting, if q = Accept, otherwise it is called rejecting.

In general, the automaton M is nondeterministic, that is, there can be two or
more instructions with the same left-hand side (q, u), and thus, there can be more
than one computation for an input word. If that is not the case, the automaton
is deterministic. We will use the prefix det- to denote classes of deterministic
restarting automata.

We observe that any finite computation of a two-way restarting automaton M
consists of certain phases. A phase, called a cycle, starts in a restarting configura-
tion, the head moves along the tape performing MVR operations, MVL operations,
and a single Rewrite operation until a Restart operation is performed and thus a
new restarting configuration is reached. If no further Restart operation is per-
formed, any finite computation necessarily finishes in a halting configuration –
such a phase is called a tail. As each cycle contains an application of a Rewrite
operation, each new phase starts on a shorter word than the previous one. We
use the notation u �c

M v to denote a cycle of M that begins with the restarting
configuration q0cu$ and ends with the restarting configuration q0cv$; the relation
�c∗

M is the reflexive and transitive closure of �c
M . Thus, �c

M can be seen as the
single-step rewrite relation induced by M , and �c∗

M is the corresponding rewrite
relation.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0cw$, finishes by executing an Accept in-
struction. By L(M) we denote the language consisting of all words accepted by M ;
we say that M accepts (recognizes) the language L(M).

We will also consider some restricted types of restarting automata. An RRWW-
automaton is an RLWW-automaton that does not use any MVL operations, and
an RWW-automaton is an RRWW-automaton for which each Rewrite step is im-
mediately followed by a Restart step. Further, an RLW-automaton is an RLWW-
automaton without auxiliary symbols, and an RL-automaton is an RLW-automaton
for which each rewrite operation (q′, v) ∈ δ(q, u) satisfies the restriction that v is a
(scattered) subword of u, that is, u is rewritten into v by simply deleting some of
the letters of u. Obviously, the restrictions on the Rewrite operations and those on
the movement of the read/write window can be combined, which yields the RRW-,
RW-, RR-, and R-automaton.

Each cycle C of a computation of a restarting automaton contains a unique con-
figuration αqβ in which a Rewrite instruction is applied. Then |β| is the right dis-
tance of C, denoted by Dr(C), and |α| is the left distance of C, denoted by Dl(C).

We say that a sequence of cycles Sq = (C1, C2, · · · , Cn) is monotone (or right-
monotone) if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn). A computation is monotone
if the corresponding sequence of cycles is monotone. Observe that the tail of the
computation does not play any role here. An RLWW-automaton is called monotone
if all its computations that start with an initial configuration are monotone. The
prefix mon- will be used to denote the corresponding classes of restarting automata.

162 T. JURDZIŃKI AND F. OTTO

Let j be a positive integer. A sequence of cycles (C1, C2, . . . , Cn) of a restarting
automaton is called j-monotone if it can be partitioned into j interleaved subse-
quences that are all monotone [14,15]. Accordingly, a computation is j-monotone
if the corresponding sequence of cycles is j-monotone, and an RLWW-automaton
is j-monotone if all its computations that start with an initial configuration are
j-monotone. It has been shown that with the value of the parameter j the ex-
pressive power of j-monotone RRW-automata increases [15]. On the other hand,
already 2-monotone R-automata accept NP-complete languages [8], which implies
that these automata are already too powerful to admit an efficient implementation.
Therefore, we introduce the following weaker notion of j-monotonicity.

Let j be a positive integer. A sequence of cycles (C1, C2, . . . , Cn) of a restarting
automaton is called sequentially j-monotone if there exist indices 0 = p0 < p1 <
· · · < pj = n such that the subsequence (Cpi−1+1, Cpi−1+2, . . . , Cpi) is monotone
for each i = 1, . . . , j. Observe that here the j monotone subsequences follow
sequentially one after the other, while for the general notion of j-monotonicity it
is allowed that the j subsequences interleave. A restarting automaton is called
sequentially j-monotone if each of its computations that starts with an initial
configuration is sequentially j′-monotone for some j′ ≤ j. We will use the prefix
j-s-mon- to denote classes of sequentially j-monotone restarting automata.

For integers i, j, where 0 ≤ i ≤ j, we use [i, j] to denote the set of integers
{i, i + 1, . . . , j}, and we take σ≥n := {σi | i ≥ n}, where σ is a word. Also we will
identify regular expressions with the regular languages defined by them.

3. Nondeterministic restarting automata

without auxiliary symbols

In this section we show that for nondeterministic restarting automata with-
out auxiliary symbols, sequential (j + 1)-monotonicity is more expressive than
sequential j-monotonicity. For proving this result we present a family of example
languages Lj (j ≥ 1). To define these languages we first introduce a function
ϑ : (

⋃
p≥1 N

2p
+) → {0, 1} that is defined inductively as follows:

For n, m ∈ N+, ϑ(n, m) :=
{

1 if n = m
0 if n �= m

}
, and for n, m, r1, . . . , r2p ∈ N+,

ϑ(n, m, r1, . . . , r2p) :=

⎧⎨
⎩

1 if n = m and ϑ(r1, . . . , r2p) = 1
or n > 2m and ϑ(r1, . . . , r2p) = 0,

0 otherwise.

The following observations on ϑ will be useful. They follow easily from the above
definition.

Lemma 3.1. Let j ≥ 2 and n1, m1, . . . , nj , mj ∈ N+.
(a) For 0 < i < j, if ni �= mi and ni ≤ 2mi, then ϑ(ni, mi, . . . , nj, mj) = 0.
(b) If ϑ(ni, mi, . . . , nj, mj) = 0 for some i satisfying 0 < i ≤ j, and if nl ≤ 2ml

for each l < i, then ϑ(n1, m1, . . . , nj, mj) = 0.

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 163

Now, for each integer j ≥ 1, the language Lj on Σ := {a, b} is defined as

Lj := { an1bm1 · · · anj bmj | ϑ(n1, m1, . . . , nj, mj) = 1 }.

For each 1 ≤ i < j, the value of ϑ(ni+1, mi+1, . . . , nj , mj) determines which com-
parison between ani and bmi is to be made. As we will see below, this will force the
degree of sequential monotonicity for an RLW-automaton for Lj to be at least j.
First, however, we show that the language Lj is accepted by a deterministic RL-
automaton that is sequentially j-monotone.

Proposition 3.2. For each j ≥ 1, Lj ∈ L(det-j-s-mon-RL).

Proof. The language Lj is accepted by a deterministic j-s-mon-RL-automaton M
that works as follows. If the word on the tape does not belong to (a+b+)j , it is
rejected immediately. For a word of the form (a+b+)j , we call the factors from
a+b+ blocks. Let an1bm1 · · · anj bmj be the given input. First M determines the
last block anibmi for which mi > 1 and ni > 2 hold. This M can do by first
moving its read/write window all the way to the right delimiter $, and by then
moving it back across all those blocks anlbml for which ml = 1 or nl ≤ 2 holds.
If i = j, then M removes a factor ab from this block and restarts. Otherwise, M
can obviously compute the value of ϑ(ni+1, mi+1, . . . , nj , mj) in its finite control
while moving its read/write window to the left.

If ϑ(ni+1, mi+1, . . . , nj , mj) = 1, then M removes a factor ab from the i-th
block, otherwise, M removes a factor a2b from that block. In each case M restarts
after performing the rewrite operation.

In this way the tape content is reduced until all blocks satisfy mi = 1 or ni ≤ 2.
Now M accepts if and only if ϑ(n1, m1, . . . , nj , mj) = 1 holds. It follows easily
that L(M) = Lj . As M processes the input block by block from right to left, each
computation of M consists of (at most) j monotone subsequences that follow one
after the other. Hence, M is sequentially j-monotone. �

For each RL-automaton, there exists a (nondeterministic) RR-automaton that
accepts the same language and that executes exactly the same cycles ([9], Prop. 2.4).
Hence, the proposition above has the following immediate consequence.

Corollary 3.3. For each j ≥ 1, Lj ∈ L(j-s-mon-RR).

Below we will see that, for j ≥ 2, the language Lj is not accepted by any
sequentially (j − 1)-monotone RLW-automaton. For proving this negative result
we need the following pumping lemma for restarting automata (see, e.g., [13]).

164 T. JURDZIŃKI AND F. OTTO

Proposition 3.4 (Pumping Lemma). For each RLWW-automaton M = (Q, Σ, Γ,
c, $, q0, k, δ), there exists a constant p > max{k, |Q|} such that the following holds.
Assume that uvw �c

M uv′w, where u = u1u2u3 and |u2| = p. Then there exists a
factorization u2 = z1z2z3 such that z2 is non-empty, and

u1z1(z2)iz3u3vw �c
M u1z1(z2)iz3u3v

′w

holds for all i > 0, that is, z2 is a ‘pumping factor’ in the above cycle. Similarly,
such a pumping factor can be found in any factor of length p of w. Such a pumping
factor can also be found in any factor of length p of a word accepted in a tail
computation.

Now we are ready to establish the following result announced above.

Proposition 3.5. For each j ≥ 2, Lj �∈ L((j − 1)-s-mon-RLW).

Proof. Let M = (Q, Σ, Σ, c, $, q0, k, δ) be an RLW-automaton for Lj, let p be the
constant for M from the Pumping Lemma, and let r := p!. We say that the i-th
block of a word of the form an1bm1 · · ·anj bmj is short if ni < 3r or mi < 3r holds.

Claim 1. Let an1bm1 · · ·anj bmj �c
M an′

1bm′
1 · · · an′

j bm′
j be a cycle of a computation

of the RLW-automaton M . Then, for each α1, . . . , αj , β1, . . . , βj ∈ N, the cycle

an1+α1rbm1+β1r · · ·anj+αjrbmj+βjr �c
M an′

1+α1rbm′
1+β1r · · · an′

j+αjrbm′
j+βjr

is also part of a computation of M , provided that αi = βi = 0 for each i for which
the i-th block in an1bm1 · · · anj bmj is short.

Proof of Claim 1. We can apply pumping to each a-syllable and each b-syllable
that is longer than 2r. As r is divisible by the length of any resulting pumping
factor, the result follows. �

A word (anbn)j is called a basic input if n is a multiple of r and n ≥ 3r. Note
that each basic input belongs to Lj, and that none of its blocks is short.

Claim 2. Let anbn · · ·anbn �c∗
M an′

1bm′
1 · · · an′

j bm′
j be an initial segment of an

accepting computation of M on the basic input w = (anbn)j ∈ Lj, and let i ∈
[1, j]. If the i-th block is not short in any of the configurations during the above
computation, then

(a) during this computation no rewrite step is applied to any of the first i− 1
blocks, that is, n′

t = m′
t = n for each t < i;

(b) n′
i = m′

i ≥ 3r, and each rewrite step that is applied during this computa-
tion to the i-th block is of the form asbs → as−tbs−t for some k > s ≥ t > 0.

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 165

Proof of Claim 2. This claim is proved by contradiction. So assume that it is
not true for some n ≥ 3r that is a multiple of r and some i ∈ [1, j], and let
an′

1bm′
1 · · ·an′

j bm′
j be the first configuration that contradicts this claim, that is,

• n′
l �= n or m′

l �= n for some l < i, or
• n′

i �= m′
i, or

• some rewrite step that changes one of the first i blocks is not of the form
asbs → as−tbs−t for some k > s ≥ t > 0.

Observe that the third condition implies that also one of the first two conditions
is satisfied. Hence, we concentrate only on the first two conditions.

According to our choice of an′
1bm′

1 · · · an′
j bm′

j , the computation considered ends
with a cycle of the form

an′′
1 bm′′

1 · · ·an′′
j bm′′

j �c
M an′

1bm′
1 · · ·an′

j bm′
j ,

where n′′
t = m′′

t = n for all t ∈ [1, i − 1] and n′′
i = m′′

i ≥ 3r. By analysing this
cycle in detail, we will derive the intended contradiction.

Let us note for future reference that, for each s ≤ i,

n′
s < 2m′

s (1)

holds. Indeed, a rewrite operation can only change a factor of length at most k,
and as k < r and m′

s ≥ 3r, we see that

n′
s ≤ n′′

s + k = m′′
s + k ≤ (m′

s + k) + k < 2m′
s.

To complete the proof of Claim 2, we now distinguish two cases.

Case 1. n′
t �= m′

t for some t ≤ i. Then from Lemma 3.1 and condition (1) we see
that an′

1bm′
1 · · · an′

j bm′
j �∈ Lj . This contradicts the fact that we are dealing with an

initial segment of an accepting computation of M .

Case 2. n′
t = m′

t for each t ≤ i, but n′
l = m′

l �= n for some l < i. Let l be the
minimal index for which n′

l �= n. As n′′
l = m′′

l = n, it follows that the rewrite
operation that is executed in the cycle

an′′
1 bm′′

1 · · · an′′
j bm′′

j �c
M an′

1bm′
1 · · · an′

j bm′
j

has the form asbs → as−ubs−u for some integers s and u satisfying k > s ≥ u > 0,
and that it is applied to the center of the l-th block. Thus, we have the following
equalities and inequalities:

n′
l = m′

l = n′′
l − u = n − u,

n′
i = m′

i = n′′
i = m′′

i ≥ 3r, and
n′

t = m′
t = n ≥ 3r for each t ∈ [1, i − 1] � {l}.

166 T. JURDZIŃKI AND F. OTTO

Now we define a word v̄ := an̄1bm̄1 · · · an̄j bm̄j that differs from an′′
1 am′′

1 · · ·an′′
j am′′

j

only in the l-th and the i-th blocks as follows:

(n̄t, m̄t) :=

⎧⎪⎪⎨
⎪⎪⎩

(n′′
t , m′′

t) for t > i
(n′′

t , m′′
t) for i > t �= l

(n′′
t , m′′

t + r) for t = i
(n′′

t + n, m′′
t) for t = l

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

(n′′
t , m′′

t) for t > i,
(n, n) for i > t �= l,
(n′′

t , n′′
t + r) for t = i,

(2n, n) for t = l.

As n̄i �= m̄i and n̄i ≤ 2m̄i, and as n̄t ≤ 2m̄t for each t < i, Lemma 3.1 im-
plies that v̄ �∈ Lj. On the other hand, from Claim 1 we see that v̄ �c v̂, where
v̂ := an̂1bm̂1 · · · an̂j bm̂j is defined as follows:

(n̂t, m̂t) :=

⎧⎪⎪⎨
⎪⎪⎩

(n′
t, m

′
t) for t > i

(n′
t, m

′
t) for i > t �= l

(n′
t, m

′
t + r) for t = i

(n′
t + n, m′

t) for t = l

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

(n′
t, m

′
t) for t > i,

(n, n) for i > t �= l,
(n′′

t , n′′
t + r) for t = i,

(2n − u, n − u) for t = l.

Observe that n̂i �= m̂i and n̂i ≤ 2m̂i. Hence, we obtain ϑ(n̂i, m̂i, . . . , n̂j , m̂j) = 0.
Now the facts that n̂l = 2n−u > 2(n−u) = 2m̂l and that n̂t = m̂t for all i > t �= l
imply that ϑ(n̂1, m̂1, . . . , n̂j , m̂j) = 1 (see Lem. 3.1). Thus, v̂ ∈ Lj, which in turn
implies that M will also accept on input v̄. This contradicts our assuption that
L(M) = Lj , therewith completing the proof of Claim 2. �

Using these two claims we will now finish the proof of Proposition 3.5. Let
w = (anbn)j ∈ Lj be a basic input. We analyse the accepting computations on
this input. From Claim 1 we see that w cannot be accepted by M as long as the
first block is not short, since otherwise also the input v �∈ Lj would be accepted
that is obtained from w by replacing the first block by anbn+r.

On the other hand, Claim 2 implies that the first rewrite step that changes
the i-th block is not applied before a configuration has been reached in which the
(i + 1)-st block is short. Thus, each accepting computation first reduces the j-th
block into a short block, then the (j − 1)-st block and so on. Further, the first
rewrite operation that changes the i-th block is performed in the center of that
block (see Claim 2). Hence, its right distance is larger than the right distance of
the previous rewrite step that was applied within the blocks i+1, . . . , j by (at least)
the number n−k. Thus, this rewrite step starts a new monotone subsequence. By
applying this observation to all blocks, we obtain at least j monotone subsequences
that follow sequentially one after the other. Thus, M is not sequentially (j − 1)-
monotone. �

Corollary 3.3 and Proposition 3.5 yield hierarchy results with respect to the
degree of sequential monotonicity for RR(W)- and for RL(W)-automata. In order
to also obtain corresponding hierarchies for R(W)-automata, we need a somewhat
more involved variant of the language Lj .

Let Σ := {a, b, c, d} be the new terminal alphabet. For a subset ∆ ⊆ Σ, we
denote the projection from Σ∗ onto ∆∗ by π∆, that is, for x ∈ Σ∗, π∆(x) is

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 167

obtained from x by removing all occurrences of symbols from Σ � ∆. For j ≥ 1,
the language L′

j ⊆ Σ∗ is defined as follows:

L′
j := { xy | ∃ i ∈ [0, j] ∃n1, m1, . . . , nj, mj ∈ N+ ∃ yi+1, . . . , yj ∈ {c, d} :

x = an1bm1 · · · anibmi and y = ani+1yi+1b
mi+1 · · · anj yjb

mj

such that (i) π{a,b}(xy) ∈ Lj ,
(ii) nl < 3 or ml < 2 for each l > i + 1,
(iii) nl ≥ 3 and ml ≥ 2 for each l ≤ i, and
(iv) for all l ∈ [i + 1, j], yl = c if and only if

l = j or ϑ(nl+1, ml+1, . . . , nj , mj) = 1 }.

The idea is that the symbol c is used to “mark” those blocks for which it should be
checked whether nl = ml holds, and the symbol d is used to “mark” those blocks
for which it should be checked whether nl > 2ml holds. Further, c and d only
occur in a number of “suffix blocks”, which will force the restarting automaton to
process the blocks from right to left. For the language L′

j we have the following
positive result.

Proposition 3.6. For each j ≥ 1, L′
j ∈ L(j-s-mon-RW).

Proof. We describe a sequentially j-monotone RW-automaton M that accepts the
language L′

j . This automaton works as follows. Whenever the prefix of the
tape content read by M during a cycle is not a prefix of the regular language
(a≥3 · b≥2)j ∪ ⋃j−1

i=0 Ri, where, for all i ∈ [0, j − 1],

Ri :=
(
a≥3 · b≥2

)i · (a+ · {c, d} · b+
) · (a<3 · {c, d} · b+ ∪ a+ · {c, d} · b<2

)j−i−1
,

then M rejects immediately. Otherwise, in each cycle M chooses nondeterministi-
cally a block to which the next rewrite operation is to be applied, and which of the
conditions nl = ml or nl > 2ml should be checked for this block (the l-th block).
In the former case it applies the rewrite transition aabb → acb or aacbb → acb in
the middle of this block, and in the latter case it applies the rewrite transition
a3b2 → adb or a3db2 → adb at that position. If none of these rewrite steps is
possible or a block preceding the chosen block does not belong to a≥3 · b≥2, then
M rejects.

Finally, M may decide nondeterministically that it is already executing the tail
of a computation. In this case M does not execute any rewrite step, but it checks
whether the current tape content belongs to the regular language

{ an1y1b
m1 · · ·anj yjb

mj | yi ∈ {c, d}, ni < 3 or mi < 2 for each i ∈ [1, j] }.

In the negative, M rejects. In the affirmative M accepts if an1y1b
m1 · · ·anj yjb

mj

belongs to the language L′
j, which is the case if and only if the following conditions

are satisfied simultaneously:
• for all i ∈ [1, j], yi = c if and only if i = j or ϑ(ni+1, mi+1, . . . , nj , mj) = 1,
• n1 = m1, if y1 = c, or n1 > 2m1, if y1 = d.

168 T. JURDZIŃKI AND F. OTTO

Because of the size restriction of all these blocks, M can verify these conditions
while scanning the tape from left to right.

It is easily verified that in this way M accepts the language L′
j , and that M is

sequentially j-monotone. Actually each computation consists of j monotone se-
quences during which rewrite operations are applied to the j-th block, the (j − 1)-st
block, and so on up to the first block, or it stops early in case an inappropriate
block is chosen in any cycle or the tail of the computation is entered too early. �

Contrasting the above result we have the following negative result.

Proposition 3.7. For each j ≥ 2, L′
j �∈ L((j − 1)-s-mon-RLW).

Proof. Let j ≥ 2, and M = (Q, Σ, Σ, c, $, q0, k, δ) be an RLW-automaton that
accepts the language L′

j . We analyse the accepting computations of M on those
inputs from L′

j which initially do not contain any occurences of the symbols c or d.
Note that Claim 1 from the proof of Proposition 3.5 also holds for M . In fact,

it even applies if some blocks of the restarting configuration considered belong to
the regular language a+ · c · b+ or a+ · d · b+. Moreover, Claim 2 also holds for
L′

j in those cases in which there are no occurrences of the symbols c or d in the
first i blocks of the configuration considered. Hence, starting from a basic input
w = (anbn)j ∈ L′

j , we can follow the proof of Proposition 3.5. The only difference
is that now the automaton M may insert a c or a d in some block and after that we
cannot apply Claim 2 to prefixes containing this block. However, the tape content
of each configuration during an accepting computation must belong to L′

j . Thus,
the symbols c and d can be inserted only from right to left, first in the center of
the j-th block, then in the center of the (j − 1)-st block, and so on. If c or d is
inserted into the i-th block, while this block is not yet short, the rewrite step that
inserts this symbol has a larger right distance than the last rewrite step in the
(i+1)-st block preceding it (as the size of the window, k, is much smaller than r).
On the other hand, as long as the first i blocks do not contain any occurrences
of c or d, Claims 1 and 2 ensure that the rewrite steps up to the configuration in
which the i-th block becomes short require at least j− i+1 sequentially monotone
sequences. It follows that the RLW-automaton M is certainly not sequentially
(j − 1)-monotone. �

Propositions 3.6 and 3.7 establish a hierarchy result for RW-automata. In order
to obtain the corresponding result also for R-automata, we derive the following
technical result.

Let M be a sequentially j-monotone RW-automaton for the language L′
j , let k

be the size of its read/write window, and let m be the size of its tape alphabet
(that is, m = 4). Finally, let L′′

j := ϕk,m(L′
j), where ϕk,j is the encoding defined

in [8], Section 3.

Proposition 3.8. For each j ≥ 2, L′′
j ∈ L(j-s-mon-R) � L((j − 1)-s-mon-RLW).

Proof. From [8] Theorem 2 it follows immediately that L′′
j ∈ L(j-s-mon-R) holds.

In order to show that L′′
j �∈ L((j − 1)-s-mon-RLW) by contradiction, we assume

that there exists a sequentially (j − 1)-monotone RLW-automaton M accepting

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 169

the language L′′
j . From M we now construct a sequentially (j − 1)-monotone

RLW-automaton M ′ such that L(M ′) = L′
j, thus contradicting Proposition 3.7.

On a tape content x ∈ Σ∗, M ′ simulates a computation of M on the tape
content ϕk,m(x). Whenever M intends to perform a rewrite step that converts
the tape content into a string that is not of the form ϕk,m(y) for any y ∈ Σ∗, M ′

rejects, as by the correctness preserving property (see, e.g., [13]) this rewrite step
clearly indicates that the computation of M being simulated is not accepting. In
all other cases M ′ is able to ‘mimic’ the corresponding steps of M . It is easily
verified that in this way M ′ recognizes the language L′

j, and that M ′ is sequentially
(j − 1)-monotone if M is sequentially (j − 1)-monotone. �

As a consequence of all the results above we obtain the following theorem.

Theorem 3.9. For each j ∈ N+ and each X ∈ {R, RW, RR, RRW, RL, RLW},
(a) L(j-s-mon-X) � L((j + 1)-s-mon-X);
(b) L((j + 1)-s-mon-R) � L(j-s-mon-RLW) �= ∅.

Observe, however, that the language

L := {f, ee} · { anbn | n ≥ 0 } ∪ {g, ee} · { anbm | m > 2n ≥ 0 }

is not accepted by any RR-automaton, although it is accepted by a monotone
RW-automaton [6]. Thus, L(mon-RW) �⊂ ⋃

j≥1 L(j-mon-RR), which implies that
L(j-s-mon-RLW) is neither contained in L((j + 1)-s-mon-R) nor in L(j-mon-R).
In particular, the language classes L(j-s-mon-RLW) and L((j + 1)-s-mon-R) are
incomparable under inclusion.

In [9] it is established for each j ≥ 2 that the language

L̄j := { an1bn1an2bn2 · · · anj bnj | n1 ≥ n2 ≥ · · ·nj ≥ 1 }

belongs to the difference L(j-mon-R)�L((j−1)-mon-RLW). In fact, in the proof of
the noninclusion result it is shown that an RLW-automaton M for the language L̄j

must reduce all blocks from a+b+ in an almost synchronous manner. Accordingly,
M cannot possibly be sequentially i-monotone for any i ≥ 1, that is,

L̄j ∈ L(j-mon-R) �
⋃
i≥1

L(i-s-mon-RLW).

The proofs of Propositions 3.5, 3.7, and 3.8 show that the language L′′
j is not

accepted by any RLW-automaton that is (j − 1)-monotone. Thus,

L′′
j+1 ∈ L((j + 1)-s-mon-R) � L(j-mon-RLW).

Together with the above result on the language L̄j this yields the following results.

Corollary 3.10. For each j ≥ 1 and each X ∈ {R, RW, RR, RRW, RL, RLW},
L((j + 1)-s-mon-X) and L(j-mon-X) are incomparable under inclusion. In par-
ticular, L(j-s-mon-X) � L(j-mon-X).

170 T. JURDZIŃKI AND F. OTTO

4. Nondeterministic restarting automata

with auxiliary symbols

It is known that the classes of languages L(mon-R(R)WW) and L(mon-RLWW)
coincide with the class CFL of context-free languages [6]. Here we will show that
this characterization extends to the classes of languages that are accepted by
sequentially j-monotone R(R)WW- and RLWW-automata for all j ≥ 2. For estab-
lishing this result we will proceed as follows.

With an RRWW-automaton M with tape alphabet Γ we will associate the set
Lmon(M) of words over Γ that M accepts by monotone computations, and the
mapping fM that maps each word w ∈ Γ∗ to the set of words that M can reach from
w by performing a monotone computation. The set Lmon(M) is context-free, and
we can obtain from M a pushdown automaton PM and an alphabetic morphism
h such that, for each w ∈ Γ∗, the set fM (w) coincides with the image under h of
the set of final stack contents that PM can generate on input w (Lem. 4.2). Based
on this characterization we will then derive the fact that, for each j ≥ 2, the
language L

(j)
mon(M) of words w ∈ Γ∗ that M accepts by sequentially j-monotone

computations is also context-free (Th. 4.3). If M is sequentially j-monotone, then
L(M) = L

(j)
mon(M) ∩ Σ∗, where Σ is the input alphabet of M , which then yields

the announced result. For this approach to work we need the following technical
result on pushdown automata.

Let P = (Q, Σ, Γ, δ, q0, #, F) be a pushdown automaton (PDA) with input al-
phabet Σ and stack alphabet Γ∪{#}, where # denotes the bottom marker of the
pushdown store, Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set
of final states, and δ is the transition relation. As usual we describe configurations
of P by triples of the form (q, u, α), where q ∈ Q denotes the current state, u ∈ Σ∗

is the still unread part of the input, and α ∈ # ·Γ∗ is the content of the pushdown
store, where the first symbol of α is on the bottom of the pushdown store, and the
last letter of α is the symbol on top of the pushdown store.

For a word u ∈ Σ∗,

SCP (u) := {w ∈ Γ∗ | ∃ q ∈ F : (q0, u, #) �∗
P (q, ε, #w) }

is the language of final stack contents that P can generate on input u. For a
language L ⊆ Σ∗, SCP (L) :=

⋃
u∈L SCP (u). It is well-known that the language

SCP (L) is regular for each regular language L [4].

Lemma 4.1. Let P be a pushdown automaton with input alphabet Σ and pushdown
alphabet Γ ∪ {#}, and let S be a subset of SCP (Σ∗). If S is context-free, then so
is the language SC−1

P (S) := { u ∈ Σ∗ | SCP (u) ∩ S �= ∅ }.
Proof. Let Γ̄ be a new alphabet in one-to-one correspondence to Γ such that Γ
and Γ̄ are disjoint. Further, let #̄ be another new symbol, and let R be the finite
string-rewriting system

R := { bb̄ → ε | b ∈ Γ ∪ {#} }

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 171

on Ω := Γ ∪ Γ̄ ∪ {#, #̄}. Then R is a special system that is confluent (see, e.g.,
[2]). For w ∈ Ω∗, ∆∗

R(w) is the set of all descendants of w with respect to the
reduction relation induced by R, that is,

∆∗
R(w) := { z ∈ Ω∗ | w →∗

R z },

and ∆∗
R(T) :=

⋃
w∈T ∆∗

R(w) for each subset T ⊆ Ω∗. It is well-known that the set
∆∗

R(T) is regular, whenever T is a regular language.
From the PDA P one easily obtains a finite-state transducer (FST) B with ε-

transitions, input alphabet Σ, and output alphabet Ω that imitates the behaviour
of P step by step as follows. Whenever P performs a transition (q, a, b) → (q′, w),
where q, q′ are internal states of P , a ∈ Σ ∪ {ε} is the input symbol read, b ∈ Γ is
the topmost symbol on P ’s pushdown store, and w ∈ Γ∗ is the pushdown word by
which the symbol b is replaced, then B executes the transition (q, a) → (q′, b̄w),
that is, B performs the same input and change-of-state step as P , but it simulates
the pushdown operation b
→ w by producing the output b̄w, which means that B
just guesses the topmost symbol on the pushdown store of P . The string-rewriting
system R is then used to verify that this guess is correct by matching the output
symbol b̄ to the last output symbol produced previously. It can be shown that the
following equality holds for each word u ∈ Σ∗ (see [3] for the details):

∆∗
R(B(u)) ∩ #̄# · Γ∗ = #̄# · SCP (u).

Now let S be a subset of SCP (Σ∗). Then a word u ∈ Σ∗ belongs to the set SC−1
P (S)

if and only if ∆∗
R(B(u)) ∩ #̄# · S �= ∅ holds.

Let ∇∗
R(w) denote the set of ancestors of w with respect to the reduction relation

induced by R, that is,

∇∗
R(w) := { x ∈ Ω∗ | x →∗

R w },

and for T ⊆ Ω∗, ∇∗
R(T) :=

⋃
w∈T ∇∗

R(w). Then we obtain the following equality:

SC−1
P (S) = B−1(∇∗

R(#̄# · S)).

Now if S is a context-free language, then so is the language #̄# · S. From the
form of the rules of R we see immediately that then ∇∗

R(#̄# · S) is context-free,
too, which implies that B−1(∇∗

R(#̄# · S)) is context-free, as the class of context-
free languages is closed under (inverse) finite transductions [1]. Thus, we see that
SC−1

P (S) is context-free. �

Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an RRWW-automaton. With M we associate
the language

Lmon(M) := {w ∈ Γ∗ | M accepts w by a monotone computation },

172 T. JURDZIŃKI AND F. OTTO

and the mapping fM : Γ∗ → P(Γ∗) that is defined as follows:

fM (w) := { y ∈ Γ∗ | There exists a monotone sequence of cycles of M
that starts from the restarting configuration q0cw$
and ends with the restarting configuration q0cy$ }.

Observe that the language fM (Γ∗) is simply the set Γ∗, as from each restarting
configuration, a monotone computation of M originates, which, however, may
consist of a single cycle only, or which may even consist of no cycle at all.

Lemma 4.2. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an RRWW-automaton. Then the
following statements hold:

(a) The language Lmon(M) is context-free.

(b) There exists a pushdown automaton PM with input alphabet Σ and push-
down alphabet Θ, and an alphabetic morphism h : Θ∗ → Γ∗ such that, for
each word w ∈ Γ∗, h(SCPM (w)) = fM (w) holds.

Proof.
(a) In [6] it is shown that the language L(M) that is accepted by a monotone
RRWW-automaton M is necessarily context-free by presenting a simulation of M
by a PDA P ′

M . Even if the RRWW-automaton M is not monotone, then, given a
word w ∈ Γ∗, this PDA simulates the monotone computations of M that originate
from the restarting configuration q0cw$. Thus, this PDA accepts the language
Lmon(M), which means that this language is indeed context-free.
(b) The PDA P ′

M above simulates the monotone initial parts of all computations
of M . It has input alphabet Σ and pushdown alphabet Θ′ := Γ × P(Q), as it
uses its pushdown to store a prefix u of the tape content of M together with
information on the subset of states of M that M can reach from its initial state
q0 by reading the prefix u. We modify P ′

M in such a way that, each time it starts
the simulation of a cycle of M , it may decide (nondeterministically) to abort the
simulation process. In this case it pushes the remaining suffix of the input onto
the pushdown store, and halts and accepts. Hence, the resulting PDA PM has
input alphabet Σ and pushdown alphabet Θ := Θ′ ∪ Γ. We define an alphabetic
morphism h : Θ∗ → Γ∗ through a
→ a and (a, Q′)
→ a for each a ∈ Γ and Q′ ⊆ Q.
Then fM (w) = h(SCPM (w)) holds for each word w ∈ Γ∗. �

Let M be an RRWW-automaton with tape alphabet Γ. For each integer j ≥ 1,
we denote by L

(j)
mon(M) the language

L(j)
mon(M) := { y ∈ Γ∗ | M accepts y by a sequentially j-mon. computation }.

Then, for each word w ∈ Γ∗ and each number j ≥ 2,

w ∈ L(j)
mon(M) if and only if fM (w) ∩ L(j−1)

mon (M) �= ∅.

The main result of this section is an immediate consequence of the following tech-
nical result.

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 173

Theorem 4.3. L
(j)
mon(M) is a context-free language for each RRWW-automaton

M and each integer j ≥ 1.

Proof. We proceed by induction on j. For j = 1 this is just Lemma 4.2 (a), as
sequential 1-monotonicity coincides with monotonicity. So assume that j > 1.
From the induction hypothesis we get that L

(j−1)
mon (M) is a context-free language.

Thus, L
(j−1)
mon (M) is a context-free subset of the language fM (Γ∗), which coincides

with the set h(SCPM (Γ∗)) for a PDA PM and an alphabetic morphism that are
obtained from M according to Lemma 4.2 (b).

As observed above, w ∈ L
(j)
mon(M) if and only if fM (w)∩L

(j−1)
mon (M) �= ∅. Thus,

L
(j)
mon(M) = {w ∈ Γ∗ | fM (w) ∩ L

(j−1)
mon (M) �= ∅ }

= {w ∈ Γ∗ | h(SCPM (w)) ∩ L
(j−1)
mon (M) �= ∅ }

= SC−1
PM

(h−1(L(j−1)
mon (M))),

implying that the language L
(j)
mon(M) is context-free by Lemma 4.1. �

If the RRWW-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) is sequentially j-monotone,
then L(M) = L

(j)
mon(M)∩Σ∗. By the result above this yields that L(M) is context-

free. As each context-free language is accepted by a monotone RWW-automaton
[6], we obtain the following characterization.

Corollary 4.4. L(j-s-mon-RRWW) = L(j-s-mon-RWW) = CFL for all j ≥ 1.

For each RLWW-automaton, there exists an RRWW-automaton that accepts the
same language and that executes exactly the same cycles ([9], Prop. 2.4). Hence,
we also get the following result.

Corollary 4.5. L(j-s-mon-RLWW) = CFL for all j ≥ 1.

Thus, for all types of nondeterministic restarting automata with auxiliary sym-
bols the degree of sequential monotonicity does not yield a hierarchy in contrast
to the situation for restarting automata without auxiliary symbols.

Finally observe that the context-free language

L := { anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 }

is not accepted by any RLW-automaton [6], which implies by the results above
that

⋃
j≥1 L(j-s-mon-RLW) is a proper subclass of CFL.

5. Deterministic restarting automata

It is known that all levels of j-monotonicity for deterministic R(R)(W)(W)-
automata collapse to DCFL [9]. As each sequentially j-monotone computation is
also j-monotone, we obtain the following result.

174 T. JURDZIŃKI AND F. OTTO

Corollary 5.1. For each j ∈ N+ and each X ∈ {R, RR, RW, RRW, RWW, RRWW},

L(det-j-s-mon-X) = DCFL.

Monotone deterministic RL-automata recognize some languages which are not in
DCFL [14]. Further, we see from Propositions 3.2 and 3.5 that, for each j ≥ 2,
Lj ∈ L(det-j-s-mon-RL) � L(det-(j − 1)-s-mon-RLW). This yields the following
hierarchies.

Theorem 5.2. For each j ∈ N+ and X ∈ {RL, RLW},

L(det-j-s-mon-X) � L(det-(j + 1)-s-mon-X).

6. Concluding remarks

We have seen that sequential j-monotonicity yields interesting extensions for
those language classes that are defined by monotone restarting automata without
auxiliary symbols without losing the efficiency of the solution to the membership
problem. On the other hand, it turned out that all degrees of sequential mono-
tonicity collapse to the first level for restarting automata with auxiliary symbols.
This fact may be interesting in its own right as it gives a much less restricted
machine model for CFL than the pushdown automaton. However, this result says
that the expressive capability of sequentially j-monotone restarting automata is
not sufficient to cover many important aspects of the analysis by reduction. Thus,
other generalizations of monotonicity are needed.

An interesting open problem is whether sequential j-monotonicity gives an in-
finite hierarchy for deterministic RLWW-automata. Our feeling is that it might
be possible to establish such a hierarchy with some technical effort. It would give
the first example of a strict hierarchy for restarting automata that use auxiliary
symbols.

Further, by requiring that the left distance must not increase from one cycle
to the next in a computation, the notion of left-monotonicity was introduced for
restarting automata in [9]. There also the generalization to j-left-monotonicity
was considered. Now it is straightforward to also introduce the sequential vari-
ant of j-left-monotonicity. It appears that the results obtained in this paper for
nondeterministic restarting automata with and without auxiliary symbols should
carry over to sequential left-monotonicity. However, for deterministic restarting
automata without auxiliary symbols, j-left-monotonicity yields infinite hierarchies,
and even in the presence of auxiliary symbols, it is known that 2-left-monotonicity
is more expressive than left-monotonicity. Is it possible to establish correspond-
ing hierarchy results also for sequentially left-monotone deterministic restarting
automata?

SEQUENTIAL MONOTONICITY FOR RESTARTING AUTOMATA 175

References

[1] J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart (1979).
[2] R.V. Book and F. Otto, String-Rewriting Systems. Springer, New York (1993).
[3] R. Cremanns and F. Otto, The language of final stack contents of a pushdown automaton

is effectively regular. Mathematische Schriften Kassel 11/93, Universität Kassel (1993).
[4] S. Greibach, A note on pushdown store automata and regular systems. Proc. Amer. Math.

Soc. 18 (1967) 263–268.
[5] P. Jančar, F. Mráz, M. Plátek and J. Vogel. Restarting automata, in FCT’95, Proc., edited

by H. Reichel, Springer, Berlin. Lect. Notes Comput. Sci. 965 (1995) 283–292.
[6] P. Jančar, F. Mráz, M. Plátek and J. Vogel, On monotonic automata with a restart opera-

tion. J. Autom. Lang. Comb. 4 (1999) 287–311.
[7] T. Jurdziński, K. Loryś, G. Niemann and F. Otto, Some results on RWW- and RRWW-

automata and their relation to the class of growing context-sensitive languages. J. Autom.
Lang. Comb. 9 (2004) 407–437.

[8] T. Jurdziński, F. Otto, F. Mráz and M. Plátek, On the complexity of 2-monotone restart-
ing automata, in DLT 2004, Proc., edited by C.S. Calude, E. Calude and M.J. Dinneen,
Springer, Berlin. Lect. Notes Comput. Sci. 3340 (2004) 237–248.

[9] T. Jurdziński, F. Mráz, F. Otto and M. Plátek, Degrees of non-monotonicity for restarting
automata. Theoret. Comput. Sci. 369 (2006) 1–34.

[10] G. Niemann and F. Otto, Further results on restarting automata, in Words, Languages
and Combinatorics III, Proc., edited by M. Ito and T. Imaoka. World Scientific, Singapore
(2003) 352–369.

[11] K. Oliva, P. Květoň and R. Ondruška, The computational complexity of rule-based part-
of-speech tagging, in TSD 2003, Proc., edited by V. Matousek and P. Mautner, Springer,
Berlin. Lect. Notes Comput. Sci. 2807 (2003) 82–89.

[12] F. Otto, Restarting automata and their relations to the Chomsky hierarchy, in Developments
in Language Theory, Proc. DLT’2003, edited by Z. Esik and Z. Fülöp, Springer, Berlin. Lect.
Notes Comput. Sci. 2710 (2003) 55–74.

[13] F. Otto, Restarting Automata, in Recent Advances in Formal Languages and Applications,

Z. Ésik, C. Martin-Vide and V. Mitrana (Eds.), Springer, Berlin. Stud. Comput. Intelligence
25 (2006) 269–303.

[14] M. Plátek, Two-way restarting automata and j-monotonicity, in Theory and Practice of
Informatics, Proc. SOFSEM 2001, edited by L. Pacholski and P. Ružička, Springer-Verlag,
Berlin. Lect. Notes Comput. Sci. 2234 (2001) 316–325.

[15] M. Plátek and F. Mráz, Degrees of (non)monotonicity of RRW-automata, in Preproceedings
of the 3rd Workshop on Descriptional Complexity of Automata, Grammars and Related
Structures, Report No. 16, edited by J. Dassow and D. Wotschke, Fakultät für Informatik,
Universität Magdeburg (2001) 159–165.

[16] M. Plátek, M. Lopatková and K. Oliva, Restarting automata: motivations and applications.
In Workshop ‘Petrinetze’ and 13. Theorietag ‘Formale Sprachen und Automaten’, Proc.,
edited by M. Holzer, Institut für Informatik, Technische Universität München (2003) 90–96.

Communicated by J. Berstel.
Received November 17, 2005. Accepted June 15,2006.

