
RAIRO-Theor. Inf. Appl. 42 (2008) 335–360 Available online at:

DOI: 10.1051/ita:2007038 www.rairo-ita.org

STATE COMPLEXITY OF CYCLIC SHIFT ∗

Galina Jirásková
1

and Alexander Okhotin
2

Abstract. The cyclic shift of a language L, defined as shift(L) =
{vu | uv ∈ L}, is an operation known to preserve both regularity and
context-freeness. Its descriptional complexity has been addressed in
Maslov’s pioneering paper on the state complexity of regular language
operations [Soviet Math. Dokl. 11 (1970) 1373–1375], where a high
lower bound for partial DFAs using a growing alphabet was given. We
improve this result by using a fixed 4-letter alphabet, obtaining a lower
bound (n − 1)! · 2(n−1)(n−2), which shows that the state complexity of

cyclic shift is 2n2+n log n−O(n) for alphabets with at least 4 letters. For

2- and 3-letter alphabets, we prove 2Θ(n2) state complexity. We also
establish a tight 2n2 + 1 lower bound for the nondeterministic state
complexity of this operation using a binary alphabet.

Mathematics Subject Classification. 68Q45, 68Q19.

1. Introduction

Cyclic shift is a unary operation on formal languages defined as shift(L) =
{vu | uv ∈ L} and occasionally studied since the 1960s. As it can be naturally
expected, the cyclic shift of every regular language is regular as well, and proving
that is a good exercise in finite automata theory [11], Exercise 3.4(c). Another less
expected property is that the context-free languages are also closed under cyclic
shift. Three independent proofs of this result are known: the proof by Oshiba [19]

Keywords and phrases. Finite automata, descriptional complexity, cyclic shift.

∗ This paper has been presented at the Seventh Workshop on Descriptional Complexity of
Formal Systems (DCFS 2005) held in Como, Italy on June 30–July 2, 2005.
1 Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovakia;

jiraskov@saske.sk

Supported by the VEGA Grants no. 2/3164/23 and no. 2/6089/26.
2 Academy of Finland and Department of Mathematics, University of Turku, Turku 20014,
Finland; alexander.okhotin@utu.fi
Supported by the Academy of Finland under grants 206039 and 118540.

Article published by EDP Sciences c© EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007038
http://www.rairo-ita.org
http://www.edpsciences.org

336 G. JIRÁSKOVÁ AND A. OKHOTIN

is based upon the representation of a context-free language as a homomorphic
image of a Dyck language intersected with a regular set; Maslov [18] uses push-
down automata; Hopcroft and Ullman ([11], Exercise 6.4(c)) directly transform a
context-free grammar to another grammar generating its cyclic shift. In contrast,
it is easy to prove that neither linear context-free nor deterministic context-free
languages are closed under this operation.

The number of states in a deterministic finite automaton (DFA) needed to rec-
ognize the cyclic shift of an n-state DFA language has been addressed in Maslov’s
pioneering paper on the state complexity of operations on regular languages [17].
In that paper, which appeared in 1970 and unfortunately remained unnoticed, the
state complexity of quite a few operations on DFAs with partially defined tran-
sition functions has been determined. In particular, Maslov obtains tight upper
bounds on the state complexity of union, intersection, concatenation and star, as
well as asymptotic estimations for several less common operations, among them
the cyclic shift.

The systematic study of the state complexity of operations on regular languages
began only about twenty years later in the works of Birget [2,3] and Yu et al. [23].
Unlike Maslov, who considered DFAs with partially defined transition functions,
the contemporary research assumes complete automata; however, the results on
the basic operations differ from Maslov’s results by at most 1 state [17,23]. The
new study of the state complexity got a considerable following. State complex-
ity of numerous operations was investigated: in particular, Câmpeanu et al. [5]
determined the state complexity of shuffle, Domaratzki [6] studied proportional
removals, while Salomaa et al. [20] investigated the reversal (mirror image) in dif-
ferent cases. A recent trend is the study of the state complexity of combinations of
basic operations, initiated by Salomaa et al. [21]. The state complexity of various
operations with respect to nondeterministic finite automata was researched in the
works of Holzer and Kutrib [10] and Jirásková [16]. Many authors also considered
the special cases of one-letter alphabets and of finite languages. Comprehensive
surveys of the field were given by Yu [22] and by Hromkovič [14].

In the recent research, many operations on DFAs, such as concatenation [23],
star [23], shuffle [5] and reversal [20], were found to be quite hard, in the sense that
their state complexity is exponential in a linear function of the sizes of the original
DFAs. In this context it is interesting to observe that the earlier studied cyclic
shift operation is, in fact, significantly harder. According to Maslov [17], there
exists a sequence of n-state partial DFAs over a growing alphabet of size 2n − 2,
such that their cyclic shift requires at least (n−2)n−2 ·2(n−2)2 states. This implies
a (n − 3)n−3 · 2(n−3)2 lower bound for DFAs with a complete transition function.
Unfortunately, no proof of this fact was published due to space constraints [17].

The current interest in different aspects of descriptional complexity of finite
automata motivates a return to this unusually hard operation and a closer investi-
gation of its state complexity. After giving fairly simple upper bounds, in Section 3
we achieve a lower bound of (n−1)! ·2(n−1)(n−2) using a fixed four-letter alphabet

STATE COMPLEXITY OF CYCLIC SHIFT 337

and DFAs with a complete transition function. Then we extend our construc-
tion to obtain a lower bound of 2n2/9+o(n2) for a binary alphabet. We also study
the nondeterministic state complexity and, in Section 4, determine it precisely.
In Section 5, we report the results of a direct computation of the deterministic
state complexity for up to five states.

2. Constructing finite automata for cyclic shift

The cyclic shift of a language L is defined as shift(L) = {vu | uv ∈ L}. In this
section, we recall the construction of an automaton accepting the cyclic shift of a
given regular language presented by Maslov [17]. Using this construction we get
upper bounds on the state complexity and the nondeterministic state complexity
of cyclic shift.

Let us fix the types of finite automata we consider and the notation we use.
We define a deterministic finite automaton (DFA) as a quintuple (Q, Σ, δ, q0, F),
in which Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → Q is the
transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states. We consider only complete DFAs, that is, the transition function is total.
A nondeterministic finite automaton (NFA) is a quintuple (Q, Σ, δ, q0, F) with
nondeterministic transition function δ : Q × Σ → 2Q; this transition function can
also be defined as δ : Q× (Σ∪{ε}) → 2Q to allow for epsilon transitions, but since
such transitions can be eliminated without increasing the number of states, the
difference between these automata is inessential to us. Another variant of an NFA,
on the contrary, has to be considered separately: these are NFAs with multiple
initial states defined as (Q, Σ, δ, Q0, F), where Q0 ⊆ Q is a set of initial states.

The (deterministic) state complexity of a regular language L is the least number
of states in any DFA accepting L. The nondeterministic state complexity of a
language L is similarly defined as the least number of states in any NFA with a
single initial state accepting L.

Let A = (Q, Σ, δ, q0, F) be an n-state finite automaton, deterministic or nonde-
terministic, with the set of states Q = {q0, q1, . . . , qn−1}. For all i (0 � i � n− 1),
let Bi = (Q, Σ, δ, qi, F) be an automaton with the same states, the same tran-
sitions, and the same accepting states as A, and with the initial state qi. Let
Ci = (Q, Σ, δ, q0, {qi}) be an automaton with the same states, the same transi-
tions, and the same initial state as A, and with the only accepting state qi. Note
that if the automaton A is deterministic, then so are the automata Bi and Ci.

By definition, a string w is in shift(L(A)) if and only if it can be factorized as
w = vu so that uv ∈ L(A). Consider the middle state in the accepting computation
of A on uv, reached after consuming u, and let us reformulate the condition as
follows: there exists a state qi ∈ Q, such that the computation of A on u ends in
state qi, while v is accepted by A starting from qi. The former is equivalent to
u ∈ L(Ci), the latter means v ∈ L(Bi). This leads to the following representation,
in which the union over all i is, in effect, a union over all possible middle states.

338 G. JIRÁSKOVÁ AND A. OKHOTIN

Lemma 1 (Maslov [17]). Let A be a finite automaton with n states and, as de-
scribed above, construct finite automata Bi and Ci (0 � i � n − 1), which are
deterministic if A is deterministic. Then

shift(L(A)) =
n−1⋃
i=0

L(Bi)L(Ci).

Since the deterministic and nondeterministic state complexity of union and con-
catenation is known, this representation gives upper bounds on the deterministic
and nondeterministic state complexity of cyclic shift. First, let us introduce the
notation for the corresponding state complexity functions.

Definition 1. For every k � 1 and n � 1, let fk(n) be the least number, such
that the cyclic shift of the language recognized by any n-state DFA over a k-letter
alphabet can be recognized by an fk(n)-state DFA. Similarly, define gk(n) to be
the least number, such that the cyclic shift of the language recognized by any
n-state NFA over a k-letter alphabet can be recognized by a gk(n)-state NFA.

Let f(n) and g(n) be the corresponding numbers for an arbitrary alphabet,
that is, f(n) = maxk fk(n), g(n) = maxk gk(n). The functions f(n) and g(n)
are the state complexity and the nondeterministic state complexity of cyclic shift,
respectively.

Theorem 1. Let fk(n), gk(n), f(n), g(n) be as defined above, let n � 1. Then

n = f1(n) � f2(n) � . . . � fk(n) � . . . � fnn(n) = f(n) � (n2n − 2n−1)n,

and

n = g1(n) � g2(n) � . . . � gk(n) � . . . � g2n2 (n) = g(n) � 2n2 + 1.

Proof. The upper bounds on the state complexity of union and concatenation of
an m-state DFA language and an n-state DFA language are known to be mn
and m2n − 2n−1, respectively [17,23]. Using the representation from Lemma 1
we get an upper bound of (n2n − 2n−1)n on the state complexity of cyclic shift.
Lemma 1 gives also an upper bound on the nondeterministic state complexity of
this operation, because each concatenation can be done by 2n nondeterministic
states, and hence the union of n such concatenations can be done by 2n2 + 1
nondeterministic states. Thus we have f(n) � (n2n − 2n−1)n and g(n) � 2n2 + 1.

The equalities f1(n) = g1(n) = n hold because the cyclic shift of every unary
language is the same language. For all k � 1, the inequalities fk(n) � fk+1(n)
and gk(n) � gk+1(n) follow by adding dummy letters.

In order to show that fnn(n) = fk(n) for all k � nn, it is sufficient to note that
each symbol corresponds to one of nn different transition tables, and if there are
more than nn symbols, some of them must have identical transition tables. Any
such coincident pairs will coincide in the cyclic shift of the language, hence the
equality of fnn(n) to f(n).

STATE COMPLEXITY OF CYCLIC SHIFT 339

Figure 1. A DFA that requires at least (n − 1)! · 2(n−1)(n−2)

states for its cyclic shift.

In the nondeterministic case, by a similar reasoning, the growth must stop at
k = 2n2

, because the transitions by each letter form a subgraph of the complete
graph over n vertices, and therefore there cannot be more than 2n2

letters with
distinct transition tables. �

3. Deterministic state complexity

In order to determine the asymptotics of the deterministic state complexity
of cyclic shift, we construct an infinite sequence of DFAs {An}n�3 over a fixed 4-
symbol alphabet Σ = {a, b, c, d}, such that An has n states and every deterministic
finite automaton recognizing shift(L(An)) must have at least (n−1)! ·2(n−1)(n−2)

states.

3.1. Hard automata

Each n-th element of the sequence is an automaton An with the set of states
Q = {0, 1, . . . , n− 1}, of which 0 is the initial state and n− 1 is the only accepting
state. The transitions by each of the four symbols are defined as follows, while the
entire automaton is given in Figure 1.

δ(i, a) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i = 0,
i + 1 if 1 � i � n − 3,

1 if i = n − 2,
n − 1 if i = n − 1,

δ(i, b) =

⎧⎨
⎩

0 if i = 0,
i + 1 if 1 � i � n − 2,

1 if i = n − 1,

δ(i, c) =

⎧⎨
⎩

1 if i = 0,
0 if i = 1,
i if i � 2,

δ(i, d) =
{

0 if i � n − 2,
1 if i = n − 1.

In order to argue that the minimal DFA accepting shift(L(An)) must have many
states, we consider a 2n2-state NFA with multiple initial states recognizing this
language and show that the subset construction applied to this NFA yields many
pairwise inequivalent subsets.

340 G. JIRÁSKOVÁ AND A. OKHOTIN

Figure 2. Construction of an NFA for shift(L(An)).

The NFA is constructed generally according to the representation given by
Lemma 1. The states of this NFA shall be named using double subscripts, and
we shall always omit the comma between these subscripts: for example, a name
qin−1 means subscripts i and n − 1. The set of states of the NFA is Q0 ∪ P0 ∪
Q1∪P1∪· · ·∪Qn−1∪Pn−1, where Qi = {qi0, . . . , qin−1} and Pi = {pi0, . . . , pin−1}
(0 � i � n− 1) are 2n copies of Q. The internal transitions within each Qi and Pi

are defined exactly as in the DFA An. In addition, there is an ε-transition from
each qin−1 to pi0 (0 � i � n − 1). The initial states are {q00, q11, . . . , qn−1n−1},
while the set of accepting states is {p00, p11, . . . , pn−1n−1}.

This construction of an NFA is illustrated in Figure 2. Note that each pair
(Qi, Pi) represents a concatenation of two DFAs, Bi and Ci in Lemma 1, and the
whole automaton recognizes the union of n such concatenations.

3.2. Reachable subsets

Having defined an NFA for shift(L(An)), see Figure 2, let us consider the DFA
obtained out of this NFA using the subset construction. We shall refer to the states
of this DFA as “subsets” (of the set of states of the original NFA), and we shall
be concerned with the reachability and inequivalence of these subsets.

By reachability we mean reachability from the initial subset, which is
{q00, q11, . . . , qn−1n−1, pn−10} (state pn−10 is there because of an ε-transition from
qn−1n−1). We first prove the reachability of (n− 1)! · 2(n−1)(n−2) different subsets
via strings over the symbols {a, b, c}.

These symbols have one thing in common: the transitions by each of them form
a permutation of the set of states. This ensures the following property.

STATE COMPLEXITY OF CYCLIC SHIFT 341

Lemma 2. For every string w ∈ {a, b, c}∗, the subset reached from the initial
subset {q00, q11, . . . , qn−1n−1, pn−10} by w is of the form {q0k0 , q1k1 , . . . , qn−1kn−1}∪
P , where (k0, . . . , kn−1) is a permutation of (0, . . . , n − 1) and P ⊆ {pij | 0 � i �
n − 1, 0 � j � n − 1, j �= ki}.
Proof. The proof is by induction on the length of w. The basis holds, since the
initial subset is of the required form. For the induction step, consider a string ws,
where w ∈ {a, b, c}∗ and s ∈ {a, b, c}. By the induction hypothesis, the subset Sw

reached from the initial subset by w is of the above form for some permutation
(k0, . . . , kn−1) and for some set P . The subsequent transition by s leads to the
subset Sws = {q0δ(k0,s), . . . , qn−1δ(kn−1,s)} ∪ P ′ for some P ′ ⊆ {pij | 0 � i �
n − 1, 0 � j � n − 1}. The vector (δ(k0, s), . . . , δ(kn−1, s)) is a permutation as a
composition of two permutations, namely (k0, . . . , kn−1) and the transition table
by s. It remains to prove that piδ(ki,s) /∈ P ′ for every i (0 � i � n − 1).

Consider how piδ(ki,s) could appear in P ′. If piδ(ki,s) = piδ(j,s) for some pij ∈ P ,
then, since the transitions by s form a permutation, ki = j. Therefore, piki ∈ P ,
which, by the induction hypothesis, cannot be the case.

The other seemingly possible way to obtain piδ(ki,s) is by an ε-transition from
qin−1. Then qin−1 must belong to Sws, that is, qiδ(ki,s) = qin−1, and thus δ(ki, s) =
n − 1. On the other hand, the ε-transition from qin−1 goes to pi0, and hence
piδ(ki,s) = pi0, which implies δ(ki, s) = 0 �= n − 1. The contradiction obtained
proves this case impossible. �

This property relies only upon all symbols being permutations. Using the spe-
cific form of the transition tables for a, b and c, let us strengthen this property for
a limited class of accessing strings, in which the symbols c occur in pairs only.

Lemma 3. Assume w ∈ {a, b, cc}∗. Then the subset reachable from the ini-
tial subset via w contains q00 and is disjoint from P0, i.e., it is of the form
{q00, q1k1 , . . . , qn−1kn−1}∪P , where (k1, . . . , kn−1) is a permutation of (1, . . . , n−1)
and P ⊆ {pij | 1 � i � n − 1, 0 � j � n − 1, j �= ki}.
Proof. The induction is straightforward: q00 is in the initial subset, the transitions
by a and b leave q00 as it is, while the transitions by cc lead q00 to q01 and back to
q00. The state q0n−1 is thus never visited, and therefore none of the states from
P0 can appear in the subset reached by w. �

Lemma 3 gives a necessary form of subsets reachable via {a, b, cc}∗. The main
result of this subsection is that all subsets of this form that contain the states
p10, p20, . . . , pn−10 are reachable. Let us refer to these subsets as target subsets :

Definition 2. For every permutation k = (k1, . . . , kn−1) of (1, . . . , n− 1) and for
every set P ⊆ {pij | 1 � i � n − 1, 1 � j � n − 1, j �= ki}, the subset

S(k, P) = {q00, q1k1 , q2k2 , . . . , qn−1kn−1} ∪ {p10, p20, . . . , pn−10} ∪ P,

is called a target subset.

342 G. JIRÁSKOVÁ AND A. OKHOTIN

Figure 3. Subsets represented as diagrams.

Denote composition of permutations by k ◦ � = (k�1 , . . . , k�n−1), and let I =
(1, . . . , n−1) be the identity permutation. Define an application of a permutation
k to a subset P ⊆ {pij | 1 � i, j � n − 1} as kP = {pikj | pij ∈ P}.
Lemma 4. Every target subset S(k, P) is reachable from the initial subset via
some string in {a, b, cc}∗.

There are (n − 1)! · 2(n−1)(n−2) target subsets, since (n − 1)! is the number of
permutations of n− 1 elements, and, for each permutation, P can be an arbitrary
subset of a set of cardinality (n− 1)(n− 2). The proof of Lemma 4 is given in the
rest of this subsection.

Finding an accessing string for any target subset can be regarded as a combi-
natorial puzzle. Our task is to reach any given target subset–position from the
fixed start position, which is essentially the same problem as reaching a fixed end
position from an arbitrarily chosen initial position, as in the well-known fifteen
puzzle and Rubik’s cube. In accordance to this puzzle analogy, let us represent our
subsets in the form of diagrams.

Consider the 2n2-state NFA in Figure 2, the subsets of which we consider. Fol-
lowing the arrangement of states in that figure, a subset can be simply represented
as an n × 2n matrix of bits, such as the one shown in Figure 3i that corresponds
to the initial subset {q00, q11, q22, q33, q44, p40} in the case n = 5. The elements qij

will always be shown with circles, while crosses are used for pij .
These diagrams can be much improved, if we notice that, according to Lemma 2,

for any subset reachable via strings in {a, b, c}∗, a state qij ’s being in this subset
necessarily implies that pij is not there. In other words, each circle in the left part
of the matrix implies an empty square in the corresponding place in the right part.
This allows us to overlap the left and the right n × n submatrices to form n × n
diagrams, such as the one for the initial subset shown in Figure 3ii. This is the
form of diagrams we shall use to illustrate all the following constructions.

The rules of our combinatorial puzzle can be stated as follows. Given the initial
position shown in Figure 3ii, one can proceed using moves of the following three
types corresponding to the first three symbols of the alphabet:

• the move a cyclically rotates columns 1, 2, . . . , n − 2, without touching
columns 0 and n − 1;

• b rotates columns 1, 2, . . . , n − 2, n− 1, leaving column 0 intact;
• c swaps columns 0 and 1, leaving the rest of the columns as they are.

STATE COMPLEXITY OF CYCLIC SHIFT 343

After every move, the circle in the rightmost column n − 1 sets a cross in the
leftmost position in the same row. These rules are shown in Figure 3iii. The task
is to find a sequence of moves leading to every position, such as in Figure 3iv,
for every permutation of circles (except the fixed circle in the upper left corner,
corresponding to q00) and for every combination of crosses and empty squares in
the grey area.

Let us now construct a few sequences of moves (that is, strings in {a, b, cc}∗)
that do useful transformations of positions. The solution for the puzzle could then
be obtained as a combination of these sequences.

The first type of sequences implements an arbitrary permutation of the columns
1, . . . , n− 1 without touching the column 0. This can be done using a and b only.

Lemma 5 (Sequence for a permutation). For every permutation k =
(k1, . . . , kn−1) of {1, . . . , n − 1} there exists a string u ∈ {a, b}∗, such that ev-
ery target subset S(�, P) goes to the target subset S(k ◦ �, kP) upon reading u.

Proof. Let us start from the particular case when the given permutation swaps
m − 1 ↔ m for some m (2 � m � n − 1), leaving the other states as they are.

Claim I. Suppose km−1 = m, km = m − 1, and ki = i for all i /∈ {m, m − 1}.
Then this permutation is implemented by um = bn−m−1abm−1.

Let us take n = 5 and m = 3 and see how the string u3 = babb implements the
permutation 2 ↔ 3:

The prefix bn−m−1 moves the circles to be swapped into columns n − 2 and
n− 1, then the symbol a swaps these circles, and finally bm−1 rotates the columns
back to their original order.

To prove Claim I formally, consider the computation of the original DFA An

on the string um starting from each of its states:

• 0 remains in 0, since δ(0, a) = δ(0, b) = 0;
• each j (with 0 < j < m − 1) goes to j + n − m − 1 < n − 2 by bn−m−1,

then to j + n − m by a, to n − 1 by bm−j−1, then to 1 by b, and to j by
bj−1;

• m − 1 goes to n − 2 by bn−m−1, to 1 by a, and then to m by bm−1;
• m goes to n− 1 by bn−m−1, remains in n− 1 by a, and proceeds to m− 1

by bm−1;
• every j > m goes to n − 1 by bn−1−j, to 1 by b, and to j − m by bj−m−1,

then to j − m + 1 by a, and finally to j by bm−1.

344 G. JIRÁSKOVÁ AND A. OKHOTIN

Let i and i′ be the numbers, such that �i = m − 1 and �i′ = m. Now, for each
state of the NFA in the subset
S(�, P) = {q00, q1�1 , . . . , qim−1, . . . , qi′m, . . . , qn−1�n−1} ∪ {p10, . . . , pn−10} ∪ P,

we can tell where it gets by bn−m−1abm−1. Of the two underlined states, qim−1

goes to qim and qi′m goes to {qi′m−1, pi0}. The state q00 goes to q00. Each qij

(0 < j < m − 1) goes to {qij , pi0}, and each qij (j > m) goes to {qij , pi0} as well.
Similarly, pi0 goes to pi0 (for all i); pim−1 goes to pim; pi′m goes to pi′m−1; pij

(j �= m, m − 1) remains in pij . Assembling these states together, we obtain the
subset reached from S(�, P) via bn−m−1abm−1, and it is easy to check that it is
exactly
{q00, q1�1 , . . . , qim, . . . , qi′m−1, . . . , qn−1�n−1} ∪ {p10, . . . , pn−10} ∪ {pikj | pij ∈ P}

= S(k ◦ �, kP).
This completes the proof of Claim I.

Claim II. Let k = (k1, . . . , kn−1) and k′ = (k′
1, . . . , k

′
n−1) be permutations, and

assume that a string w implements k and a string w′ implements k′ as defined in
the statement of the lemma. Then k′ ◦ k is implemented by the string ww′.

By assumption, the automaton moves from a target subset S(�, P) to S(k◦�, kP)
by w, and from there to S(k′ ◦ (k ◦ �), k′(kP)) by w′. Composition of permutations
is associative, hence k′ ◦ (k ◦ �) = (k′ ◦ k) ◦ �. It is easy to see that k′(kP) =
{pik′

kj
| pij ∈ P} = (k′ ◦ k)P . Therefore, S(�, P) goes to S((k′ ◦ k) ◦ �, (k′ ◦ k)P) by

ww′, which proves Claim II.
Let us state the following well-known fact without a proof:

Claim III. Every permutation can be represented as a composition of permutations
k(m) of the form m − 1 ↔ m.

Now the lemma can be proved in the case of an arbitrary permutation k. Fol-
lowing Claim III, let m1, . . . , mt (t � 0, 2 � mi � n − 1) be the numbers,
such that k = k(mt) ◦ . . . ◦ k(m1). According to Claim I, each k(m) is imple-
mented by um = bn−m−1abm−1, and therefore, by Claim II, the concatenation
w = um1 . . . um�

implements k. This completes the proof. �
Lemma 6 (Sequence for setting a bit). For every state pij such that 1 � i � n−1,
1 � j � n − 1 and i �= j, there exists a string wij such that every target subset
S(I, P) goes to the target subset S(I, P ∪ {pij}) upon reading wij .

Proof. First consider a special case of i = n−1, j = 1. This square can be filled by
doing the move c twice (that is, the bit pn−11 can be set via the string wn−1,1 = cc)
as follows:

STATE COMPLEXITY OF CYCLIC SHIFT 345

The first c exchanges columns 0 and 1, moving the empty square from column 1
to column 0, where it is immediately filled, because the circle in its line is in
position n−1, or, in other words, qn−1n−1 is in S(I, P). The second c restores the
order of columns, moving the filled square back to its original position in column 1.
No other squares are altered.

The above construction depends upon the particular configuration in row n − 1:
the bit to be set is in column 1 and the circle is in the last column. This config-
uration can be reproduced for any other bit by permuting columns 1, . . . , n − 1.
Let pij (1 � i � n − 1, 1 � j � n − 1, i �= j) be an arbitrary bit that needs to be
set. Consider a permutation k = (k1, . . . , kn−1), such that ki = n − 1 and kj = 1
(that is, i is mapped to n−1 and j is mapped to 1), while the rest of the elements
are set arbitrarily. Denote the inverse of k by k−1. Let x be the string given by
Lemma 5 for k and let y be the string given by Lemma 5 for k−1. Define wij as
xccy.

Let us see how such a string sets the bit p32 in the case n = 5. The first
permutation {3 ↔ 4, 2 ↔ 1} moves the empty square and the circle in line 3 to
the same position as in the above example. Then cc has the same effect as in that
example. Afterwards, an application of the inverse permutation {3 ↔ 4, 2 ↔ 1}
(which in this case coincides with the first permutation) restores the order of the
columns.

Now let us formally prove that S(I, P) goes to S(I, P ∪ {pij}) by xccy. By
Lemma 5, S(I, P) goes to
S(k, kP) = {q00, q1k1 , . . . , qin−1, . . . , qj1, . . . , qn−1kn−1} ∪ {p10, p20, . . . , pn−10}∪

∪{pskt | pst ∈ P}

by the string x. Then, by the first c (0 ↔ 1), we proceed to
{q01, q1k1 , . . . , qin−1, . . . , qj0, . . . , qn−1kn−1} ∪ {p11, p21, . . . , pn−11}∪

∪{psδ(kt,c) | pst ∈ P} ∪ {pi0},

and next, by the second c (0 ↔ 1), to
{q00, q1k1 , . . . , qin−1, . . . , qj1, . . . , qn−1kn−1} ∪ {p10, p20, . . . , pn−10}∪

∪{psδ(δ(kt,c),c)︸ ︷︷ ︸
pskt

| pst ∈ P} ∪ {pi1} = S(k, kP ∪ {pi1}).

The last string y reverts the permutation: according to Lemma 5, S(k, kP ∪{pi1})
goes to

S(k−1 ◦ k, k−1kP ∪ k−1{pi1}) = S(I, P ∪ {pij}),
and this completes the proof of the lemma. �

346 G. JIRÁSKOVÁ AND A. OKHOTIN

Now we have sufficient tools to prove the reachability of (n − 1)! · 2(n−1)(n−2)

subsets.

Proof of Lemma 4. Starting from the initial subset

{q00, q11, q22, . . . , qn−1n−1} ∪ {pn−10},

let us first reach the target subset

S(I, ∅) = {q00, q11, q22, . . . , qn−1n−1} ∪ {p10, p20, . . . , pn−10},

which can be done via the string bn−1.
Let k−1 be the inverse of the permutation k = (k1, . . . , kn−1), let P ′ = k−1P .

We now proceed with setting the bits in P ′ one by one. Consider every pij ∈ P ′.
Then pikj ∈ P and, since S(k, P) is a target subset, kj �= ki. Hence j �= i, which
makes Lemma 6 applicable to all target subsets S(I, P̃ ′) with P̃ ′ ⊆ P ′. Let wij be
the string given by Lemma 6 for each pij . Via the concatenation of all such wij

we reach the subset

S(I, P ′) = {q00, q11, q22, . . . , qn−1n−1} ∪ {p10, p20, . . . , pn−10} ∪ k−1P.

Finally, let x be the string given by Lemma 5 for k. By x, we reach

S(k, kP ′) = S(k, P) = {q00, q1k1 , q2k2 , . . . , qn−1kn−1} ∪ {p10, p20, . . . , pn−10} ∪ P,

and the proof of the lemma is complete. �

3.3. Inequivalence of subsets

We now prove pairwise inequivalence of all target subsets, which were shown
to be reachable in Lemma 4. To do this we first associate a distinct string with
each state pij (1 � i, j � n− 1), such that this string is accepted by the NFA only
from pij . The same will be done for the states qij (1 � i, j � n − 1). Then, the
inequivalence of the subsets will follow immediately.

Lemma 7. For every i and j (1 � i � n−1, 1 � j � n−1), the string bn−1−jdbi−1

is accepted by the NFA from state pij, but is not accepted from any other state in
{q00} ∪ {qij | 1 � i � n − 1, 1 � j � n − 1} ∪ {pij | 1 � i � n − 1, 0 � j � n − 1}.
Proof. State pij goes to state pin−1 by the string bn−1−j , then to state pi1 by d,
and, finally, to accepting state pii by the string bi−1. This case is illustrated in
Figure 4a.

Let us see how the NFA rejects this string from the rest of the states mentioned
in the lemma. As shown in Figure 4b, every state pi� (0 � � � n − 1) with � �= j
goes to a state pi�′ with �′ �= n − 1 by the string bn−1−j , then to state pi0 by
d, and remains in non-accepting state pi0 upon reading bi−1. Similarly, for every
1 � k � n−1 and 0 � � � n−1, where � �= j, state pk� goes to pk0 by bn−1−jdbi−1.

STATE COMPLEXITY OF CYCLIC SHIFT 347

Figure 4. Acceptance of bn−1−jdbi−1 from pij and only from pij .

The case of a state pkj , where 1 � k � n − 1 and k �= i, is illustrated in
Figure 4c: similarly to Figure 4a, pkj goes to pki by bn−1−jdbi−1, but unlike state
pii, pki is not an accepting state.

Let 1 � k � n − 1. Every state qk�, where 1 � j < � � n − 1, goes to state
qkn−1 by the string bn−1−�; from this point, one can either go to pk0 by the epsilon
transition and remain there until the remainder of the string is consumed, or one
can proceed to qk�−j by b�−j (consider that � − j < n − 1) then to qk0 by d, and
read the rest of the string (bi−1) while remaining in this state. This is shown in
Figure 4d, and since neither pk0 nor qk0 is accepting, the input is rejected. The
case of states qk�, where 1 � � < j, is similar to that, except that pk0 cannot be
reached: state qk� goes to qkn−1−j+� by bn−1−j (note that n − 1 − j + � < n− 1),
then to qk0 by d and remains in non-accepting state qk0 upon reading bi−1. For
� = j, the computation proceeds as illustrated in Figure 4e: qkj goes to qkn−1 by
bn−1−j and then either proceeds by an epsilon transition to pk0, where the rest of
the string is consumed, or by d to qk1, and then to qki by bi−1 (and, if i = n − 1,
then also to pk0). Again, neither qki nor pk0 is accepting.

Finally, upon reading the string bn−1−jdbi−1, state q00 remains in q00. �

Lemma 8. For every i and j (1 � i � n − 1, 1 � j � n − 1), the string
bn−1−jdbn−2ccbn−2dbi−1 is accepted by the NFA from state qij , but is not accepted
from any other state in

{q00} ∪ {qij | 1 � i � n − 1, 1 � j � n − 1} ∪ {pij | 1 � i � n − 1, 0 � j � n − 1}.

348 G. JIRÁSKOVÁ AND A. OKHOTIN

Figure 5. Acceptance of bn−1−jdbn−2ccbn−2dbi−1 from qij .

Proof. Let us first show how one can reach an accepting state from state qij by the
given string. As illustrated in Figure 5, one can go from qij to qin−1 by bn−1−j ,
then to qi1 by d and again to qin−1 by bn−2. Then one can choose to remain in
qin−1 by the first c, then move to pi0 using the ε-transition and proceed to pi1

by the second c. The rest of the computation is deterministic: state pi1 goes to
state pin−1 by the string bn−2, then to pi1 by d and, finally, to accepting state pii

by bi−1.
Consider any state qkj , where k > 0 and k �= i, and let us prove that each com-

putation from this state by the string bn−1−jdbn−2ccbn−2dbi−1 is rejecting. Since
all transitions by d in the DFA An go either to state 0 or to state 1, the NFA, after
reading the string bn−1−jdbn−2ccbn−2d, must be in one of states {qk0, qk1, pk0, pk1}.
Then, after reading bi−1, it proceeds to one of {qk0, qki, pk0, pki}. None of these
states is accepting for k �= i.

Now consider any state qk�, where 1 � k � n − 1 and � �= j. As demonstrated
in Figure 6a, from qk� one may go to qk0 or to pk0 by the string bn−1−jd (pk0 is
possible when � > j), and each of these two states goes to itself by the remaining
suffix bn−2ccbn−2dbi−1. Neither of these states is accepting.

The computation from every state pk� (1 � k � n − 1, 0 � � � n − 1) is
deterministic. By bn−1−jd, state pk� may go either to pk1 (if � = j, see Fig. 6b)
or to pk0 (if � �= j, as in Fig. 6c). Then, in the first case, pk1 goes to state pkn−1

by the string bn−2cc, then to pkn−2 by bn−2, and finally to pk0 by dbi−1; in the
second case, pk0 goes to itself by bn−2ccbn−2dbi−1.

Finally, state q00 goes to itself upon reading bn−1−jdbn−2ccbn−2dbi−1. �
It can now be established that all (n − 1)! · 2(n−1)(n−2) subsets shown to be

reachable in Lemma 4 are pairwise inequivalent.

Lemma 9. Let S(k, P) and S(�, P ′) be two distinct target subsets. Then the
languages recognized by the NFA from S(k, P) and from S(�, P ′) are distinct.

Proof. Recalling the definition of target subsets, we have
S(k, P) = {q00, q1k1 , q2k2 , . . . , qn−1kn−1} ∪ {p10, p20, . . . , pn−10} ∪ P and

S(�, P ′) = {q00, q1�1 , q2�2 , . . . , qn−1�n−1} ∪ {p10, p20, . . . , pn−10} ∪ P ′,

where k = (k1, . . . , kn−1) and � = (�1, . . . , �n−1) are permutations of (1, . . . , n−1),

STATE COMPLEXITY OF CYCLIC SHIFT 349

Figure 6. Rejection of bn−1−jdbn−2ccbn−2dbi−1 from qk�, pkj , pk�.

P ⊆ {pij | 1 � i � n − 1, 1 � j � n − 1, j �= ki} and P ′ ⊆ {pij | 1 � i � n − 1,
1 � j � n − 1, j �= �i}. Since S(k, P) �= S(�, P ′), we have either k �= �, or k = �
and P �= P ′.

Suppose (k1, . . . , kn−1) �= (�1, . . . , �n−1) and let t be a number, such that
kt �= �t. State qtkt is in S(k, P) \ S(�, P ′), and therefore, by Lemma 8, the
string bn−1−ktdbn−2ccbn−2dbt−1 is accepted from S(k, P) and is not accepted from
S(�, P ′).

If k = �, then P �= P ′, that is, there exists a state pij with i > 0 and j > 0,
such that pij ∈ P ∆ P ′. Without loss of generality, assume pij ∈ P \ P ′. Then
pij ∈ S(k, P) \ S(�, P ′), and, according to Lemma 7, the string bn−1−jdbi−1 is
accepted from exactly one of these subsets. �

Hence we have shown the following result.

Theorem 2. For each n � 3, there exists a DFA A of n states defined over a
four-letter alphabet such that every DFA for the cyclic shift of the language L(A)
needs at least (n − 1)! · 2(n−1)(n−2) states.

Let us now apply Stirling’s approximation of the factorial to estimate this func-
tion (all logarithms are base two):

(n − 1)! �
√

2π(n − 1)n− 1
2 e−n+1 � (n − 1)n−1e−n = 2(n−1) log(n−1)−n log e

= 2n log n−n log e−log(n−1)+n log(1− 1
n) � 2n log n−n log e−3 log n.

Therefore, we have the following lower bound on the state complexity of cyclic
shift for a k-letter alphabet (k � 4):

fk(n) � (n − 1)! · 2(n−1)(n−2) � 2n2+n log n−(3+log e)n−3 log n.

350 G. JIRÁSKOVÁ AND A. OKHOTIN

On the other hand, the upper bound for fk given in Theorem 1 can be transformed
to the same exponential form:

fk(n) � (n2n − 2n−1)n = nn2n2
(

1 − 1
2n

)n

� nn2n2
= 2n2+n log n,

where the second inequality relies upon an easily established fact that (1− 1
2n)n < 1

for all n � 1. Altogether we obtain the following bounds on the state complexity
of the cyclic shift, which hold for every alphabet of at least four letters:

Corollary 1. For every k � 4,

2n2+n log n−(3+log e)n−3 log n � fk(n) � 2n2+n log n

holds for all n � 3, and therefore fk(n) = 2n2+n log n−O(n).

3.4. The case of a binary alphabet

The lower bound argument above uses four symbols, and reducing the number
of symbols in the proof even to three seems to be a challenging task. Let us use the
lower bound for an alphabet of four letters to establish quite a high lower bound
for a binary alphabet.

The proof is based upon the following method of computing the cyclic shift of
any language over any alphabet: the strings in the language are encoded using a
binary alphabet, the cyclic shift is applied to the encoding, and then the shifted
codewords are decoded back to the original alphabet. For a suitable code, the
result equals the cyclic shift of the original language.

Lemma 10. Let Σk = {c1, . . . , ck} and let h : Σ∗
k → {a, b}∗ be a homomorphism

defined by h(ci) = ai−1b (for all 1 � i � k − 1) and h(ck) = ak−1. Then, for every
language L over Σk, h−1(shift(h(L))) = shift(L).

Let us note that not every code satisfies the statement of the lemma. For
instance, if h(c1) = aa, h(c2) = ab, h(c3) = ba, then h−1(shift(h({c1c2}))) =
h−1(shift({aaab})) = h−1({aaab, baaa, abaa, aaba}) = {c1c2, c3c1, c2c1, c1c3}.
Lemma 10 is applicable only to the given particular homomorphism.

Proof. If w ∈ shift(L), then there exists a factorization w = uv, such that vu ∈ L.
Then h(vu) ∈ h(L) and hence h(uv) ∈ shift(h(L)). By the definition of inverse
homomorphism, uv ∈ h−1(shift(h(L))).

Conversely, let ci1 · · · cim ∈ h−1(shift(h(L))), and assume that at least one of
cij is not ck (the case of cij = ck for all j is trivial, since h(cm

k) ∈ a∗). Then
h(ci1 · · · cim) ∈ shift(h(L)), and there exists a factorization h(ci1 · · · cim) = xy
(where x, y ∈ {a, b}∗), such that yx ∈ h(L).

Suppose the factorization xy splits the codeword on the boundary between two
symbols: x = h(ci1 · · · ci�

), y = h(ci�+1 · · · cim). Then h(ci�+1 · · · cimci1 · · · ci�
) ∈

h(L), and hence, since h is a code, ci�+1 · · · cimci1 · · · ci�
∈ L. Therefore,

ci1 · · · ci�
ci�+1 · · · cim ∈ shift(L).

STATE COMPLEXITY OF CYCLIC SHIFT 351

Now suppose the factorization splits some �-th symbol in two, that is, x =
h(ci1 · · · ci�−1)z

′ and y = z′′h(ci�+1 · · · cim), where h(ci�
) = z′z′′ for some z′, z′′ ∈

{a, b}+. Note that z′ = at (1 � t < k−1), since all proper prefixes of the images of
symbols under h are of this form. So we have z′′h(ci�+1 · · · cimci1 · · · ci�−1)a

t ∈ h(L),
and this string is assumed to contain at least one b. Consider the rightmost b in
it, which must be either the last symbol in z′′ or the last symbol in some h(cij).
In both cases, the string continues with zero or more images of ck and then with
at. Since no string in h(Σ∗

k) can be of this form, this supposedly problematic case
is in fact impossible. �

Next, we use this encoding to compute the cyclic shift of a given DFA over an
arbitrary alphabet. The given DFA is first subjected to a homomorphic encoding
to the alphabet {a, b}, then a cyclic shift over {a, b} is computed, and finally an
inverse homomorphism is used to get back to the original alphabet. According to
Lemma 10, the resulting DFA will recognize the cyclic shift of the original DFA.

We present this construction in detail, taking note of the number of states in
each automaton constructed. For the homomorphism and for the inverse homo-
morphism, we construct the states directly and obtain their exact number; when
the cyclic shift over {a, b} is taken, we use the corresponding state complexity func-
tion f2 as an upper bound for the number of states. Thus the state complexity of
cyclic shift over an k-letter alphabet is expressed through f2.

Lemma 11. For every n-state DFA A over an k-letter alphabet there exists an
f2(kn − n)-state DFA for the language shift(L(A)).

Proof. Let A = (Q, {c1, . . . , ck}, δ, q0, F) and consider the homomorphism h :
{c1, . . . , ck}∗ → {a, b}∗ defined in Lemma 10. Let us construct a new DFA
B = (Q′, {a, b}, δ′, q′0, F ′) with the set of states Q′ = Q × {1, . . . , k − 1}, of which
q′0 = (q0, 1) is the initial state and F = {(q, 1) | q ∈ F} is the set of accepting
states, and with the transition function δ′ : Q′ × {a, b} → Q′, where, for every
q ∈ Q,

δ′
(
(q, i), a

)
= (q, i + 1) (1 � i < k − 1),

δ′
(
(q, i), b

)
=

(
δ(q, ci), 1

)
(1 � i � k − 1),

δ′
(
(q, k − 1), a

)
=

(
δ(q, ck), 1

)
.

It is easy to prove that this (k − 1)n-state automaton recognizes the language
h(L(A)).

Consider the language shift(L(B)) ⊆ {a, b}∗. By the definition of f2, there
exists a DFA C = (Q̂, {a, b}, δ̂, q̂0, F̂) that recognizes this language and has at
most f2(kn−n) states. Construct a new DFA D = (Q̂, {c1, . . . , ck}, δ̂′, q̂0, F̂) with
the same set of states, the same initial state and the same accepting states, in
which the transition function is defined as δ̂′(q, ci) = δ̂(q, h(ci)). Then L(D) =
h−1(L(C)) = h−1(shift(h(L(A)))), which equals shift(L(A)) by Lemma 10. �

Since, under the conditions of Lemma 11, the language shift(L(A)) may require
up to fk(n) states, the following relation between the state complexity of cyclic
shift over an k-letter alphabet and over a binary alphabet is established.

352 G. JIRÁSKOVÁ AND A. OKHOTIN

Theorem 3. For all k � 3 and n � 1, f2(kn − n) � fk(n).

For k = 4, we obtain f2(3n) � f4(n). Now let us use the lower bound expression
from Corollary 1, simplifying it as follows:

f4(n) � 2n2+n log n−(3+log e)n−3 log n � 2n2
(for all n � 31).

From this we can infer the following lower bound for f2:

f2(n) � f4

(
n

3

)
� 2n2/9 (for all n � 93).

Using the upper bound from Corollary 1, we can estimate the state complexity of
the cyclic shift for binary and ternary alphabets.

Corollary 2. The following bounds hold:

2n2/9 � f2(n) � f3(n) � 2n2+n log n,

where n � 93. Therefore, f2(n) = 2Θ(n2) and f3(n) = 2Θ(n2).

4. Nondeterministic state complexity

We now turn our attention to the nondeterministic state complexity of cyclic
shift. Using the representation in Lemma 1 we obtain upper bounds 2n2 for NFAs
with multiple initial states and 2n2 + 1 for NFAs with a single initial state. The
aim of this section is to show that these bounds are tight for all n � 2 and already
for a binary alphabet. Since the cyclic shift of every unary and of every 1-state
NFA language is the same language, our analysis covers all cases.

To obtain lower bounds on the nondeterministic state complexity of cyclic shift
we use the fooling-set lower-bound technique known from communication complex-
ity theory [1,13] which has often been used in the study of descriptional complexity
of regular languages [2–4,9,12]. After defining a fooling set, we give the lemma
due to Birget [2] describing the fooling-set lower-bound technique. For the sake of
completeness, we recall its proof here.

Definition 3. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a language L if for every i and j in {1, 2, . . . , n},

(I) the string xiyi is in the language L; and
(II) if i �= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 12 (Birget [2]). (Lower-bound argument for nondeterministic state com-
plexity). Let a set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} be a fooling set for
a regular language L. Then every NFA for the language L needs at least n states.

Proof. Let M = (Q, Σ, δ, Q0, F) be an NFA accepting the language L. Consider
any i-th pair (xi, yi). Since xiyi ∈ L, there is a state qi in Q0 and a state pi in Q

STATE COMPLEXITY OF CYCLIC SHIFT 353

Figure 7. An NFA that requires 2n2 + 1 states for its cyclic shift.

such that pi ∈ δ(qi, xi) and δ(pi, yi) ∩ F �= ∅. In other words, pi is a state in an
accepting computation of M on xiyi that is reached after reading xi.

Assume that a fixed choice of pi has been made for every i in {1, 2, . . . , n}.
We prove that the states p1, p2, . . . , pn must be pairwise different. Suppose by
contradiction that pi = pj for some i and j such that i �= j. Then the NFA M
accepts both strings xiyj and xjyi. However, this contradicts the assumption that
the set {(xi, yi) | i = 1, 2, . . . , n} is a fooling set for the language L. Hence the
NFA M has at least n states. �

The next lemma shows that the nondeterministic state complexity of cyclic shift
is at least 2n2.

Lemma 13. For every n � 2, there exists a binary NFA M of n states such that
every NFA for the cyclic shift of the language L(M) needs at least 2n2 states.

Proof. Let n � 2 and let Σ = {a, b}. Define an n-state NFA M = (Q, Σ, δ, q0, F),
where Q = {0, 1, . . . , n − 1}, q0 = 0, F = {n − 1}, and for each q in Q,

δ(q, a) =
{ {q + 1}, if q < n − 1,

∅, if q = n − 1, δ(q, b) =
{

∅, if q = 0,
{q − 1}, if q > 0.

The NFA M is shown in Figure 7. Note that M is partially deterministic. This
automaton computes the difference between the number of a’s and the number of
b’s in the input strings. The automaton M recognizes the language of all strings
w over Σ, such that this difference is between 0 and n − 1 for every prefix of w
and it reaches the value n − 1 for the entire w. Denote this language by L.

To prove the lemma we are going to describe a fooling set for the language
shift(L) of size 2n2.

For every k = 0, 1, . . . , n − 1, consider the following sets of pairs of strings:

Ak = {(bkan−1bn−1ai, bia2n−2bn−1−k) | i = 0, 1, . . . , n − 1}

and

Bk = {(bkan−1bn−1a2n−2bn−j, an−jbn−1−k) | j = 1, 2, . . . , n}.

Let F = A0 ∪ B0 ∪ A1 ∪ B1 ∪ · · · ∪ An−1 ∪ Bn−1. We will prove that the set F
is a fooling set for the language shift(L). We need to show that (I) and (II) in
Definition 3 hold.

354 G. JIRÁSKOVÁ AND A. OKHOTIN

To prove (3), note that for all k = 0, 1, . . . , n− 1, all i = 0, 1, . . . , n− 1, and all
j = 1, 2, . . . , n, the strings

bkan−1bn−1aibia2n−2bn−1−k and bkan−1bn−1a2n−2bn−jan−jbn−1−k

are in the language shift(L) since their cyclic shifts

an−1bn−1−kbkan−1bn−1aibian−1 and an−1bn−jan−jbn−1−kbkan−1bn−1an−1

are accepted by the NFA M and so are in the language L.
To prove (3), we have four cases to consider:

(i) Let (bkan−1bn−1ai, bia2n−2bn−1−k) and (bkan−1bn−1aj, bja2n−2bn−1−k),
where 0 � i < j � n − 1, be two different pairs in Ak. Then the string

bkan−1bn−1aibja2n−2bn−1−k

is not in shift(L) because the only cyclic shift of this string that could
be in L is an−1bn−1−kbkan−1bn−1aibjan−1, which is not accepted by the
NFA M since i < j.

(ii) Let (bkan−1bn−1a2n−2bn−i, an−ibn−1−k) and (bkan−1bn−1a2n−2bn−j ,
an−jbn−1−k), where 1 � i < j � n, be two different pairs in Bk. Then the
string

bkan−1bn−1a2n−2bn−jan−ibn−1−k

is not in shift(L) because the only its cyclic shift that could be in L is
an−1bn−jan−ibn−1−kbkan−1bn−1an−1, which is not accepted by the NFA
M since n − j < n − i.

(iii) Let (bkan−1bn−1ai, bia2n−2bn−1−k) be a pair in Ak and
(bkan−1bn−1a2n−2bn−j, an−jbn−1−k) a pair in Bk. Then the string

bkan−1bn−1a2n−2bn−jbia2n−2bn−1−k

is not in shift(L) since each of its cyclic shifts contains the string a2n−2

as a substring.
(iv) Let (bku, vbn−1−k) be a pair in Ak∪Bk and (b�x, ybn−1−�) a pair in A�∪B�,

where 0 � k < � � n − 1. Then the string

b�xvbn−1−k

is not in shift(L), since each of its cyclic shifts not ending with b contains
the string bn−1+�−k, where n − 1 + � − k > n − 1, as a substring.

Hence the set F is a fooling set for the language shift(L) of size 2n2. By Lemma 12,
every NFA for the language shift(L) needs at least 2n2 states. �

In the following lemma we consider NFAs with a single initial state and show
that in this case one more state is necessary.

STATE COMPLEXITY OF CYCLIC SHIFT 355

Lemma 14. For every n � 2, there exists a binary NFA M of n states such that
every NFA with a single initial state for the cyclic shift of the language L(M) needs
at least 2n2 + 1 states.

Proof. Let M be the NFA described in the proof of Lemma 13 and let L be the
language accepted by this NFA. Let N be any NFA with a single initial state
for the language shift(L) and let q0 be its initial state. Recall that the set F
containing pairs

(bkan−1bn−1ai, bia2n−2bn−1−k) and (bkan−1bn−1a2n−2bn−j , an−jbn−1−k),

where k = 0, 1, . . . , n − 1, i = 0, 1, . . . , n − 1, and j = 1, 2, . . . , n, is a fooling set
for the language shift(L).

Let qki (0 � k � n−1, 0 � i � n−1) be the state in an accepting computation of
the NFA N on the string bkan−1bn−1aibia2n−2bn−1−k that is reached after reading
bkan−1bn−1ai. Similarly, let pkj (0 � k � n − 1, 1 � j � n) be the state in an ac-
cepting computation of the NFA N on the string bkan−1bn−1a2n−2bn−jan−jbn−1−k

that is reached after reading bkan−1bn−1a2n−2bn−j . Since F is a fooling set for
shift(L), the states qki and pkj must be pairwise different. Let us prove that the
initial state q0 must be different from each of these states.

We first show that the initial state q0 is different from each state qki and pkj

with k > 0. Suppose that q0 = qki for some k > 0 and some i. Note that the
string a2n−2bn−1 is in shift(L) and so must be accepted by the NFA N from the
initial state qki. But then the string bkan−1bn−1aia2n−2bn−1 is also accepted by N .
However, this string is not in shift(L) since each of its cyclic shifts not ending
with b contains a substring bn−1+k, where n − 1 + k > n − 1, and the automaton
M in Figure 7 cannot read any such string; on the other hand, no string ending
with b is accepted by M . If q0 = pkj for some k > 0 and some j, then the string
bkan−1bn−1a2n−2bn−ja2n−2bn−1, which is not in shift(L) for the same reason,
would be accepted. In both cases, we obtain a contradiction.

It remains to prove that the initial state q0 is different from each state q0i and
p0j . Suppose that q0 = q0i for some i. The string ba2n−2bn−2 is in shift(L) and
so must be accepted from state q0i. Then the string an−1bn−1aiba2n−2bn−2 is also
accepted by the NFA N . However, this string is not in shift(L), because the only
cyclic shift of this string that could be in L is an−1bn−2an−1bn−1aiban−1 (any other
shift contains a substring an, which M cannot read), but M gets to state n − 1
after reading an−1bn−2an−2, where it cannot read the next a, and hence this shift
is not in L. If q0 = p0j for some j, then the string an−1bn−1a2n−2bn−jba2n−2bn−2,
which is not in shift(L) because each of its cyclic shifts contains a substring a2n−2,
would be accepted. So, we again have a contradiction and the lemma follows. �

Hence we have shown that the nondeterministic state complexity of cyclic shift
is 2n2 + 1 if n � 2. The witness languages are defined over a binary alphabet.
Taking into account our earlier observation that shift(L(M)) = L(M) for every
1-state NFA M and for every M over a unary alphabet, we can further conclude
that for n = 1 the nondeterministic state complexity is 1, while in the case of a

356 G. JIRÁSKOVÁ AND A. OKHOTIN

unary alphabet the corresponding nondeterministic state complexity function is
g1(n) = n. Our results are stated in the following theorem.

Theorem 4. The nondeterministic state complexity gk of cyclic shift for a k-letter
alphabet is

g1(n) = n and gk(n) =
{

1, if n = 1
2n2 + 1, if n � 2 (for every k � 2).

5. Calculations

We have determined the nondeterministic state complexity of cyclic shift ex-
actly, and the worst-case automaton constructed in Lemmata 13–14 has a visible
structure. On the other hand, our results in the deterministic case are only asymp-
totic: the automaton constructed for the lower bound argument is not the hardest,
and the proof does not give any idea of what the hardest DFAs with respect to
the state complexity of cyclic shift are like.

These hardest DFAs can be found using an exhaustive search over all the au-
tomata over a given k-letter alphabet with a given number of states n. For every
DFA, an NFA for its cyclic shift has to be constructed and determinized, and
the result has to be minimized. The greatest number of states in the resulting
automata, denoted fk(n), can thus be calculated.

Another number that can be effectively calculated is the function f(n) =
supk�1 fk(n), that is, the state complexity of the cyclic shift over all alpha-
bets. This function is well-defined according to Theorem 1, which states that
f(n) = fnn(n). Note that the transition table over n states and nn letters is
unique up to a permutation of letters. The automata differ only in whether the
initial state is accepting, and in the number of accepting states among the non-
initial states. The case of all accepting states is trivial, which leaves us with as
few as 2n − 2 automata to consider, and the greatest number of states for their
cyclic shift gives the value of f(n).

Let us report the results of our calculations for small values of n. The greatest
number of states in the minimal DFAs recognizing the cyclic shift of n-state au-
tomata is given in Table 1. The columns f2, f3, f4, f5, f6 correspond to alphabets
of size 2, 3, 4, 5, and 6, respectively. The column f(n) gives the hardest result over
all alphabets, computed by considering 2n− 2 automata as described above. Our
theoretical upper bound (n2n−2n−1)n is included for comparison in the rightmost
column. Among the values in Table 1, our lower bound (n − 1)! · 2(n−1)(n−2) is
applicable to f4(3) = 702 and f4(4) = 1 087 620, which are accordingly proved to
be at least 8 and 384, respectively.

An interesting thing to note is that the state complexity of cyclic shift depends
on the size of the alphabet, while for all previously studied common operations
the worst case automata are defined over a binary alphabet [10,16,23].

The actual hardest automata responsible for the values in the table are provided
in Figures 8–10 (we omit 8 hardest automata for f5(3) and 16 hardest automata

STATE COMPLEXITY OF CYCLIC SHIFT 357

Table 1. State complexity of the cyclic shift: calculated values.

n f2(n) f3(n) f4(n) f5(n) f6(n) f(n) upper bound
1 1 1 1 1 1 1 1
2 5 5 5 5 5 5 36
3 108 511 702 805 832 845 8000
4 20 237 550 283 1 087 620 1 349 340 9 834 496
5 56 817 428 61 917 364 224

for f6(3)). It is important to note that these are all automata with the respective
number of states and over the respective alphabets (modulo permutation of letters)
whose cyclic shift requires this many states. The next hardest automaton in each
case requires fewer states than the number in the table minus one: for instance,
for the alphabet {a, b} and for 3 states the next reachable value below 108 is 89,
and there exist no 3-state automata over this alphabet whose cyclic shift requires
between 90 and 107 states. For 4 states and the binary alphabet the next value
below 20 237 is 19 718.

Such intermediate unreachable values of descriptional complexity are known in
the literature as magic numbers [8,15,24], and, in contrast, it has recently been
shown that there are no such numbers for union and intersection of DFAs [12]. The
existence of magic numbers for cyclic shift of DFAs over a fixed alphabet, which we
observed in our calculations, is in fact very easy to establish theoretically. Note
that the state complexity function of cyclic shift, 2Θ(n2), grows faster than the
number of DFAs with n states, which is 2O(n log n) [7], and therefore, for every fixed
alphabet of k letters, the values of the state complexity of cyclic shift for n-state
automata are dispersed across the range between 1 and fk(n), with large gaps
between some values. Let us note in passing that if we consider magic numbers
for cyclic shift of DFAs over all alphabets, then the above counting argument is
no longer applicable, and the question of the existence of such magic numbers
remains open.

Returning to the hardest automata in Figures 8–10, it is difficult to under-
stand what makes them the hardest. It is no easier to explain the numbers
in the sequences: why 108? why 20237? For the standard language-theoretic
operations, such as the Boolean operations, concatenation, star, etc., the ex-
act values of their state complexity were found to have fairly simple analytical
representations [2,5,16,17,20,22], and the hardest automata have been determined.
It would be very interesting to obtain similar results for cyclic shift.

6. Conclusion

With its 2n2+n log n−O(n) state complexity, cyclic shift is the hardest known
elementary language operation on DFAs. From the point of view of practical
computability, the difference between the cyclic shift and the earlier studied hard
operations on DFAs, such as Kleene star, is evident: the star of a 5-state language

358 G. JIRÁSKOVÁ AND A. OKHOTIN

Figure 8. The hardest DFAs over {a, b}, and how many states
their cyclic shift requires.

Figure 9. The hardest three-symbol DFAs.

STATE COMPLEXITY OF CYCLIC SHIFT 359

Figure 10. The hardest four-symbol DFAs.

over {a, b} requires at most 24 states, while the cyclic shift, in the worst case,
requires 56 million!

In contrast to the hard deterministic case, the nondeterminsitic state complexity
of the cyclic shift has been found to be as low as 2n2 + 1, and an easily under-
standable worst-case automaton over a binary alphabet has been constructed.

Concerning the deterministic state complexity of the cyclic shift, though its
order of magnitude has been determined with a certain precision, nothing else is
known about this integer sequence and about the hardest automata corresponding
to its elements. Only once the form of these automata is explained, one could say
that the cyclic shift of regular languages is entirely understood. Investigating what
makes the hardest automata the hardest is left as a challenging research problem.

Acknowledgements. We are grateful to Vladimir Zakharov for proposing the study, and to
Michael Domaratzki and Kai Salomaa for discussions at the early stage of our research.
We are indebted to Jozef Jirásek, Michal Kunc, Vladimir Prus and Alexei Rybak for
lending machine time for the calculation of f2(5) and f4(4). We wish to thank an anony-
mous referee for careful reading and for the good advice to use the notation S(k,P) in
Section 3.

360 G. JIRÁSKOVÁ AND A. OKHOTIN

References

[1] A.V. Aho, J.D. Ullman and M. Yannakakis, On notions of information transfer in VLSI
circuits, in Proceedings of 15th ACM STOC, ACM (1983) 133–139.

[2] J.-C. Birget, Intersection and union of regular languages and state complexity. Inform.
Process. Lett. 43 (1992) 185–190.

[3] J.-C. Birget, Partial orders on words, minimal elements of regular languages, and state
complexity. Theor. Comput. Sci. 119 (1993) 267–291.

[4] J.-C. Birget, The state complexity of Σ∗L and its connection with temporal logic. Inform.
Process. Lett. 58 (1996) 185–188.

[5] C. Câmpeanu, K. Salomaa and S. Yu, Tight lower bound for the state complexity of shuffle

of regular languages. J. Autom. Lang. Comb. 7 (2002) 303–310.
[6] M. Domaratzki, State complexity and proportional removals. J. Autom. Lang. Comb. 7

(2002) 455–468.
[7] M. Domaratzki, D. Kisman and J. Shallit, On the number of distinct languages accepted by

finite automata with n states. J. Autom. Lang. Comb. 7 (2002) 469–486.
[8] V. Geffert, Magic numbers in the state hierarchy of finite automata, Mathematical Foun-

dations of Computer Science, MFCS 2006, Stará Lesná, Slovakia, August 28–September 1,
2006, Springer, Berlin. Lect. Notes Comput. Sci. 4162 (2006) 312–423.

[9] I. Glaister and J. Shallit, A lower bound technique for the size of nondeterministic finite
automata. Inform. Process. Lett. 59 (1996) 75–77.

[10] M. Holzer and M. Kutrib, Nondeterministic descriptional complexity of regular languages.
Int. J. Found. Comput. Sci. 14 (2003) 1087–1102.

[11] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley (1979).

[12] M. Hricko, G. Jirásková and A. Szabari, Union and intersection of regular languages and
descriptional complexity, in Proceedings of DCFS 2005, Como, Italy, June 30–July 2, 2005,
170–181.

[13] J. Hromkovič, Communication Complexity and Parallel Computing. Springer-Verlag, Berlin,
Heidelberg (1997).

[14] J. Hromkovič, Descriptional complexity of finite automata: concepts and open problems.
J. Autom. Lang. Comb. 7 (2002) 519–531.

[15] K. Iwama, A. Matsuura and M. Paterson, A family of NFAs which need 2n−α deterministic
states. Theor. Comput. Sci. 301 (2003), 451–462.

[16] G. Jirásková, State complexity of some operations on binary regular languages. Theor.
Comput. Sci. 330 (2005) 287–298.

[17] A.N. Maslov, Estimates of the number of states of finite automata. Soviet Mathematics
Doklady 11 (1970) 1373–1375.

[18] A.N. Maslov, Cyclic shift operation for languages. Probl. Inf. Transm. 9 (1973) 333–338.
[19] T. Oshiba, Closure property of the family of context-free languages under the cyclic shift

operation. T. IECE 55D (1972) 119–122.
[20] A. Salomaa, D. Wood and S. Yu, On the state complexity of reversals of regular languages.

Theor. Comput. Sci. 320 (2004) 315–329.
[21] A. Salomaa, K. Salomaa and S. Yu, State complexity of combined operations. Theor. Com-

put. Sci. 383 (2007) 140–152.
[22] S. Yu, State complexity: recent results and open problems. Fund. Inform. 64 (2005) 471–

480.
[23] S. Yu, Q. Zhuang and K. Salomaa, The state complexity of some basic operations on regular

languages. Theor. Comput. Sci. 125 (1994) 315–328.
[24] L. van Zijl, Magic numbers for symmetric difference NFAs. Int. J. Found. Comput. Sci. 16

(2005) 1027–1038.

Communicated by J. Hromkovic.
Received December 6, 2006. Accepted August 17, 2007.

	Introduction
	Constructing finite automata for cyclic shift
	Deterministic state complexity
	Hard automata
	Reachable subsets
	Inequivalence of subsets
	The case of a binary alphabet

	Nondeterministic state complexity
	Calculations
	Conclusion
	References

