
RAIRO-Theor. Inf. Appl. 42 (2008) 271–284 Available online at:

DOI: 10.1051/ita:2007033 www.rairo-ita.org

CALCULI OF NET STRUCTURES
AND SETS ARE SIMILAR

Ludwik Czaja
1

Abstract. Three basic operations on labelled net structures are pro-
posed: synchronised union, synchronised intersection and synchronised
difference. The first of them is a version of known parallel composition
with synchronised actions identically labelled. The operations work
analogously to the ordinary union, intersection and difference on sets.
It is shown that the universe of net structures with these operations is
a distributive lattice and – if infinite pre/post sets of transitions are al-
lowed – even a Boolean algebra. As a consequence, some representation
theorems of this algebra are stated. The primitive objects are atomic
net structures containing one transition with at most one pre-place or
post-place (but not both). A simple example of a production system
constructed by making use of the operations (and its transformations)
is given. Some remarks on behavioural properties of compound nets are
stated, in particular, how some constructing strategies may help to in-
fer liveness. The latter issue is limited to semantics of place/transition
nets without weights on arrows and with unbounded capacity of places
and is not extensively investigated, since the main objective is focused
on a calculus of net structures.

Mathematics Subject Classification. 68Q85.

1. Introduction

The ascertainment expressed in the title of this paper is prompted by the
following observation. Any Petri net-like structure is uniquely represented by
its set of transitions, if by a transition a pair of sets (or multisets) is under-
stood: a pre-set and post-set of places. If, in such representation, a place oc-
curs in more than one transition, then it is treated as one in the net structure

Keywords and phrases. Net structures, synchronised operations, distributive lattice, Boolean
algebra, representation theorems.

1 Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland;
lczaja@mimuw.edu.pl

Article published by EDP Sciences c© EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007033
http://www.rairo-ita.org
http://www.edpsciences.org

272 L. CZAJA

and, consequently, pictured as a place connected by arrows with all such tran-
sitions. Representing net structures as sets induces immediately natural way to
combine them - just using set theoretical operations. For instance, net structures
{({x}, {y, z}), ({y, z}, {u})} and {({x, y}, {v})} when combined by union (∪)

yield {({x}, {y, z}), ({y, z}, {u}), ({x, y}, {v})}, pictorially .

In this way, however, new branches (arrows) from/to places only are obtained.
To obtain new branches from/to transitions, the latter must also be named (la-
belled), with the provision that no two distinct transitions may be labelled with
the same label in a net structure. A combination of such net structures, called
their synchronised union, is obtained by uniting pre-sets (post-sets) of transitions
labelled identically in the constituents and leaving transitions labelled differently
unchanged. Accordingly, other operations on sets are adapted to net structures.
Various operations on nets have been treated since a long time in a number of
works, for instance in [2,3,5,8,11–14,19–21]. In some of them, like [8,13,14,21],
the category theoretic terms have been exploited to this end. However, the main
objective of the latter works was a formal description of nets’ behaviour, while
the present paper aims rather at showing a close affinity of the proposed calculus
of net structures and set calculus. Synchronised union, intersection and differ-
ence enjoy properties of respective operations on sets, hence a distributive lattice
of the net structures and – if infinite pre/post sets of transitions are allowed –
a Boolean algebra. Thus, some representation theorems hold for them (in [7]
a complete lattice of branching processes evoked by a given Petri net has been
constructed). Nonetheless, some remarks on how behaviour of a compound net
depends on behaviour of its components are stated. Section 2 contains definitions
of net structures, labelling of transitions, synchronised union, intersection and dif-
ference on net structures and their renaming operation. Some properties of these
concepts are stated. In Section 3 the main property of the devised calculus is
stated: it is a distributed lattice in any case and a Boolean algebra provided that
cardinality of pre and post sets of transitions are not required to be finite. The
calculus is illustrated by example of three factories showing how the calculus of
net structures may be applied to combine small parts into a large system. Also
some remarks on behavioural properties of nets are made. Section 4 contains three
isomorphisms of the lattice of net structures, the last of them being an applica-
tion of the Stone’s representation theorem [18] to the calculus of net structures.
In Section 5 some final remarks are made.

2. Labelled net structures and their compositions

2.1. Labelled net structure

Let X be a set – a universe of net places for all nets. An unlabelled transition
over X is a pair t = (•t, t•) where •t, t• ⊆ X. The set •t is a pre-set and t• a
post-set of t. An unlabelled net structure over X is any set T of such transitions.

CALCULI OF NET STRUCTURES AND SETS ARE SIMILAR 273

Figure 1.

Let members of T be labelled: lT : LT
onto−→ T is a labelling function, where LT

is a set of labels chosen for T so that X ∩ LT = ∅. Say then “a labels t in T ” if
lT (a) = t. Thus, such a labelled transition is an indexed pair (a, t)T denoted a:t
when it is clear from the context which T is involved. Any labelled transition of
the form a:(∅, ∅) is called isolated. A triple 〈LT , T, lT 〉 is a labelled net structure,
which we often call for short just net structure and denote it also by T . This is,
thus, a set of labelled transitions in which any label occurs once. The net structure
T = {a : ({x, y}, {z}), b : ({z}, {x}), c : ({z}, {y}), d : ({z}, {x, y})} is drawn in
Figure 1. Here, lT (a) = ({x, y}, {z}), lT (b) = ({z}, {x}), lT (c) = ({z}, {y}),
lT (d) = ({z}, {x, y}). Due to the labelling function and to the implication a �=
b ⇒ a : t �= b : t, any ordinary Petri net structure may be represented as a
set of labelled transitions. Also the so called non-simple nets, i.e. those where
some distinct nodes (places or transitions) have identical pre and post sets, e.g.

is a set {a:({x, y}, {z}),b:({x, y}, {z})}. Since isolated transitions

have no effect on nets’ behaviour seen as evolution of state (a part of which,
responsible for control, is marking), it is convenient to admit:

Assumption 2.1. Net structures T and T ′ are equal (T = T ′) if they differ at
most by isolated transitions, i.e. {a:(∅, ∅)} ∪ T = T , for any label a.

Remark. The manner of labelling admitted here follows that in programming
languages, where a statement may be labelled by more than one label, while no
two statements in different sites in a program may be labelled by the same label
(cf. also TCSP – [9]). Petri net transition is seen as an operator on state, thus a
counterpart of statement, and is a unique member of the set T . For our purpose
such operator may be decorated by more than one label.

Introducing weights on arrows is straightforward: it requires taking multisets
instead of sets.

2.2. Synchronised union (⊕) of net structures

Since any net structure is a collection of labelled transitions, the operations on
sets may be applied to them, but with a restriction: no two different transitions

274 L. CZAJA

with the same label may appear in the resulting net structure (because labelling
is a function!). For instance, the net structure T in Figure 1 is a union: T = {a :
({x, y}, {z}), b : ({z}, {x}), c : ({z}, {y})}∪ {d : ({z}, {x, y})}. Such partial union
of net structures is capable of generating each net structure from “atoms” if by the
latter we mean net structures containing one transition with arbitrary pre/post-
set. However we need a total operation as well as more elementary “atoms”, those
of the form {a:({s}, ∅)} or {a:(∅, {s})} or {a:(∅, ∅)} with s ∈ X and a label
a. To obtain arbitrary net structure from such atoms, we define operation called
here a synchronised union denoted by ⊕. It is defined as follows: for the labelled
net structures T1, T2: τ ∈ T1 ⊕ T2 iff either there exist labelled transitions
τi = a:ti ∈ Ti (i = 1, 2) with τ = a:(•t1∪ •t2, t•1∪ t•2), or τ ∈ T1∪T2 otherwise.
Due to Assumption 2.1: {a:(∅, ∅)} ⊕ T = T ⊕ {a:(∅, ∅)} = T , thus any isolated
transition plays a part of the neutral (zero) element for ⊕ and will be denoted by
θ. Operation ⊕ is total, i.e. never two different transitions with the same label
appear in the result. For instance, the net structure in Figure 1 is a synchronised
union:

T ={a : ({x}, ∅)} ⊕ {a : ({y}, ∅)} ⊕ {a : (∅, {z})} ⊕ {b : ({z}, ∅)} ⊕ {b : (∅, {x})}⊕
{c : ({z}, ∅)} ⊕ {c : (∅, {x})} ⊕ {d : ({z}, ∅)} ⊕ {d : (∅, {x})} ⊕ {d : (∅, {y})}.

In fact this representation of T is its ⊕-decomposition into atomic net structures
(associativity of ⊕ allows for this notation). The above definitions imply:

Proposition 2.2.
(i) Synchronised union ⊕ of net structures is associative, commutative, idem-

potent and monotone with respect to relation � defined as T1 � T2 ⇔
T2 = T1 ⊕ T2 being a partial order. The least net structure is θ.

(ii) T1 ⊕ T2 = lub(T1, T2) – the least upper bound (wrt �) of the set {T1, T2}.
The operation is total, i.e. T1 ⊕ T2 is always a net structure.

(iii) If LT1 ∩ LT2 = ∅ then T1 ⊕ T2 = T1 ∪ T2.
(iv) Each net structure is ⊕-decomposable into atomic net structures, i.e. con-

taining a single transition with at most one place in its pre-set and then
no place in its post-set or, symmetrically, the other way round.
Let atoms[T] denote the set of atoms of T . Then T = lub(atoms[T]),
T1 ⊕ T2 = lub(atoms[T1] ∪ atoms[T2]).

Proof. Evident. �

Synchronised union allows to build large nets from small components. It is a
version of a parallel composition “‖” on nets with synchronised transitions studied
e.g. in [12]. However “⊕” fuses together not only transitions but also places, which
is not the case with “‖”. In this respect “⊕” more resembles an operator on nets
studied e.g. in [1].

Example 2.3. complete net structures. A net structure T is complete iff each
place s has a complement in T i.e. a place s such that •s = s• and s• = •s,
where •s = {t ∈ T : s ∈ t•} and s• = {t ∈ T : s ∈ •t}. A complement

CALCULI OF NET STRUCTURES AND SETS ARE SIMILAR 275

of T is a net structure T obtained from T by replacing pre-set (post-set) of each
transition by its post-set (pre-set) with complemented places (do not mix this
notion of complement with that in the lattice theory, where it complements to the
greatest element of a lattice!). For any net-structure T the net-structure T ⊕ T ,
called a complementation of T , is complete. For instance, if T is the net-structure
in Figure 1 then

T = {a : ({z}, {x, y}), b : ({x}, {z}), c : ({y}, {z}), d : ({x, y}, {z})} and

T ⊕ T = {a : ({x, y, z}, {z, x, y}), b : ({z, x}, {x, z}), c : ({z, y}, {y, z}),
d : ({z, x, y}, {x, y, z})}

A more extensive use of the synchronised union is in Example 3.3.

2.3. Synchronised intersection (�) of net structures

Like in case of union, we strengthen ordinary intersection of sets to make it
adequate operation on labelled net structures.
First, denote SUB[T] = {T ′: T ′ � T }, i.e. SUB[T] is a set of all sub-net struc-
tures of a net structure T , and for a set A of net structures denote by lub(A) the
least upper bound (wrt �) of A (if it exists). Obviously, lub(SUB[T]) = T . Note
that for any sets A, B of net structures: lub(A∪B) = lub(A)⊕lub(B) provided that
the lubs involved exist. Indeed, since lub(A), lub(B) � lub(A ∪ B) then by mono-
tonicity of ⊕: lub(A)⊕lub(B) � lub(A∪B). Conversely, T ∈ A∪B ⇔ T ∈ A∨T ∈
B ⇒ T ∈ SUB[lub(A)]∨T ∈ SUB[lub(B)] ⇔ T ∈ SUB[lub(A)]∪SUB[lub(B)] ⇒
T ∈ SUB[lub(A) ⊕ lub(B)] (because SUB[T1] ∪ SUB[T2] ⊆ SUB[T1 ⊕ T2] for
any net structures T1, T2). Hence, T � lub(A) ⊕ lub(B). By definition of the
lub, lub(A ∪ B) is the least of all T ′ such that T � T ′ thus lub(A ∪ B) �
lub(A) ⊕ lub(B). Therefore lub(A ∪ B) = lub(A) ⊕ lub(B). From this equal-
ity, we get lub(SUB[T1] ∪ SUB[T2]) = lub(SUB[T1]) ⊕ lub(SUB[T2]) = T1 ⊕ T2.
Second, by duality, let us define an operation � on net structures as T1 � T2 =
lub(SUB[T1]∩SUB[T2]) called a synchronised intersection of T1 and T2. Assume
lub(∅) = θ.

Proposition 2.4.
(i) Synchronised intersection � of net structures is associative, commutative,

idempotent and monotone with respect to relation � defined as in Propo-
sition 2.2 and θ � T = T � θ = θ.

(ii) T1�T2 = glb(T1, T2) – the greatest lower bound (wrt �) of the set {T1, T2}.
The operation is total, i.e. T1 � T2 is always a net structure.

(iii) T1 � T2 = T1 ⇔ T1 ⊕ T2 = T2 ⇔ T1 � T2.
(iv) T � T = θ, where T is the complement of T (see Ex. 2.3).
(v) T1 � T2 = lub(atoms[T1] ∩ atoms[T2]) (see Prop. 2.2(iv)).

276 L. CZAJA

Proof. Point (i) – evident, (ii) is demonstrated as follows. Let A = SUB[T1] ∩
SUB[T2]. Since A ⊆ SUB[T1] and A ⊆ SUB[T2] then, obviously, T1 � T2 =
lub(A) exists in SUB[T1] and in SUB[T2], thus in SUB[T1]∩SUB[T2]. Therefore
lub(A) � T1∧lub(A) � T2 and for each T ∈ A: lub(A) � T ⇒ lub(A) = T (because
lub(A), is a maximal element in A). Therefore (T � T1 ∧ T � T2) ⇒ T � lub(A),
which means lub(A) = glb(T1, T2). Points (iii), (iv), (v) – evident. �

Synchronised intersection allows to extract some fragments of net structures or
to highlight synchronised part of a compound net structure. One may see some
affinity of this operator to selection operator in relational data bases: it selects
a set of transitions (i.e. a net structure) from one operand under requirements
provided in the other.

Example 2.5. For T in Figure 1 and

U = {a : ({x, u}, {z}), b : ({z}, {x}), e : ({z}, {u}), f : ({z}, {x, u})},
T � U = {a : ({x}, {z}), b : ({z}, {x})}.

A more extensive use of the synchronised intersection is in Example 3.3.

2.4. Synchronised difference (�) of net structures

By analogy to properties (iv) in Proposition 2.2 and (v) in Proposition 2.4
define a synchronised difference between T1 and T2 as T1 � T2 = lub(atoms[T1] �

atoms[T2]). Let us limit ourselves to an analogue to the De Morgan laws in the
calculus of sets:

Proposition 2.6. For any net structures T1, T2, T3:
(i) T1 � (T2 � T3) = (T1 � T2) ⊕ (T1 � T3);

(ii) T1 � (T2 ⊕ T3) = (T1 � T2) � (T1 � T3).

Proof. Easy calculation. �

Remark. In general T1 � T2 �= lub(SUB[T1] � SUB[T2]).

Synchronised difference allows to delete some fragments of net structures.

Example 2.7. For T in Figure 1 and U in Example 2.5

T � U ={a : ({y}, ∅), b : (∅, ∅), c : ({z}, {y}), d : ({z}, {x, y})} =

{a : ({y}, ∅), c : ({z}, {y}), d : ({z}, {x, y})} (see Assumption 2.1).

A more extensive use of the synchronised difference is in Example 3.3.

2.5. Renaming of place names and transition labels

So far we have defined three set theoretic-like operations on net structures. Now,
the calculus will be supplied with the operation of renaming in the style of [15].

CALCULI OF NET STRUCTURES AND SETS ARE SIMILAR 277

Table 1. Renaming functions.

It is a convenient tool for net design, since fragments of a system can be commited
to different designers who work separately (a “supervisor” takes their results and
makes suitable renaming in order to put them together using operations ⊕,�,�).
Let XT ⊆ X, LT ⊆ L be sets of places (their names) and transition labels in a
net structure T and let f : XT ∪ LT → X ∪ L be a mapping called a renaming,
such that x �= y ⇒ f(x) �= f(y) and x ∈ XT ⇒ f(x) ∈ X, x ∈ LT ⇒ f(x) ∈ L.
Then, T [f] denotes T with each x ∈ XT ∪ LT replaced by f(x) ∈ XT [f] ∪ LT [f].
For instance, let

and let renaming be given in the Table 1.
Then the expression (T1[fT1]⊕T2[fT2]⊕T3[fT3]⊕T4[fT4])� (T5[fT5]⊕T6[fT6])

represents the net structure T in Figure 1.

3. Lattice of net structures

Let T be the set of all unlabelled transitions over the universe X of places and
let L be a universe of labels. For T ⊆ T let lT : LT

onto−→ T be a labelling function,
where LT ⊆ L is a set of labels in T . Additionally assume Lθ = ∅. Formally,
a labelled net structure, not being θ, is the function lT , that is a set of all pairs
(a, lT (a)) denoted a:lT (a) with lT (a) �= lT (b) ⇒ a �= b. Let LNS denote the
set of all labelled net structures along with θ, that is LNS = {lT | T ⊆ T}. For
brevity and a part the labelled net structures play here, we retain notation T ,
possibly with indices, for them. It follows from Propositions 2.2 (ii) and 2.4 (ii)
that 〈LNS,⊕,�〉 is a lattice.
Moreover we have:

Theorem 3.1. Algebra 〈LNS,⊕,�〉 is a distributive lattice, i.e. T1� (T2⊕T3) =
(T1�T2)⊕ (T1�T3) and dually, T1⊕ (T2�T3) = (T1⊕T2)� (T1⊕T3) for any net
structures T1, T2, T3. Its least element is θ. If the universe X or L is infinite then
assumption |•t| < ∞ and |t•| < ∞ for each transition t ∈ T deprives the lattice of
the greatest element. Without this assumption, the greatest element is the labelled
net structure L × {(X, X)} thus the lattice is a Boolean algebra. If X and L are
finite then there are finitely many labelled net structures and the greatest element
is their synchronised union (note that in this case |•t| < ∞ and |t•| < ∞ hold).
For a given T ∈ LNS, the sublattice 〈SUB[T],⊕,�〉 is a Boolean algebra with the
greatest element T .

278 L. CZAJA

Proof. First, note that atoms(T1 � (T2 ⊕ T3)) = atoms((T1 � T2) ⊕ (T1 � T3)).
Indeed, by easily checked equalities atoms(T ⊕

�T ′) = atoms(T)∪∩atoms(T ′) for
any T, T ′: atoms(T1 � (T2 ⊕ T3)) = atoms(T1) ∩ atoms(T2 ⊕ T3) = atoms(T1) ∩
(atoms(T2)∪atoms(T3)) = (atoms(T1)∩atoms(T2))∪(atoms(T1)∩atoms(T3)) =
atoms(T1�T2)∪atoms(T1�T3) = atoms((T1�T2)⊕(T1�T3)). Hence, lub(atoms
(T1 � (T2 ⊕ T3))) = lub(atoms((T1 � T2) ⊕ (T1 � T3))) ⇔ T1 � (T2 ⊕ T3) =
(T1 � T2)⊕ (T1 � T3) (see Proposition 2.1(iv)). The dual distribution law follows
from a general property of distributed lattices.
Second, let X = {xi| i = 1, 2, 3,}, L = {a} and Ti = {a:({xi}, ∅)}. Then
the least upper bound of the set {T1, T2, T3, ...} is the labelled net structure
T = {a:({x1, x2, x3,}, ∅)} containing one transition with infinite pre-set. The set
LNSfin of all labelled net structures over such X and L and containing transitions
with finite pre/post sets only, contains {T1, T2, T3, ...} as its subset. Thus LNSfin

has no greatest element.
Third, in any case, lub(LNS) = L × {(X, X)}. Indeed, (X, X) is the unlabelled
transition with the universe X of places as its pre and post sets. The labelling lT:
L

onto−→ T defined as lT(a) = (X, X) is a constant function, thus the set {a:(X, X)| a ∈
L} = L × {(X, X)} ∈ LNS. Obviously T � L × {(X, X)} and if L × {(X, X)} � T ′

then T ′ = L × {(X, X)}, for any T, T ′ ∈ LNS.
Fourth, evidently lub(SUB[T]) = T , thus T is the greatest element in SUB[T].

�

Corollary 3.2. Mappings h�
T0

(T) = T0 � T for any T0 are homomorphisms of
LNS onto the sublattices of all net structures T ′ with T ′ � T0 and mappings
h⊕

T0
(T) = T0 ⊕ T for any T0 are homomorphisms of LNS onto the sublattices of

all net structures T ′ with T0 � T ′.

Although Theorem 3.1 directly follows from further Theorems 4.1 and 4.2, the
latter, as simple versions of representation theorems, have been situated in Sec-
tion 4 intended for that issue. A general consequence of distributivity of the net
structures’ lattice is Theorem 4.4. Although it follows from the general Stone’s
representation theorem [18], it will be proved, since its specificity (as a property
of the universe of net structures) makes the proof quite simple.

Example 3.3. Combining production units. There are three production units:
Pa, Pb, Pc making aircrafts, boats and cars respectively, and three agencies Sa, Sb, Sc

responsible for delivery of the products to a trading company. They are represented
by net structures – small loops in Figures 2 and can be combined and optimised
in many ways. For instance, separate factories of aircrafts, boats and cars deliver-
ing their products at trader’s premises (place s) are represented by net structures
A = Pa⊕Sa, B = Pb⊕Sb, C = Pc⊕Sc. All the three can be combined into one huge
factory ABC = A⊕B⊕C represented by a net depicted in Figure 3. Each factory
may be optimised by subtracting net structures Tα = {α1:({a4}, ∅), α2:(∅, {a4})},
Tβ = {β1:({b4}, ∅), β2:(∅, {b4})}, Tγ = {γ1:({c4}, ∅), γ2:(∅, {c4})}, depicted in Fig-
ure 4. So, Aopt = A � Tα, Bopt = B � Tβ, Copt = C � Tγ . The optimised huge
factory is ABCopt = Aopt ⊕Bopt ⊕Copt, which equals ABC � (Tα ⊕ Tβ ⊕ Tγ) and

CALCULI OF NET STRUCTURES AND SETS ARE SIMILAR 279

by the De Morgan law (Prop. 2.6) also (ABC �Tα)� (ABC �Tβ)� (ABC �Tγ).
It is depicted in Figure 5. If the aircraft and boat factories made an agreement to
share the car production then the following units come into being: AC = A ⊕ C
and BC = B ⊕ C. Their synchronised intersection is expected to be the car fac-
tory. Indeed, AC � BC = (A � B) ⊕ (A � C) ⊕ (C � B) ⊕ (C � C) = C, since
C �C = C and every remaining summand equals θ. The intended initial marking
of all the net structures occurring in this example is the following: one token in
a2, a4, b2, b4, c2, c4 and no token in remaining places. Note however that the con-
struction of this system and its transformations proceeded on net structures, that
is unmarked nets.

Figure 2. Production units and delivery agencies.

Figure 3. ABC = (Pa ⊕ Sa) ⊕ (Pb ⊕ Sb) ⊕ (Pc ⊕ Sc).

280 L. CZAJA

Figure 4. Tα, Tβ, Tγ - substructures to be removed.

Figure 5. ABCopt = ABC � (Tα ⊕ Tβ ⊕ Tγ).

(e) (f)

Figure 6. Parsing trees of net-structure T .

Remarks on behavioural properties of compound nets

Remark 3.4. Semantics of nets is a relation between markings. For simplicity, let
us define it for Place/Transition nets without weights on arrows and with infinite
capacity of places. As above, let X be a universe of places and T – the universe
of all unlabelled transitions over X. A marking is a function M : X → N where
N is the set of all natural numbers, 0 including. Note that here the marking does
not concern any particular net structure. Markings will be treated as multisets
over X and usual operations +,− and comparison ≤ applied component-wise to
them. The set NX of all markings is denoted by M. For a transition t ∈ T by
[[t]] is denoted a binary relation between markings, defined by (M, M ′) ∈ [[t]] iff
•t ≤ M ∧ M ′ = M− •t + t•. Semantics of a (unlabelled) net structure T ⊆ T is a
binary relation [[T]] =

⋃

t∈T

[[t]]. Additionally, [[∅]] = ∅. The reflexive and transitive

closure [[T]]∗ is a reachability relation in T . Note that an ordinary marking of a

CALCULI OF NET STRUCTURES AND SETS ARE SIMILAR 281

net T is obtained by restricting the marking defined above to the set of places in T .
If T is labelled (that is T ∈ LNS) then its semantics is defined in the same way,
since labels do not affect behaviour of a net: we assume [[a:t]] = [[b:t]] = [[t]] for any
a, b ∈ LT . Owing to net-independence of marking, we have for any T1, T2 ∈ LNS:
If LT1 ∩ LT2 = ∅ then [[T1 ⊕ T2]] = [[T1]] ∪ [[T2]]. Indeed, by (iii) in Proposi-
tion 2.2 [[T1 ⊕ T2]] = [[T1 ∪ T2]]. Let (M, M ′) ∈ [[T1 ∪ T2]] thus (M, M ′) ∈ [[a:t]]
for a certain labelled transition a:t ∈ T1 ∪ T2. By LT1 ∩ LT2 = ∅: a:t is either in
T1 or in T2 but is not composed of transitions labelled by a in T1 and in T2. Thus,
(M, M ′) ∈ [[T1]]∪[[T2]] hence [[T1⊕T2]] ⊆ [[T1]]∪[[T2]]. Let (M, M ′) ∈ [[T1]]∪[[T2]]
thus (M, M ′) ∈ [[a:t1]] for a certain a:t1 ∈ T1 or (M, M ′) ∈ [[b:t2]] for a certain
b:t2 ∈ T2. Thus, (M, M ′) ∈ [[T1 ∪ T2]] hence [[T1]] ∪ [[T2]] ⊆ [[T1 ⊕ T2]].

Remark 3.5. If different net expressions describe the same net structure then
they describe different ways of building this net structure. The building process
is exhibited by a parsing tree (there is evident grammar of the language of net
expressions) of a net expression. Thus, with a given net structure a forest of
parsing trees is associated. Some semantic properties of the net may sometimes
be inferred from some parsing trees easier than from others. For instance, net
structure in Figure 6(a) may be described either as T1 � (T2 � T3) with the tree
in Figure 6(e), or (by Prop. 2.6(i)) as (T1 � T2) ⊕ (T1 � T3) with the tree in
Figure 6(f).
Suppose, the net structure T is marked by tokens in x and y. If property of liveness
is concerned then the tree in Figure 6(f) allows to infer liveness of T immediately
from liveness of T1 �T2 = {a:({y}, {y})} and T1 �T3 = {a:({x}, {x})}. Indeed, it
is easy to prove that if nets U , V with disjoint sets of places and with markings
MU , MV are live then U ⊕ V is live in the marking MU ∪ MV . Note that neither
T1 nor T3 is live. �

4. Representation theorems for net structures

The lattice of net structures exhibits a close similarity to the elementary cal-
culus of sets, more exactly, the lattice of subsets of a certain set. We state an
isomorphism between the lattice of net structures and three set lattices.

Theorem 4.1. There is one-to-one correspondence between each net structure T
and atoms[T] with: atoms[T1⊕T2] = atoms[T1]∪atoms[T2] and atoms[T1�T2] =
atoms[T1] ∩ atoms[T2].

In other words, the lattices 〈LNS,⊕,�〉 and 〈{atoms[T]: T ∈ LNS},∪,∩〉 are
isomorphic.

Proof. If T1 �= T2 then obviously atoms[T1] �= atoms[T2]. Let atoms(T1) =
{α11, ..., α1n}, atoms(T2) = {α21, ..., α2m}. Then atoms[T1 ⊕ T2] = atoms[lub
(atoms[T1] ∪ atoms[T2])] = atoms[lub({α11, ..., α1n} ∪ {α21, ..., α2m})] = {α11, ...,
α1n} ∪ {α21, ..., α2m} = atoms[T1] ∪ atoms[T2]. For � and ∩ – similarly. �

282 L. CZAJA

Theorem 4.2. There is one-to one correspondence between each net structure T
and SUB[T] with: SUB[T1 ⊕ T2] = SUB[T1] ∪ SUB[T2] and SUB[T1 � T2] =
SUB[T1] ∩ SUB[T2].
In other words, the lattices 〈LNS,⊕,�〉 and 〈{SUB[T]: T ∈ LNS},∪,∩〉 are
isomorphic.

Proof. similar to that of Theorem 4.1 – replace atoms with SUB. �

An important fact in the general theory of lattices is the so called representation
theorem originating from [18]. It states that for each distributive lattice there ex-
ists an isomorphic set lattice, i.e. a lattice whose members are sets and operations
are ordinary union and intersection. Since the lattice of all net structures with
synchronised union and intersection is distributive, it has a representation as a set
lattice. Let us remind a few facts on ideals – in the context of our lattice – and
take a look at such representation proposed in [18]. An ideal of 〈LNS,⊕,�〉 is
any non-empty subset I ⊆ LNS satisfying (a) (T1 ∈ I ∧ T2 ∈ I) ⇒ T1 ⊕ T2 ∈ I,
(b) (T1 � T2 ∧ T2 ∈ I) ⇒ T1 ∈ I (note that (a) and (b) are equivalent to
T1 ∈ I ∧ T2 ∈ I ⇔ T1 ⊕ T2 ∈ I). An ideal I is prime iff I �= LNS and for any
T1, T2: T1 �T2 ∈ I ⇒ (T1 ∈ I ∨ T2 ∈ I). Obviously, if ¬(T1 � T2) then there exist
ideals I such that T1 ∈ I ∧ T2 /∈ I (example: {T : T � T1} is such ideal). An ideal
I is maximal iff I �= LNS and for any ideal I ′ �= LNS: I ⊆ I ′ ⇒ I = I ′. In the
proof of representation Theorem 4.4, the following fact will be used.

Proposition 4.3. Let ¬(T1 � T2) and denote by Q(T1, T2) the class of all ideals
I of the lattice 〈LNS,⊕,�〉, such that T1 ∈ I ∧ T2 /∈ I. Then Q(T1, T2) has a
maximal element which, due to distributivity of the lattice, is a prime ideal.

Different versions of this fact are proved (using axiom of choice or its equiva-
lents) in most of expositions of lattice theory, e.g. [10,16].

Theorem 4.4. For a net structure T ∈ LNS let P(T) denote the class of all
prime ideals I of the lattice 〈LNS,⊕,�〉, such that T /∈ I. Then:

(i) P(T1 ⊕ T2) = P(T1) ∪ P(T2) and P(T1 � T2) = P(T1) ∩ P(T2),
(ii) P establishes one-to-one correspondence between each T and P(T).

In other words, the lattices 〈LNS,⊕,�〉 and 〈{P(T): T ∈ LNS},∪,∩〉 are iso-
morphic.

Proof. (i) I ∈ P(T1⊕T2) ⇔ T1⊕T2 /∈ I ⇔ (because I is an ideal) T1 /∈ I∨T2 /∈ I ⇔
I ∈ P(T1) ∨ I ∈ P(T2) ⇔ I ∈ P(T1) ∪ P(T2). For � and ∩ – the dual reasoning.
(ii) If T1 �= T2 then ¬(T1 � T2 ∧ T2 � T1) that is ¬(T1 � T2) ∨ ¬(T2 � T1).
Hence, by Proposition 4.1, there exists a prime ideal I ∈ Q(T1, T2) ∪ Q(T2, T1)
that is T1 ∈ I ∧ T2 /∈ I or T1 /∈ I ∧ T2 ∈ I. Thus, I ∈ P(T2) ∧ I /∈ P(T1) or
I ∈ P(T1) ∧ I /∈ P(T2), therefore P(T1) �= P(T2). �

CALCULI OF NET STRUCTURES AND SETS ARE SIMILAR 283

Final remarks

Synchronised union of net structures is an operation appearing (in various guise)
in many publications. It is usually called a “parallel combination with synchroni-
sation” and concerns various models of concurrency, not only nets. Contrary to
this, synchronised intersection and difference seem to be absent in the theory of
parallel processing. This work is rather theoretically oriented and that is why all
the operations have been devised to find and study a possibly close correspondence
between calculus of net structures and sets. And, possibly, to take advantage of
rich substance of the latter, in particular equivalences of net structures like, for
instance, an analogue of the De Morgan laws. However, the operations are ex-
pected to be of some use in designing large systems from smaller ones and in their
transformations. The expectation is supported by a simple example (Ex. 3.3).
A particular challenge seems to come from finding conditions making possible to
infer some behavioural properties of compound nets from the properties of their
components. A modest sample of this issue is hinted in Remark 3.5. This is a
subject of current investigations, to be published in a separate article. Besides,
combining the idea presented in this paper with equations for message passing
worked out in [4] is under investigation.

Acknowledgements. I am really grateful to the anonymous referees who noticed many
deficiencies in the first draft of this paper. Especially for making stronger Theorem 3.1
by remark that the constructed calculus is a Boolean algebra (provided that pre/post
sets of transitions may assume infinite cardinality), not only a distributive lattice, as
stated in the draft. Also for pointing out that exemplary nets in Section 3 do not behave
properly in the semantics admitted in the draft.

References

[1] G. Berthelot, Checking properties of nets using transformations, in Advances in Petri Nets,
edited by G. Goos and J. Hartmanis. Lect. Notes Comput. Sci. 222 (1985).

[2] E. Best, R. Devillers, M. Koutny, The box algebra = Petri nets + process expressions.
Inform. Comput. 178 (2002) 44–100.

[3] L. Czaja, Making Nets Abstract and Structured, in Advances in Petri Nets, edited by G.
Goos and J. Hartmanis. Lect. Notes Comput. Sci. 222 (1985) 181–202.

[4] L. Czaja, Equations for message passing. Fund. Inform. 72 (2006) 81–93.
[5] L. Czaja, Interpreted nets. Fund. Inform. 79 (2007) 283–293.
[6] P. Degano, J. Meseguer and U. Montanari, Axiomatising the algebra of net computations

and processes. Acta Inform. 33 (1996) 641–667.
[7] J. Engelfriet, Branching processes of Petri nets. Acta Inform. 28 (1991) 575–591.
[8] R. Gorrieri, Refinement, atomicity and transactions for process description languages. Ph.D.

Thesis. Dipartimento di Informatica, Universita di Pisa, TD - 2/91 (1991).
[9] C.A.R. Hoare, Notes on Communicating Sequential Processes. Oxford University Comput-

ing Laboratory Technical Monograph PRG-33 (1983).
[10] K. Kuratowski and A. Mostowski, Set Theory. North Holland, Amsterdam, PWN, Warsaw

(1967).

284 L. CZAJA

[11] A. Mazurkiewicz, Semantics of concurrent systems: a modular fixed point trace approach.
Internal Report, Institute of Applied Mathematics and Computer Science, University of
Leiden, The Netherlands (1984).

[12] A. Mazurkiewicz, Introduction to Trace Theory, in The Book of Traces, edited by V. Diekert
and G. Rozenberg, World Scientific (1995) 3–41.

[13] J. Meseguer and U. Montanari. Petri nets are monoids. Inform. Comput. 88 (1990) 105–155.
[14] J. Meseguer, U. Montanari and V. Sassone, On the Semantics of Place/Transition Petri

Nets. Dipartimento di Informatica Universita di Pisa, TR - 27/92 (1992).
[15] R. Milner, Communication and Concurrency. International Series in Computer Science,

Prentice Hall (1989).
[16] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. PWN, Warsaw (1968).
[17] W. Reisig, Petri Nets, An Introduction. EATCS Monographs on Theoretical Computer

Science, Springer Verlag (1985).
[18] M.H. Stone, The theory of representations for Boolean algebras. Trans. Amer. Math. Soc.

40 (1936) 37–111.
[19] H. Wimmel and L. Priese, Algebraic characterisation of Petri net pomset semantics, CON-

CUR’97: Concurrency Theory. Lect. Notes Comput. Sci. 1243 (1997) 403–420.
[20] J. Winkowski, An algebraic description of system behaviours. Theoret. Comput. Sci. 21

(1982) 315–340.
[21] G. Winskel, Petri nets, algebras, morphisms and compositionality. Inform. Comput. 72

(1987) 197–238.

Communicated by D. Niwinski.
Received August 3, 2006. Accepted March 2, 2007.

	Introduction
	Labelled net structures and their compositions
	Labelled net structure
	Synchronised union () of net structures
	Synchronised intersection () of net structures
	Synchronised difference () of net structures
	Renaming of place names and transition labels

	Lattice of net structures
	Representation theorems for net structures
	Final remarks
	References

