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Abstract

It is well known that some of the most basic properties of words, like the com-
mutativity (xy = yx) and the conjugacy (xz = zy), can be expressed as solutions of
word equations. An important problem is to decide whether or not a given equation
on words has a solution. For instance, the equation xmyn = zp has only periodic so-
lutions in a free monoid, that is, if xmyn = zp holds with integers m,n, p ≥ 2, then
there exists a word w such that x, y, z are powers of w. This result, which received a
lot of attention, was first proved by Lyndon and Schützenberger for free groups. In
this paper, we investigate equations on partial words. Partial words are sequences over
a finite alphabet that may contain a number of “do not know” symbols. When we
speak about equations on partial words, we replace the notion of equality (=) with
compatibility (↑). Among other equations, we solve xy ↑ yx, xz ↑ zy, and special cases
of xmyn ↑ zp for integers m,n, p ≥ 2.

Keywords: Equations on words; Equations on partial words; Commutativity; Con-
jugacy; Free monoid.

1 Introduction

An important topic in algorithmic combinatorics on words is the satisfiability problem for
equations on words, that is, the problem to decide whether or not a given equation on the
free monoid has a solution. The problem was proposed in 1954 by Markov [29] and remained
open until 1977 when Makanin answered it positively [28]. However, Makanin’s algorithm
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is one of the most complicated algorithms ever presented and has at least exponential space
complexity [25]. Rather recently, Plandowski showed, with a completely new algorithm, that
the problem is actually in polynomial space [31, 32]. However, the structure of the solutions
cannot be found using Makanin’s algorithm. Even for rather short instances of equations,
for which the existence of solutions may be easily established, the structure of the solutions
may be very difficult to describe. In particular, Hmelevskii proved that the set of solutions
of xyz = zvx cannot be described using only finitely many parameters, contrary to the
case of equations in three unknowns [22] (see Reference [17] for a short, elementary proof of
Hmelevskii’s result).

It is well known that some of the most basic properties of words, like the commutativity
and the conjugacy properties, can be expressed as solutions of word equations. Two words
x and y commute, namely xy = yx, if and only if x and y are powers of the same word,
that is, there exists a word z such that x = zm and y = zn for some integers m and n. Two
words x and y are conjugate if there exist words v and w such that x = vw and y = wv. The
latter is equivalent to the existence of a word z satisfying xz = zy in which case there exist
words v, w such that x = vw, y = wv, and z = (vw)nv for some nonnegative integer n. The
equation xmyn = zp has only periodic solutions in a free semigroup, that is, if xmyn = zp

holds with integers m, n, p ≥ 2, then there exists a word w such that x, y, z are powers of w.
This result, which received a lot of attention, was first proved by Lyndon and Schützenberger
for free groups [27]. Proofs for free semigroups appear in [14, 21, 24].

In this paper, we investigate equations on partial words. When we speak about them,
we replace the notion of equality with the notion of compatibility. A fundamental difference
between equality and compatibility is that the latter is not transitive which makes this
paper’s results on partial words nontrivial adaptations of the corresponding results on words.
Reference [23] presents some motivation from molecular biology for studying this type of
equations on partial words. The contents of our paper are summarized as follows: Section
2 is devoted to reviewing basic concepts on words and partial words. There, we define in
particular the containment relation (⊂) and the compatibility relation (↑) on partial words.
In Section 3, we give a result that expounds on the idea of the specialty of partial words
satisfying the equation xm ↑ yn. This result provides motivation on the conditions for when
x and y are contained in powers of a common word. Section 4 reviews results on the equation
xy ↑ yx on partial words that will be needed in later sections of our paper. In Section 5,
we investigate the conjugacy equation xz ↑ zy on partial words. Our result is based on a
decomposition of partial words x, y, z satisfying xz ↑ zy into x = v0w0, y = wm+1vm+2 and
z = v1w1v2w2 . . . vmwmvm+1 where |vi| = |z| mod |x| and |wi| = |x| − |vi| for all i. We also
study the system of equations z ↑ z′ and xz ↑ z′y. If z = z′, then this implies xz ↑ zy. In
Section 6, the equation x2 ↑ ymz on partial words is solved. This result is the first step for
studying the equation xmyn ↑ zp discussed in Section 7.

2 Preliminaries

Herein lies a brief description of terms and notations used for words and partial words.

2.1 Words

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A are called letters
and any finite sequence over A is called a word over A. The empty word, that is the word
containing no letter, is denoted by ε. For any word u over A, |u| denotes the number of
letters occurring in u and is called the length of u. In particular, |ε| = 0. The set of all
words over A is denoted by A∗. If we define the operation of two words u and v of A∗ by
juxtaposition (or concatenation), then A∗ is a monoid with identity ε. We call A+ = A∗ \{ε}
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the free semigroup generated by A and A∗ the free monoid generated by A. The set A∗ can
also be viewed as

⋃
n≥0 An where A0 = {ε} and An is the set of all words of length n over A.

A word of length n over A can be defined by a total function u : {0, . . . , n− 1} → A and
is usually represented as u = a0a1 . . . an−1 with ai ∈ A. A period of u is a positive integer p
such that ai = ai+p for 0 ≤ i < n− p. For a word u, the powers of u are defined inductively
by u0 = ε and, for any i ≥ 1, ui = uui−1. The reversal of u, denoted by rev(u), is defined
as follows: If u = ε, then rev(ε) = ε, and if u = a0a1 . . . an−1, then rev(u) = an−1 . . . a1a0. A
word u is a factor of the word v if there exist words x, y such that v = xuy. The factor u is
called proper if u 6= ε and u 6= v. The word u is a prefix (respectively, suffix) of v if x = ε
(respectively, y = ε).

A nonempty word u is primitive if there exists no word v such that u = vn with n ≥ 2.
Note the fact that the empty word is not primitive. If u is a nonempty word, then there
exist a unique primitive word v and a unique positive integer n such that u = vn.

2.2 Partial words

A partial word u of length n over A is a partial function u : {0, . . . , n − 1} → A. For
0 ≤ i < n, if u(i) is defined, then we say that i belongs to the domain of u, denoted by
i ∈ D(u), otherwise we say that i belongs to the set of holes of u, denoted by i ∈ H(u).
A word over A is a partial word over A with an empty set of holes (we sometimes refer to
words as full words).

If u is a partial word of length n over A, then the companion of u denoted by u�, is the
total function u� : {0, . . . , n− 1} → A ∪ {�} defined by

u�(i) =

{
u(i) if i ∈ D(u),
� otherwise.

The bijectivity of the map u 7→ u� allows us to define for partial words concepts such
as concatenation, powers, reversals, factors, prefixes, suffixes, etc... in a trivial way. For
instance, the reversal of u is defined by (rev(u))� = rev(u�). The character � 6∈ A is viewed
as a “do not know” character. The word u� = abb�bbcbb is the companion of the partial
word u of length 9 where D(u) = {0, 1, 2, 4, 5, 6, 7, 8} and H(u) = {3}. The length of the
companion of a partial word u, also called the length of u, is denoted by |u|, and the set of
distinct letters in A occurring in u� is denoted by α(u). The set of all partial words over A
with an arbitrary number of holes is denoted by W (A). It is a monoid under the operation
of concatenation with identity ε.

A period of a partial word u is a positive integer p such that u(i) = u(j) whenever
i, j ∈ D(u) and i ≡ j mod p. In this case, we call u p-periodic. The smallest period of u is
called the minimal period of u and is denoted by p(u). A weak period of u is a positive integer
p such that u(i) = u(i+p) whenever i, i+p ∈ D(u). In this case, we call u weakly p-periodic.
The smallest weak period of u is called the minimal weak period of u and is denoted by p′(u).
Note that every weakly p-periodic full word is p-periodic but this is not necessarily true for
partial words. Also even if the length of a partial word u is a multiple of a weak period of
u, then u is not necessarily a power of a shorter partial word.

If u and v are partial words of equal length, then u is said to be contained in v denoted
by u ⊂ v, if all symbols in D(u) are in D(v) and u(i) = v(i) for all i ∈ D(u). The order
u ⊂ v on partial words is obtained when we let � ≺ a and a � a for all a ∈ A.

A partial word u is primitive if there exists no word v such that u ⊂ vn with n ≥ 2.
Note that if v is primitive and v ⊂ u, then u is primitive as well. It was shown in [4] that if
u is a nonempty partial word, then there exist a primitive word v and a positive integer n
such that u ⊂ vn. However uniqueness does not hold as seen with the partial word u where
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u� = �a (here u ⊂ a2 and u ⊂ ba for distinct letters a, b). There, it was also shown that
for partial words u and v, if there exists a primitive word x such that uv ⊂ xn for some
positive integer n, then there exists a primitive word y such that vu ⊂ yn. Moreover, if uv
is primitive, then vu is primitive. These results extend similar results for words [35]. Also,
it is immediate that if u is a primitive partial word, then rev(u) is also primitive.

The partial words u and v are called compatible, denoted by u ↑ v, if there exists a partial
word w such that u ⊂ w and v ⊂ w. We denote by u ∨ v the least upper bound of u and
v. In other words, u ⊂ u ∨ v and v ⊂ u ∨ v and D(u ∨ v) = D(u) ∪ D(v). As an example,
u� = aba��a and v� = a��b�a are the companions of two partial words u and v that are
compatible and (u ∨ v)� = abab�a.

The following lemmas are useful for computing with partial words.

Lemma 1 (Rules [1]) Let u, v, w, x, y be partial words.

Multiplication: If u ↑ v and x ↑ y, then ux ↑ vy.

Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v and x ↑ y.

Weakening: If u ↑ v and w ⊂ u, then w ↑ v.

Lemma 2 (Lemma of Lévi [1]) Let u, v, x, y be partial words such that ux ↑ vy.

• If |u| ≥ |v|, then there exist partial words w, z such that u = wz, v ↑ w, and y ↑ zx.

• If |u| ≤ |v|, then there exist partial words w, z such that v = wz, u ↑ w, and x ↑ zy.

For convenience, we will refer to a partial word over A as a word over the enlarged
alphabet A ∪ {�}, where the additional symbol � plays a special role. This allows us to say
for example “the partial word ab�a�b” instead of “the partial word with companion ab�a�b”.

3 The equation xm ↑ yn on partial words

In this section, we investigate the equation xm ↑ yn on partial words. The equation xm = yn

on words is well known. Indeed, if x and y are words, then xm = yn for some positive integers
m, n if and only if there exists a word z such that x = zk and y = zl for some integers k, l.
When dealing with partial words x and y, if there exists a partial word z such that x ⊂ zk

and y ⊂ zl for some integers k, l, then xm ↑ yn for some positive integers m,n. Indeed, by
the multiplication rule, xl ⊂ zkl and yk ⊂ zkl, showing that xl ↑ yk. For the converse, it is
beneficial to define the following manipulation of a partial word x. For a positive integer p

and an integer 0 ≤ i < p, define x
[
i
p

]
as

x(i)x(i + p)x(i + 2p) . . . x(i + jp)

where j is the largest nonnegative integer such that i + jp < |x|. We shall call this the ith
residual word of x modulo p.

Lemma 3 (Equivalent condition for periodicity) A partial word x is p-periodic if and

only if x
[
i
p

]
is 1-periodic for all 0 ≤ i < p.

Lemma 4 (Equivalent condition for weak periodicity) A partial word x is weakly p-

periodic if and only if x
[
i
p

]
is weakly 1-periodic for all 0 ≤ i < p.
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Using the multiplication and the simplification rules, we can demonstrate the follow-
ing lemma. Consequently, if xm′ ↑ yn′ and gcd(m′, n′) 6= 1, then xm ↑ yn where m =
m′/ gcd(m′, n′) and n = n′/ gcd(m′, n′). And therefore the assumption that gcd(m,n) = 1
may be made without losing generality.

Lemma 5 (Scaling) Let x, y be partial words and let m, n and p be positive integers. Then
xm ↑ yn if and only if xmp ↑ ynp.

Lemma 6 Let x, y be partial words and let m,n be positive integers such that xm ↑ yn with
gcd(m,n) = 1. Call |x|/n = |y|/m = p. If there exists an integer i such that 0 ≤ i < p and

x
[
i
p

]
is not 1-periodic, then D(y

[
i
p

]
) is empty.

Proof. Assume that there is an integer i such that 0 ≤ i < p and x
[
i
p

]
is not 1-periodic. Then

for some j and k such that i + jp and i + kp are in the domain of x,

x(i + jp) 6= x(i + kp)

Now assume that D(y
[
i
p

]
) is not empty, that is, there is a constant l such that

y(i + (l + j)p) 6= �

Since one of the occurrences of y(i + (l + j)p) in yn is compatible with x(i + jp), we have
y(i + (l + j)p) = x(i + jp) and hence

y(i + (l + j)p) ↑ x((i + jp + l′|y|) mod |x|)

for all l′. Now we make the claim that there exists an l′ such that

(i + jp + l′|y|) ≡ (i + kp) mod |x| (1)

Since |y| = mp and |x| = np, (1) becomes

(j + l′m)p ≡ kp mod np

which may be reduced to
k − j ≡ l′m mod n

Since gcd(m, n) = 1, such an l′ exists that satisfies our claim. Therefore

x(i + kp) = x((i + jp + l′|y|) mod |x|) ↑ y(i + (l + j)p) = x(i + jp) (2)

but we assumed earlier that x(i + jp) 6= x(i + kp) and that i + jp and i + kp were both in
the domain of x. Therefore the compatibility relation in (2) is a contradiction. Q.E.D.

Lemma 7 Let x be a partial word, let m, p be positive integers, and let i be an integer such
that 0 ≤ i < p. Then the relation

xm
[
i
p

]
= x

[
i
p

]
x
[
(i − |x|) mod p

p

]
x
[
(i − 2|x|) mod p

p

]
· · · x

[
(i − (m − 1)|x|) mod p

p

]
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holds.

Proof. The proof is by induction on m. Consider the case of m = 2. Note that

x2
[
i
p

]
= x

[
i
p

]
y

for some partial word y. Let k be the largest nonnegative integer such that i + kp < |x|.
Then

y(0) = x(j)

where j = (i + (k + 1)p) mod |x|. Therefore i− j + (k + 1)p = |x| by the definition of k and
so

j = (i− |x|) mod p

Hence y = x
[
j
p

]
= x

[
(i − |x|) mod p

p

]
and the basis follows. Assume the relation holds for m ≤ n.

Then

xn+1
[
i
p

]
= xn

[
i
p

]
x
[
(i − n|x|) mod p

p

]
= x

[
i
p

]
x
[
(i − |x|) mod p

p

]
· · · x

[
(i − (n − 1)|x|) mod p

p

]
x
[
(i − n|x|) mod p

p

]
which proves the lemma. Q.E.D.

Note that for any partial word x and positive integers m, p such that |x| is divisible by p,

xm
[
i
p

]
= (x

[
i
p

]
)m

where 0 ≤ i < p.
The following concept of a “1-pair” of partial words is basic in this paper.

Definition 1 Let x, y be partial words and let m, n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. If for all i ∈ H(x) the word

yn
[

i
|x|

]
= yn(i)yn(i + |x|) . . . yn(i + (m− 1)|x|)

is 1-periodic and for all i ∈ H(y) the word

xm
[

i
|y|

]
= xm(i)xm(i + |y|) . . . xm(i + (n− 1)|y|)

is 1-periodic, then the pair (x, y) is called a 1-pair.

Theorem 1 Let x, y be partial words and let m,n be positive integers such that xm ↑ yn with
gcd(m, n) = 1. If (x, y) is a 1-pair, then there exists a partial word z such that x ⊂ zk and
y ⊂ zl for some integers k, l.

Proof. Since gcd(m, n) = 1, there exists an integer p such that |x|
n

= |y|
m

= p. Now assume

there exists an integer i such that 0 ≤ i < p and x
[
i
p

]
is not 1-periodic. Then by Lemma 6,

i + jp ∈ H(y) for 0 ≤ j < m which by the assumption that (x, y) is a 1-pair implies that

xm
[
i + jp
|y|

]
must be 1-periodic for any choice of j. Note that |y| = mp and similarly |x| = np.

Therefore by Lemma 7,

xm
[
i + jp
mp

]
= x

[
i + jp
mp

]
x
[
(i + jp − |x|) mod mp

mp

]
· · · x

[
(i + jp − (m − 1)|x|) mod mp

mp

]
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Clearly
i + jp− l|x| = i + (j − ln)p

for all l. For 0 ≤ j < m, we claim that {(j − ln) mod m | 0 ≤ l < m} = {0, 1, . . . ,m − 1}.
Indeed, assuming there exist 0 ≤ l1 < l2 < m such that

(j − l1n) ≡ (j − l2n) mod m

we get that m divides (l1−l2)n, and since gcd(m, n) = 1, that m divides (l1−l2), whence l1 =
l2. So there exist j0, j1, . . . , jm−1 such that j0 = j and {j0, j1, . . . , jm−1} = {0, 1, . . . ,m− 1}
and

xm
[
i + jp
mp

]
= x

[
i + j0p

mp

]
x
[
i + j1p

mp

]
· · · x

[
i + jm−1p

mp

]
Since xm

[
i + jp
mp

]
is 1-periodic, there exists a letter a such that for all 0 ≤ k < m,

x
[
i + jkp

mp

]
⊂ amjk

for some integer mjk
. This contradicts our assumption that there is an i for which x

[
i
p

]
is not

1-periodic (here x
[
i
p

]
= x(i)x(i + p) . . . x(i + (n− 1)p) ⊂ an). Therefore x

[
i
p

]
is 1-periodic for

all 0 ≤ i < p. By the equivalent condition for periodicity, this implies that x is p-periodic.
The same argument holds for y, and since xm ↑ yn, the result that there exists a word z of
length p such that x ⊂ zn and y ⊂ zm is proven. Q.E.D.

The example x2 = (a�b)2 ↑ (acbadb)1 = y1 shows that the assumption of (x, y) being a
1-pair is necessary in Theorem 1. Here y(1)y(4) = cd is not 1-periodic and there exists no
partial word z as desired.

Corollary 1 Let x and y be primitive partial words such that (x, y) is a 1-pair. If xm ↑ yn

for some positive integers m and n, then x ↑ y.

Proof. Suppose to the contrary that x 6↑ y. Since (x, y) is a 1-pair, there exists a word z such
that x ⊂ zk and y ⊂ zl for some integers k, l. Since x 6↑ y, we get k 6= l. But then x or y is
not primitive, a contradiction. Q.E.D.

Note that if both x and y are full words, then (x, y) is a 1-pair. Corollary 1 hence implies
that if x, y are primitive full words satisfying xm = yn for some positive integers m and n,
then x = y.

We conclude this section by further investigating the equation x2 ↑ ym on partial words
where m is a positive integer.

Proposition 1 Let x, y be partial words. Then x2 ↑ ym for some positive integer m if and
only if there exist partial words u, v, u0, v0, . . . , um−1, vm−1 such that y = uv,

x = (u0v0) . . . (un−1vn−1)un = vn(un+1vn+1) . . . (um−1vm−1)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, and where one of the following holds:

• m = 2n and u = ε.
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• m = 2n + 1 and |u| = |v|.

Proof. Note that if the conditions hold, then trivially x2 ↑ ym for some positive integer
m. If x2 ↑ ym for some positive integer m, then we consider the cases where m is even
or odd. If m = 2n + 1 for some integer n, then there exist partial words u, v such that
y = uv, x ↑ (uv)nu and x ↑ v(uv)n = (vu)nv. From this, we deduce that |u| = |v|. Now note
that x may be factored as x = (u0v0) . . . (un−1vn−1)un = vn(un+1vn+1) . . . (um−1vm−1) where
ui ↑ u and vi ↑ v for all 0 ≤ i < m, If m = 2n for some n, then x ↑ yn and set u = ε in the
above. Q.E.D.

4 The equation xy ↑ yx on partial words

It is well known that two nonempty words x and y commute if and only if there exists a word
z such that x = zm and y = zn for some integers m,n. When dealing with two nonempty
partial words x and y, the existence of a word z satisfying x ⊂ zm and y ⊂ zn for some
integers m, n certainly implies xy ↑ yx. To extend the converse to partial words, we first
consider xy to have at most one hole.

Theorem 2 (Commutativity one hole [1]) Let x and y be nonempty partial words such
that xy has at most one hole. If xy ↑ yx, then there exists a word z such that x ⊂ zm and
y ⊂ zn for some integers m, n.

As stated in [1], Theorem 2 is false if xy has two holes. Take for example x = �bb and
y = abb�. To extend this theorem to the case when xy has at least two holes, we may
assume |x| ≤ |y|. The extension is based on the concept of xy not being (k, l)-special where
k, l denote the lengths of x, y respectively. For 0 ≤ i < k + l, we define the sequence of i
relative to k, l as seqk,l(i) = (i0, i1, i2, . . . , in, in+1) where i0 = i = in+1 and where

For 1 ≤ j ≤ n, ij 6= i,

For 1 ≤ j ≤ n + 1, ij is defined as

ij =

{
ij−1 + k if ij−1 < l,
ij−1 − l otherwise.

For example, if k = 6 and l = 8, then seq(6,8)(0) = (0, 6, 12, 4, 10, 2, 8, 0). Now, the concept
of (k, l)-special is defined as follows.

Definition 2 ((k, l)-Special [5]) Let k, l be positive integers satisfying k ≤ l and let z be a
partial word of length k + l. We say that z is (k, l)-special if there exists 0 ≤ i < k such that
seqk,l(i) = (i0, i1, i2, . . . , in, in+1) contains (at least) two positions that are holes of z while
z�(i0)z�(i1) . . . z�(in+1) is not 1-periodic.

If k = 6 and l = 8, then z = acbca��cbc�cac is (6, 8)-special since seq6,8(0) contains the
positions 6 and 10 which are in H(z) = {5, 6, 10} while
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z�(0)z�(6)z�(12)z�(4)z�(10)z�(2)z�(8)z�(0) = a�aa�bba

is not 1-periodic.

Theorem 3 (Commutativity arbitrary number of holes [5]) Let x, y be nonempty par-
tial words such that |x| ≤ |y|. If xy ↑ yx and xy is not (|x|, |y|)-special, then there exists a
word z such that x ⊂ zm and y ⊂ zn for some integers m, n.

The concept of {k, l}-special and the following two lemmas will be useful in the sequel.

Definition 3 ({k, l}-Special [10]) Let k, l be positive integers satisfying k ≤ l and let z
be a partial word of length k + l. We say that z is {k, l}-special if there exists 0 ≤ i < k
such that seqk,l(i) satisfies the condition of Definition 2 or the condition of containing two
consecutive positions that are holes of z.

If k = 6 and l = 8, then z = �babab��ababab is {6, 8}-special (but is not (6, 8)-special).
Indeed, seq6,8(0) contains the consecutive positions 0 and 6 that are holes of z.

Lemma 8 ([1]) Let x, y be nonempty words and let z be a partial word with at most one
hole. If z ⊂ xy and z ⊂ yx, then xy = yx.

Lemma 9 ([10]) Let x, y be nonempty words and let z be a non {|x|, |y|}-special partial
word. If z ⊂ xy and z ⊂ yx, then xy = yx.

Note that in Lemma 9, the assumption of z being non {|x|, |y|}-special cannot be replaced
by the weaker assumption of z not being (|x|, |y|)-special. To see this, consider the partial
words x = ababab, y = cbababab, and z = �babab��ababab. Here, z ⊂ xy and z ⊂ yx, but
xy 6= yx.

The concept of (k, l)-special partial word, which relates to commutativity, turned out to
be foundational in the design of our linear time algorithm for testing primitivity on partial
words [5].

5 The equation xz ↑ zy on partial words

In this section, we consider the conjugacy property of partial words. Two partial words x
and y are conjugate if there exist partial words v and w such that x ⊂ vw and y ⊂ wv [10].
It turns out that if the partial words x and y are conjugate, then there exists a partial word
z satisfying the conjugacy equation xz ↑ zy. The equation xz = zy on words is well known.
Indeed, if z is a word and x, y are nonempty words such that xz = zy, then there exist words
v, w satisfying x = vw, y = wv, and z = (vw)nv for some integer n ≥ 0. For partial words,
the next similar result follows via the assumption of xz ∨ zy being |x|-periodic.

Theorem 4 ([10]) Let x, y, z be partial words with x, y nonempty. If xz ↑ zy and xz ∨ zy
is |x|-periodic, then there exist words v, w such that x ⊂ vw, y ⊂ wv, and z ⊂ (vw)nv for
some integer n ≥ 0.
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As noted in [10], if z is a full word, then the assumption xz ↑ zy implies the one of
xz ∨ zy being |x|-periodic and the following corollary holds. Note that Corollary 2 does not
necessarily hold if z is not full even if x, y are full. The partial words x = a, y = b, and
z = �bb provide a counterexample.

Corollary 2 ([10]) Let x, y be nonempty partial words, and let z be a full word. If xz ↑ zy,
then there exist words v, w such that x ⊂ vw, y ⊂ wv, and z ⊂ (vw)nv for some integer
n ≥ 0.

First, we investigate the equation xz ↑ zy on partial words under the missing assumption
of xz ∨ zy being |x|-periodic. The following two results give equivalences for conjugacy.

Theorem 5 Let x, y and z be partial words such that |x| = |y| > 0. Then xz ↑ zy if and
only if xzy is weakly |x|-periodic.

Proof. Let m be defined as b |z||x|c and n as |z| mod |x|. Then let x = v0w0, y = wm+1vm+2

and z = v1w1v2w2 . . . vmwmvm+1 where each vi has length n and each wi has length |x| − n.
We may now align xz and zy one above the other in the following way:

v0 w0 v1 w1 . . . vm−1 wm−1 vm wm vm+1

v1 w1 v2 w2 . . . vm wm vm+1 wm+1 vm+2
(3)

Assume xz ↑ zy. Then the partial words in any column in (3) are compatible by simplifica-
tion. Therefore for all i such that 0 ≤ i ≤ m+1, vi ↑ vi+1 and for all j such that 0 ≤ j ≤ m,
wj ↑ wj+1. Thus xz ↑ zy implies that xzy is weakly |x|-periodic. Conversely, assume xzy is
weakly |x|-periodic. This implies that viwi ↑ vi+1wi+1 for all i such that 0 ≤ i ≤ m. Note
that vm+1wm+1vm+2 being weakly |x|-periodic, as a result vm+1 ↑ vm+2. This shows that
xz ↑ zy which completes the proof. Q.E.D.

Theorem 6 Let x, y and z be partial words such that |x| = |y| > 0. Then the following hold:

1. If xz ↑ zy, then xz and zy are weakly |x|-periodic.

2. If xz and zy are weakly |x|-periodic and b |z||x|c > 0, then xz ↑ zy.

Proof. The proof is similar to that of Theorem 5. Q.E.D.

In Theorem 6(2), the assumption b |z||x|c > 0 is necessary. To see this, consider x = aa,

y = ba and z = a. Here, xz and zy are weakly |x|-periodic, but xz 6↑ zy.
Second, we consider solving the system of equations z ↑ z′ and xz ↑ z′y. Note that when

z = z′, this system reduces to xz ↑ zy. Let m be defined as b |z||x|c and n as |z| mod |x|. Then

let x = v0w0, y = wm+1vm+2, z = v1w1v2w2 . . . vmwmvm+1, and z′ = v′1w
′
1v

′
2w

′
2 . . . v′mw′

mv′m+1

where each vi, v
′
i has length n and each wi, w

′
i has length |x| − n. The |x|-pshuffle and

|x|-sshuffle of xz and z′y are defined as

pshuffle|x|(xz, z′y) = v0w0v
′
1w

′
1v1w1v

′
2w

′
2 . . . vm−1wm−1v

′
mw′

mvmwmv′m+1wm+1vm+1

sshuffle|x|(xz, z′y) = vm+1vm+2
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Theorem 7 Let x, y, z and z′ be partial words such that |x| = |y| > 0 and |z| = |z′| >
0. Then z ↑ z′ and xz ↑ z′y if and only if pshuffle|x|(xz, z′y) is weakly |x|-periodic and
sshuffle|x|(xz, z′y) is (|z| mod |x|)-periodic.

Proof. We may align z and z′ (respectively, xz and z′y) one above the other in the following
way:

v1 w1 v2 w2 . . . vm−1 wm−1 vm wm vm+1

v′1 w′
1 v′2 w′

2 . . . v′m−1 w′
m−1 v′m w′

m v′m+1

(4)

v0 w0 v1 w1 . . . vm−1 wm−1 vm wm vm+1

v′1 w′
1 v′2 w′

2 . . . v′m w′
m v′m+1 wm+1 vm+2

(5)

Assume z ↑ z′ and xz ↑ z′y. Then the partial words in any column in (4) (respectively, (5))
are compatible using the simplification rule. Therefore for all 0 ≤ i < m, viwi ↑ v′i+1w

′
i+1 and

v′i+1w
′
i+1 ↑ vi+1wi+1. Also, we have wm ↑ wm+1 and the following sequence of compatibility

relations: vm ↑ v′m+1, v′m+1 ↑ vm+1, and vm+1 ↑ vm+2. Thus, pshuffle|x|(xz, z′y) is weakly |x|-
periodic and sshuffle|x|(xz, z′y) is (|z| mod |x|)-periodic. The converse follows symmetrically.

Q.E.D.

The results in this section find some nice applications. In [11] for example, Blanchet-Sadri
and Wetzler consider one of the most fundamental results on periodicity of words, namely the
critical factorization theorem. Given a word w and nonempty words u, v satisfying w = uv,
the minimal local period associated to the factorization (u, v) is the length of the shortest
square at position |u| − 1. The critical factorization theorem shows that for any word, there
is always a factorization whose minimal local period is equal to the minimal period of the
word [12, 13]. Blanchet-Sadri and Wetzler give a version of the critical factorization theorem
for partial words (the one-hole case was considered earlier by Blanchet-Sadri and Duncan
[8]). Their proof, which provides an efficient algorithm that computes a critical factorization
when one exists, is based on the conjugacy equation on partial words.

6 The equation x2 ↑ ymz on partial words

In this section, we investigate the equation x2 ↑ ymz on partial words where it is assumed
that m is a positive integer and z is a prefix of y. This equation has nontrivial solutions
(a solution is trivial if x, y, z are contained in powers of a common word). Indeed, consider
the compatibility relation (a��a)2 ↑ (aab)2aa where x = a��a, y = aab and z = aa. The
equation x2 ↑ ymz will play a crucial role in the study of the equation xmyn ↑ zp in the next
section.

In order to characterize all solutions of the equation x2 ↑ ymz, we need the concept of a
“1-triple” of partial words.

Definition 4 Let x, y, z be partial words such that z is a proper prefix of y. Then (x, y, z) is a
1-triple if for some positive integer m there exist partial words u, v, u0, v0, . . . , um−1, vm−1, zx

such that u 6= ε, v 6= ε, y = uv,

x = (u0v0) . . . (un−1vn−1)un (6)

= vn(un+1vn+1) . . . (um−1vm−1)zx (7)
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where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, z ↑ zx, and where one of the following
holds:

• m = 2n, |u| < |v|, and there exist partial words u′, u′
n such that zx = u′un, z = uu′

n,
u ↑ u′ and un ↑ u′

n.

• m = 2n + 1, |u| > |v|, and there exist partial words v′2n and z′x such that un = v2nzx,
u = v′2nz

′
x, v2n ↑ v′2n and zx ↑ z′x.

Theorem 8 Let x, y, z be partial words such that z is a proper prefix of y. Then x2 ↑ ymz
for some positive integer m if and only if (x, y, z) is a 1-triple.

Proof. Note that if the conditions hold, then trivially x2 ↑ ymz for some positive integer
m. If x2 ↑ ymz for some positive integer m, then there exist partial words u, v and an
integer n such that y = uv, x ↑ (uv)nu and x ↑ v(uv)m−n−1z. Thus |x| = n(|u|+ |v|) + |u| =
(m− n− 1)(|u|+ |v|) + |v|+ |z| which clearly shows

|z| = (2n−m + 2)|u|+ (2n−m)|v| (8)

This determines a relationship between m and n. There are two cases to consider which
correspond to assumptions on |u| and |v|. Under the assumption |u| = |v| we see that z
must be either empty or equal to y which is a contradiction. If we assume |u| < |v|, then (8)
shows |z| = 2|u|, and if we assume |u| > |v|, then |z| = |u| − |v|. Now note that x2 may be
factored in the following way:

x2 = (u0v0) . . . (un−1vn−1)(unvn)(un+1vn+1) . . . (um−1vm−1)zx

Here ui ↑ u and vi ↑ v and zx ↑ z. From this it is clear that (6) and (7) are satisfied.
Note that u 6= ε (otherwise |u| < |v|, in which case |z| = 2|u| = 0), and also v 6= ε

(otherwise, |u| > |v|, in which case |z| = |u| − |v| = |y|). First assume |u| < |v|, equivalently
|z| = 2|u| and m = 2n. Note that the suffix of length |u| of zx must be un and therefore is
compatible with u. The prefix of length |u| of z must be u itself since z is a prefix of y. Thus
zx = u′un and z = uu′

n where u ↑ u′ and un ↑ u′
n which is one of our assertions. Now assume

|u| > |v|, that is |z| = |u| − |v| and m = 2n + 1. Note by cancellation that un = v2nzx. Since
un ↑ u, we can rewrite u as v′2nz

′
x where v2n ↑ v′2n and zx ↑ z′x, which is our other assertion.

Q.E.D.

Corollary 3 Let x, y be partial words such that |x| ≥ |y| > 0 and let z be a prefix of y.
Assume that x2 ↑ ymz for some positive integer m. Referring to the notation of Theorem 8
(when z 6= ε and z 6= y) or referring to the notation of Proposition 1 (otherwise), both
w ↑ uv and w ↑ vu hold where w denotes the prefix of length |y| of x. Moreover, u and v are
contained in powers of a common word if (z = ε and m = 2n) or (z = y and m + 1 = 2n).
This is also true if any of the following six conditions hold with u 6= ε and v 6= ε:

1. y is full and w has at most one hole.

2. y is full and w is not {|u|, |v|}-special.
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3. w is full and y has at most one hole.

4. w is full, and either (|u| ≤ |v| and uv is not (|u|, |v|)-special) or (|v| ≤ |u| and vu is
not (|v|, |u|)-special).

5. uv ↑ vu and y has at most one hole.

6. uv ↑ vu, and either (|u| ≤ |v| and uv is not (|u|, |v|)-special) or (|v| ≤ |u| and vu is
not (|v|, |u|)-special).

Proof. We first show the result when z is a proper prefix of y (or when z 6= ε and z 6= y).
This part of the proof refers to the notation of Theorem 8. If m > n + 1, then from the fact
that y = uv and x ↑ ynu and x ↑ vym−n−1z, we get w ↑ uv and w ↑ vu. If on the other hand
m = n + 1, then x ↑ yu and x ↑ vz. It follows that |u| < |z| and we also get w ↑ uv and
w ↑ vu. For Statement 1, since u, v are full, we get w ⊂ uv and w ⊂ vu and by Lemma 8,
uv = vu and u, v are powers of a common word. For Statement 2, the result follows similarly
since uv = vu by Lemma 9. For Statement 3, we get uv ↑ vu. By Theorem 2, u and v
are contained in powers of a common word. Statement 4 follows similarly using Theorem 3.
Statement 5 follows similarly as Statement 3, and Statement 6 as Statement 4.

We now show the result when z = ε (the case when z = y is just a special case). This
part of the proof refers to the notation of Proposition 1. The result trivially holds if m = 2n
since u = ε in this case. If m = 2n + 1, then from the fact that y = uv and x ↑ ynu and
x ↑ vyn, we get w ↑ uv and w ↑ vu. The rest of the proof follows similarly as above. Q.E.D.

Corollary 4 Let x, y, z be partial words such that z is a prefix of y. Assume that x, y are
primitive and that x2 ↑ ymz for some integer m ≥ 2. If x has at most one hole and y is full,
then x ↑ y.

Proof. We show that z = ε and m = 2 (the result will then follow by simplification). Suppose
to the contrary that z 6= ε or m > 2. In either case, we have |x| > |y| > 0. By Corollary 3,
u and v are contained in powers of a common word, say u ⊂ tk and v ⊂ tl for some word
t and nonnegative integers k, l. Indeed, this is trivially true when either u = ε or v = ε.
When both u 6= ε and v 6= ε, Condition 1 of Corollary 3 is satisfied. Since y = uv and y is
primitive, we have (k = 0 and l = 1) or (k = 1 and l = 0). In the former case, u = ε and in
the latter case, v = ε. By Theorem 8, z = ε or z = y. If z = ε, then m > 2. If m is even,
then by Proposition 1, m = 2n and u = ε. Therefore, x = v0 . . . vn−1 with n > 1, and x ⊂ vn

leading to a contradiction with the fact that x is primitive. If m is odd, then m = 2n + 1 by
Proposition 1 and |u| = |v| = 0 leading to a contradiction with the fact that |y| = |uv| > 0.
Now, if z = y, then x2 ↑ ym+1. If m + 1 = 2n, then u = ε and n > 1, and if m + 1 = 2n + 1,
then |u| = |v| = 0. In either case, we get a contradiction as above. Q.E.D.

Corollary 5 ([14]) Let x, y, z be words such that z is a prefix of y. If x, y are primitive and
x2 = ymz for some integer m ≥ 2, then x = y.

Note that Corollaries 4 and 5 do not hold when m = 1. Indeed, the words x = aba,
y = abaab and z = a provide a counterexample. Also, Corollary 4 does not hold when x is
full and y has one hole as is seen by setting x = abaabb, y = ab� and z = ε.
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7 The equation xmyn ↑ zp on partial words

For integers m ≥ 2, n ≥ 2 and p ≥ 2, Lyndon and Schützenberger showed that the equation
xmyn = zp possesses a solution in a free group only when x, y, and z are each a power of
a common element [27]. The result is true in a free monoid as well [14]. The equation
xmyn ↑ zp in a free monoid W (A) certainly has a solution when x, y, and z are contained
in powers of a common word (we call such solutions the trivial solutions). However, there
may be nontrivial solutions as is seen with the compatibility relation (a�b)2(b�a)2 ↑ (abba)3.
In this section, we characterize some of the solutions of the equation xmyn ↑ zp for the case
where p ≥ 4. The characterization is stated as Theorem 9 which we show with a series of
case proofs. We reduce the number of cases by using the following lemma.

Lemma 10 Let x, y, z be partial words and let m, n, p be positive integers. If xmyn ↑ zp,
then (rev(y))n(rev(x))m ↑ (rev(z))p.

It will turn out that, in a free monoid W (A), the equation xmyn ↑ zp, where m ≥ 2, n ≥ 2
and p ≥ 4, may have solutions of the following types.

Definition 5 (Type 1) There exists a partial word w such that x, y, z are contained in
powers of w. We call such solutions the trivial or Type 1 solutions.

Definition 6 (Type 2) The partial words x, y, z satisfy x ↑ z and y ↑ z. We call such
solutions the Type 2 solutions.

If z is full, then Type 2 solutions are trivial solutions.

Theorem 9 (p ≥ 4) Let x, y, z be primitive partial words such that (x, z) and (y, z) are 1-
pairs. Let m, n, p be integers such that m ≥ 2, n ≥ 2 and p ≥ 4. Then the equation xmyn ↑ zp

has only solutions of Type 1 or Type 2 unless x2 ↑ zkzp for some integer k ≥ 2 and nonempty
prefix zp of z, or z2 ↑ xlxp for some integer l ≥ 2 and nonempty prefix xp of x.

Proof. By Lemma 10, we need only examine the case when |xm| ≥ |yn|. Now assume
xmyn ↑ zp has some solution that is not of Type 1 or Type 2. Our assumption on the lengths
of xm and yn implies that |xm| ≥ |z2| and therefore either |x2| ≥ |z2| or |x2| < |z2|. Hence
one of the following equations will be satisfied: x2 ↑ zkzp for some integer k ≥ 2 and prefix
zp of z, or z2 ↑ xlxp for some integer l ≥ 2 and prefix xp of x.

Consider the case where zp or xp is the empty word. In either case, Corollary 1 implies
that x ↑ z. From xmyn ↑ zp and x ↑ z, using Lemma 1, we get yn ↑ zp−m. Using Corollary 1
again, we have y ↑ z. Hence these cases form Type 2 solutions.

Q.E.D.

Corollary 6 ([14]) Let x, y, z be primitive words and let m, n, p be integers such that m ≥
2, n ≥ 2 and p ≥ 4. Then the equation xmyn = zp has no nontrivial solutions.

Proof. As in the proof of Theorem 9, we need only examine the case when |xm| ≥ |yn|. This
assumption leads to either x2 = zkzp for some integer k ≥ 2 and prefix zp of z, or z2 = xlxp

for some integer l ≥ 2 and prefix xp of x. In either case, we have x = z by Corollary 5, and
from the equation xmyn = zp, we get yn = zp−m and y = z since y, z are primitive full words.
Q.E.D.
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