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Abstract. In this paper, we solve some open problems related to
(pseudo)palindrome closure operators and to the infinite words gen-
erated by their iteration, that is, standard episturmian and pseudo-
standard words. We show that if ϑ is an involutory antimorphism of
A∗, then the right and left ϑ-palindromic closures of any factor of a
ϑ-standard word are also factors of some ϑ-standard word. We also
introduce the class of pseudostandard words with “seed”, obtained by
iterated pseudopalindrome closure starting from a nonempty word. We
show that pseudostandard words with seed are morphic images of stan-
dard episturmian words. Moreover, we prove that for any given pseu-
dostandard word s with seed, all sufficiently long left special factors
of s are prefixes of it.
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Introduction

Sturmian words are a classical subject of combinatorics on words (see for in-
stance [3]); by definition, they are infinite words having n+ 1 factors (i.e., blocks
of consecutive symbols) of each length n. Sturmian words enjoy many interesting
characterizations and have a wide range of applications, from discrete geometry
to crystallography.

Palindrome closure operators, introduced in [5], have had an important role in
the study of Sturmian words. If w is a word, its right (resp. left) palindrome closure
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w(+) (resp. w(−)) is the shortest palindrome having w as a prefix (resp. suffix).
Standard Sturmian words can be constructed by iterated palindrome closure, that
is, by the following procedure. Start from the empty word, and successively add
a letter from {a, b} and apply the right palindrome closure operator. In this way
one generates a sequence of palindromes, each one being a prefix of the next one,
so that a limit is naturally defined. If both a and b are used infinitely many
times during such process, the infinite word obtained as a limit is aperiodic, and is
exactly a standard Sturmian word. For any Sturmian word, there exists a (unique)
standard Sturmian word having the same factors.

In recent years, many extensions of Sturmian words have appeared. In particu-
lar, in [7] episturmian words were introduced (see also [10]). They can be defined
as words having the same set of factors of a standard episturmian word, which is
just a word obtained by iterated palindrome closure over an arbitrary alphabet
(and without the aperiodicity condition).

A further generalization was introduced in [6], by substituting palindrome clo-
sure with pseudopalindrome closure. A pseudopalindrome is a fixed point of some
involutory antimorphism ϑ of a free monoid A∗. Thus ordinary palindromes are a
special case of pseudopalindromes where the antimorphism is simply the reversal
operator. We speak of ϑ-palindromes when a particular antimorphism ϑ is cho-
sen. It is then natural to consider ϑ-palindrome closure operators, and to look at
words obtained by iterated ϑ-palindrome closure, called ϑ-standard (or generally
pseudostandard) words.

In this paper, we discuss some properties related to (pseudo)palindrome closure,
episturmian and ϑ-standard words. In [6] it was proven that both palindromic
closures w(+) and w(−) of a factor w of a Sturmian word are themselves factors of
Sturmian words. In Section 2, this property is proved for episturmian words.

In Section 3, the closure property is extended to factors of ϑ-standard words
too. We also show that a ϑ-standard word having both closures as factors always
exists. Moreover, we prove that every left special factor of a ϑ-standard word t,
whose length is at least 3, is a prefix of t. Recall that a factor u of a (finite or
infinite) word w over an alphabet A is left (resp. right) special if there exist at
least two distinct letters a, b ∈ A such that both au and bu (resp. ua and ub) are
factors of w.

In the last section we introduce the class of ϑ-standard words with seed. They
are infinite words obtained by iterated ϑ-palindrome closure, starting from an
arbitrary word u0 (called seed) instead of the empty word. We show that every
ϑ-standard word with seed is a morphic image of a standard episturmian word.
More precisely, if Δ = xx1x2 . . . xn . . . is the infinite sequence of letters which
directs the construction of a ϑ-standard word t with a seed, then t = φx(s), where
φx is a morphism depending on ϑ and u0, and s is the standard episturmian word
directed by Δ′ = x1x2 . . . xn . . .

Finally, we show that every sufficiently long left special factor of a ϑ-standard
word with seed is a prefix of it, and give an upper bound for the minimal length
from which this occurs, in terms of the length of the right ϑ-palindrome closure of
u0x. This proves a conjecture posed in [6].
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1. Preliminaries

Let A be a finite alphabet and A∗ the free monoid generated by A. The elements
of A are usually called letters and those of A∗ words. The identity element of A∗

is called empty word and denoted by ε. We set A+ = A∗ \ {ε}. A word w ∈ A+

can be written uniquely as a sequence of letters w = a1a2 . . . an, with ai ∈ A,
i = 1, . . . , n. The integer n is called the length of w and is denoted by |w|. The
length of ε is conventionally 0.

Let w ∈ A∗. A word v is a factor of w if there exist words r and s such that
w = rvs. If w = vs for some s (resp. w = rv for some word r), then v is called a
prefix (resp. a suffix ) of w. A word which is both a prefix and a suffix of w is called
a border of w. We shall denote respectively by Fact(w), Pref(w), and Suff(w) the
sets of all factors, prefixes, and suffixes of the word w.

For X ⊆ A∗ and u ∈ A∗, u−1X and Xu−1 denote respectively the sets

{w ∈ A∗ | uw ∩X �= ∅} and {w ∈ A∗ | wu ∩X �= ∅}.

When X is a singleton {x} and u−1X �= ∅ (resp. Xu−1 �= ∅), the unique word
w ∈ u−1{x} (resp. w ∈ {x}u−1) is denoted by u−1x (resp. xu−1).

If w = a1 . . . an ∈ A∗, ai ∈ A, i = 1, . . . , n, the reversal, or mirror image, of w
is the word

w̃ = an . . . a1.

One sets ε̃ = ε. A word is called palindrome if it is equal to its reversal. Any
border of a palindrome is trivially a palindrome. We shall denote by PAL(A), or
simply PAL, the set of all palindromes on the alphabet A.

An infinite word (from left-to-right) x over the alphabet A is any map x :
N+ −→ A where N+ is the set of positive integers. We can represent x as

x = x1x2 . . . xn . . . ,

where for any i > 0, xi = x(i) ∈ A. A (finite) factor of x is either the empty word
or any sequence u = xi . . . xj with i ≤ j, i.e., any block of consecutive letters of x.
If i = 1, then u is a prefix of x. We shall denote by Fact(x) and Pref(x) the sets
of finite factors and prefixes of x respectively. The set of all infinite words over A
is denoted by Aω. Moreover, we set A∞ = A∗ ∪Aω.

The product between a finite word w and an infinite one x is naturally defined
as the infinite word wx. An occurrence of the word v in w ∈ A∞ is any pair (r, s),
with r ∈ A∗ and s ∈ A∞, such that w = rvs. If w ∈ A∗ and a ∈ A, |w|a denotes
the number of distinct occurrences of a in w.

If x ∈ A and vx (resp. xv) is a factor of w ∈ A∞, then vx (resp. xv) is called
a right (resp. left) extension of v in w. We recall that a factor v of a (finite or
infinite) word w is called right special if it has at least two distinct right extensions
in w, i.e., there exist at least two distinct letters a, b ∈ A such that both va and
vb are factors of w. Left special factors are defined analogously. A factor of w is
called bispecial if it is both right and left special.
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We call a factor w of a word s ∈ A∞ a first return to u if w contains exactly
two distinct occurrences of u, one as a prefix and the other as a suffix, i.e.,

w = uλ = μu with λ, μ ∈ A+ and w /∈ A+uA+.

We observe that in such a case, wu−1 = μ is usually called a return word over u
in s (see [8]).

A word s ∈ Aω is said to be closed under reversal if for any u ∈ Fact(s) one
has ũ ∈ Fact(s). In this case, a factor u of s is right special if and only if ũ is a
left special factor of s.

A word w ∈ Aω is called episturmian if it is closed under reversal and it has
at most one right (or equivalently, left) special factor of each length. We recall
(see [7]) that every episturmian word is uniformly recurrent, i.e., every factor of
an episturmian word occurs infinitely often, with bounded gaps.

An episturmian word w is called standard if every left special factor of w is a
prefix of it. We denote by Ep(A), or simply Ep, the set of all episturmian words
over A, and by SEp the set of standard ones.

Proposition 1.1 (cf. [7]). For every episturmian word w, there exists a standard
episturmian word s such that Fact(s) = Fact(w).

Thus Fact(Ep) = Fact(SEp). The elements of Fact(Ep) are called finite epis-
turmian words.

Given a word w ∈ A∗, we denote by w(+) its right palindrome closure, i.e., the
shortest palindrome having w as a prefix. Similarly, w(−) is the left palindrome
closure of w. For instance, if w = abacbca, then w(+) = abacbcaba and w(−) =
acbcabacbca.

For any w ∈ A∗, one has w(−) = w̃(+). Moreover, if Q is the longest palindromic
suffix of w and w = sQ, then w(+) = sQs̃.

Let ψ : A∗ → A∗ be defined by ψ(ε) = ε and ψ(va) = (ψ(v)a)(+) for any a ∈ A
and v ∈ A∗. For any u, v ∈ A∗, one has ψ(uv) ∈ ψ(u)A∗ ∩ A∗ψ(u). The map ψ
can then be naturally extended to Aω by setting, for any infinite word x,

ψ(x) = lim
n→∞ψ(wn),

where {wn} = Pref(x) ∩An for all n ≥ 0.

Proposition 1.2 (cf. [7]). Let s ∈ Aω. The following conditions are equivalent:
(1) s is a standard episturmian word,
(2) for any prefix u of s, u(+) is also a prefix of s,
(3) there exists x ∈ Aω such that s = ψ(x).

Given a standard episturmian word s, the (unique) infinite word x such that
s = ψ(x) is called directive word of s and is denoted by Δ(s), or simply by Δ.
From the preceding proposition, one can easily derive (cf. [7]) that the set of
palindromic prefixes of a standard episturmian word s coincides with

{ψ(u) | u ∈ Pref(Δ(s))}.
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A standard episturmian word s over the alphabet A is called a (standard) Arnoux-
Rauzy word if every symbol of A occurs infinitely often in the associated directive
word Δ(s). We will denote by AR(A), or simply AR, the set of Arnoux-Rauzy
words over A. In the case of a binary alphabet, an AR-word is usually called
standard Sturmian word.

Example 1.3. Let A = {a, b} and x = (ab)ω. One has that

f = ψ(x) = abaababaabaababa . . .

is the famous Fibonacci word, a standard Sturmian word. On an alphabet with
three letters A = {a, b, c}, if we take x = (abc)ω as a directive word, then

τ = ψ(x) = abacabaabacababacabaabac . . .

is a standard Arnoux-Rauzy word, often called Tribonacci word. The word s =
cabaabacababacabaab . . . such that abas = τ is an example of an episturmian word
which is not standard, as a is a left special factor of s but not a prefix of it.

The periodic word s = (abac)ω is standard episturmian, but not Arnoux-Rauzy.
Its directive word is Δ(s) = abcω.

The following proposition can be easily proved using well-known results on
episturmian words (see [7]).

Proposition 1.4. Let s be a standard episturmian word. Any bispecial factor of
s is a palindromic prefix of s. If s is not periodic, the converse holds too.

Proposition 1.5. Fact(Ep) = Fact(AR).

Proof. Let u ∈ Fact(Ep) = Fact(SEp). Hence there exists s ∈ SEp such that
u ∈ Fact(s). Now let be s = ψ(Δ) where Δ = t1t2 . . . tn . . ., with ti ∈ A for i ≥ 1.
Therefore there exists a palindromic prefix p of s such that u ∈ Fact(p). Now
p = ψ(t1 . . . ti) for some i. We can consider Δ′ = t1 . . . tit with t ∈ Aω such that
any letter of A occurs infinitely many times in t. Hence s′ = ψ(Δ′) ∈ AR and
contains p as a factor, so that u ∈ Fact(s′). Therefore, Fact(Ep) ⊆ Fact(AR).
Since the inverse inclusion is trivial, the result follows. �

The following proposition collects two properties of standard episturmian words
(cf. Lems. 1 and 4 in [7]) which will be useful in the sequel.

Proposition 1.6 (cf. [7]). Let s be a standard episturmian word. The following
hold:

(1) Any prefix p of s has a palindromic suffix which has a unique occurrence
in p.

(2) The first letter of s occurs in every factor of s having length 2.

Clearly, if p is a prefix of a standard episturmian word, then the palindromic suffix
of p which has a unique occurrence in p is the longest palindromic suffix of p.
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2. A closure property

We want to show that if w ∈ Fact(Ep), then also its right and left palindrome
closures belong to Fact(Ep); since episturmian words are closed under reversal,
and w(−) = w̃(+), it suffices to prove only the right palindrome closure case. We
have the following:

Proposition 2.1. Let u be a non-palindromic finite episturmian word; let Q be
the longest palindromic suffix of u and write u = saQ where a ∈ A and s ∈ A∗ (s
possibly empty). Then ua = saQa is a finite episturmian word.

Before proving the proposition we need some lemmas. The first lemma was
proved in [1], Theorem 1.1. We report here a different and simpler proof.

Lemma 2.2. Let w be an episturmian word and P ∈ PAL∩Fact(w). Then every
first return to P in w is a palindrome.

Proof. By Proposition 1.1, we may always suppose that w is a standard epis-
turmian word. Let u ∈ Fact(w) be a first return to the palindrome P , i.e.,
u = Pλ = ρP , λ, ρ ∈ A∗, and the only two occurrences of P in u are as a
prefix and as a suffix of u. If |P | > |ρ|, then the prefix P of u overlaps with the
suffix P in u and this implies, as is easily to verify, that u is a palindrome. Then
let us suppose that u = PvP with v ∈ A∗.

Now we consider the first occurrence of u or of ũ in w. Without loss of generality,
we may suppose that w = αuw′ and that ũ does not occur in the prefix of w
having length |αu| − 1. Let Q be the palindromic suffix of αu of maximal length.
If |Q| > |u|, then we have that ũ occurs in αu before u, which is absurd. Then
suppose |Q| ≤ |u|. If |u| > |Q| > |P |, then one contradicts the hypothesis that u
is a first return to P . If |Q| = |P |, then Q = P has more than one occurrence in
αu, which is absurd in view of Proposition 1.6. The only remaining possibility is
Q = u, i.e., u is a palindrome. �

The following lemma is well-known. We report here a proof for the sake of
completeness.

Lemma 2.3. Let w ∈ AR and s be the unique right special factor of length n. If
B1, . . . , Bm, . . . are the bispecial factors of w ordered by increasing length, then s
is a suffix of any Bm such that |s| ≤ |Bm| and, for any x ∈ A, sx ∈ Fact(w).

Proof. Since w is not periodic, by Proposition 1.4 the bispecial factors Bi, i > 0,
are its palindromic prefixes. Moreover, if t = t1t2 . . . tn . . . ∈ Aω is the directive
word of w, then Bi+1 = (Biti)(+) for any i > 0. Since s is a right special factor of
w, s̃ is left special and thus a prefix of w. Therefore, s is a suffix of any palindromic
prefix Bm of w such that |s| ≤ |Bm|. As w ∈ AR, any letter x ∈ A occurs infinitely
often in t; hence there exists k ≥ m such that x = tk, so that Bkx is a factor of
w. Since Bm is a suffix of Bk, it follows sx ∈ Fact(w). �
Lemma 2.4. Let w and w′ be Arnoux-Rauzy words on the alphabet A. If w and
w′ have the same right special factor of length n, then they share the same factors
up to length n+ 1.
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Proof. Trivial if n = 0. By induction, suppose we have proved the assertion for
the integer n − 1 ≥ 0. Let Q be the common right special factor of w and w′ of
length n. If we write Q = aQ′, with a ∈ A, then Q′ is the only right special factor
of length n − 1 of both w and w′. Hence w and w′ have the same factors up to
length n.

By symmetry, it suffices to prove that any factor v of w, of length |v| = n+1, is
also a factor of w′. Let v = v′b, b ∈ A. Suppose first that v′ = Q. By Lemma 2.3,
each right extension Qx, with x ∈ A, is a factor of both w and w′; in particular,
v is a factor of w′.

Now assume that v′ �= Q. Let v′ = cv′′ with c ∈ A, and suppose that v′′ = Q′.
One has then c �= a. In this case, since v = cv′′b and Qb = av′′b are different
factors of w, one has that v′′b is left special in w. Since |v′′b| = n, one derives that
v′′b = Q̃ is a left special factor of w′ too, so that v = cv′′b is a factor of w′ as a
consequence of Lemma 2.3.

If v′′ �= Q′, then v′′b is the unique right extension of v′′ in w. As |v′′b| = n, it
is also a factor of w′, and no other letter x is such that v′′x ∈ Fact(w′). Hence
v = cv′′b is the only right extension in w′ of the factor cv′′ �= Q. �

We can now proceed to prove Proposition 2.1.

Proof of Proposition 2.1. We first observe that u contains a single occurrence of Q.
Indeed, if u contained other occurrences of Q, by Lemma 2.2 the suffix of u begin-
ning with the penultimate occurrence would be a palindromic suffix of u strictly
longer than Q, contradicting the hypothesis of maximality of the length of Q.

By Proposition 1.5 there exists an Arnoux-Rauzy word w such that u ∈ Fact(w).
We can assume that ua /∈ Fact(w) (otherwise ua is in Fact(AR) as required); so
there exist b ∈ A such that b �= a and ub ∈ Fact(w). Thus aQb ∈ Fact(w); since Q
is a palindrome and w ∈ AR, also bQa ∈ Fact(w) and Q is a bispecial factor of w.
Then it follows that every left special factor of w longer that Q must contain Q as
a prefix, and since there is only a single occurrence of Q in u, Q itself is the longest
suffix of u which is left special in w. Thus every occurrence of aQ in w must be
“preceded” by s, i.e., if w = λaQμ, then w = λ′saQμ, with λ = λ′s. In particular
aQa is not a factor of w, for otherwise ua would be in Fact(w), contradicting our
assumption.

Set Δ(w) = t1t2 . . . Let B1 = ε,B2, . . . be the sequence of all bispecial factors of
w, ordered by increasing length, i.e., |Bi| < |Bi+1| for all i > 0. By Proposition 1.4,
they are the palindromic prefixes of w as w is not periodic. Moreover, for each
i > 0 we have Bi+1 = (Biti)(+), so that Biti is left special and tiBi is right special.

Since Q is a bispecial factor of w, one has Q = Bm for some m > 1. Let |Q| =
n−1 for n ≥ 2. We then have that tmQ is right special in w and, from Lemma 2.3,
tmQx ∈ Fact(w) for all x ∈ A. It is clear that tm �= a since aQa /∈ Fact(w) and
tmQa ∈ Fact(w), then we have that aQb and tmQb are distinct factors of w,
thus Qb is left special and bQ is the unique right special factor of w of length n.
So tm = b.

Let w′ be any Arnoux-Rauzy sequence over A, whose directive word Δ(w′) =
t′1t

′
2 . . . satisfies t′i = ti for 0 < i ≤ m− 1 and t′m = a. Since Q is the unique right
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special factor of w and w′ of length n− 1, from Lemma 2.4, we obtain that w and
w′ have the same factors of length k for each k ≤ n. However, they differ on some
factors of length n + 1. Indeed, from the definition of w′, we have that aQ is its
unique right special factor of length n, so that by Lemma 2.3, for all x ∈ A we
have that aQx ∈ Fact(w′). Therefore aQa ∈ Fact(w′) \ Fact(w).

Now let us prove that, as in w, each occurrence of aQ in w′ is preceded by s.
Let p ∈ A∗ be such that |p| = |s| and paQ ∈ Fact(w′). Let then S be the largest
common suffix of paQ and saQ and Q′ its prefix of length n− 1. Clearly Q �= Q′

since there is only one occurrence of Q in saQ. If we assume that S �= paQ, then
there exist x, y ∈ A such that x �= y, xS ∈ Suff(saQ) and yS ∈ Suff(paQ); then
xQ′ and yQ′ are both factors of w and w′ since these latter words have the same
factors of length n. Thus Q′ is a left special factor of w and w′, and that is a
contradiction, since the only left special factor of length n− 1 in w and in w′ is Q.
Thus p = s and so every occurrence of aQ in w′ is preceded by s.

Since aQa is a factor of w′, it follows that saQa = ua is a factor of w′. Hence
ua is in Fact(AR) as required. �

From the preceding proposition one derives the following theorem, announced
without proof in [6].

Theorem 2.5. If w is a finite episturmian word, then so is each of w(+) and
w(−).

Proof. Trivial if w ∈ PAL. Let then w = a1 . . . anQ, where ai ∈ A for i =
1, . . . , n and Q is the longest palindromic suffix of w. By Proposition 2.1, wan =
a1 . . . anQan is a finite episturmian word; since its longest palindromic suffix is
anQan, also wanan−1 is episturmian. In this way, by applying Proposition 2.1
exactly n times, one eventually obtains that

a1a2 . . . anQan . . . a2a1 = w(+)

is episturmian. Since w(−) = w̃(+), the assertion follows. �

Corollary 2.6. Let a ∈ A and u ∈ A∗. If au is a finite episturmian word, then
so is au(+).

Proof. If au is not a palindrome, then by Theorem 2.5, (au)(+) = au(+)a is an
episturmian word and therefore so is au(+). Let us then suppose that au is a
palindrome.

By Theorem 2.5 one has u(+) ∈ Fact(s) for a suitable s ∈ AR. Since s is
recurrent there exist letters x, y ∈ A such that

xu(+)y ∈ Fact(s).

If x �= y, then, since s is closed under reversal, one has also yu(+)x ∈ Fact(s).
Hence u(+) is bispecial, so that it follows au(+) ∈ Fact(s). Let us now consider
the case x = y. If x = a, then the assertion is trivially verified.
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Suppose then x �= a. As au is a palindrome, we can write u = u′a with
u′ ∈ PAL. Hence,

x(u′a)(+)x ∈ Fact(s).
Since (u′a)(+) begins with u′a and ends with au′, one has that xu′a and au′x
are factors of s, so that u′ is bispecial and then a palindromic prefix of s by
Proposition 1.4.

Let Δ(s) = t1t2 . . . tn . . . be the directive word of s. There exists an integer k
such that u′ = ψ(t1t2 . . . tk). We consider any AR word s′ whose directive word
Δ(s′) has the prefix t1t2 . . . tka. Thus u′a = u is a prefix of s′. This implies, by
Propositions 1.2 and 1.4, that u(+) is a bispecial prefix of s′. From this one derives
au(+) ∈ Fact(s′). �

3. Pseudostandard words

An involutory antimorphism of the free monoid A∗ is a map ϑ : A∗ → A∗ such
that ϑ(uv) = ϑ(v)ϑ(u) for any u, v ∈ A∗, and ϑ ◦ ϑ = id. The reversal operator

R : w ∈ A∗ �→ w̃ ∈ A∗

is the basic example of involutory antimorphism of A∗. Any involutory antimor-
phism is the composition ϑ = τ ◦R = R ◦ τ where τ is an involutory permutation
of the alphabet A. Thus it makes sense to call ϑ-palindromes the fixed points of
an involutory antimorphism ϑ. We shall denote by PALϑ the set of ϑ-palindromes
over A. One can then define the ϑ-palindrome closure operators: w⊕ϑ (resp. w�ϑ)
denotes the shortest ϑ-palindrome having w as a prefix (resp. suffix).

Some properties and results relating ϑ-palindrome closure operators with peri-
odicity and conjugacy are in [6]. Further interesting combinatorial properties of
ϑ-palindromes, motivated by problems of molecular biology, have been recently
studied in [11].

In the following, we shall fix an involutory antimorphism ϑ of A∗, and use the
notation w̄ for ϑ(w). We shall also drop the subscript ϑ from the ϑ-palindrome
closure operator ⊕ϑ when no confusion arises. If w = sQ = Pt, where Q (resp. P )
is the longest ϑ-palindromic suffix (resp. prefix) of w, then

w⊕ = sQs̄ and w� = t̄P t

(see [6]). Moreover, from the definition it follows

w� = w̄⊕

for any w ∈ A∗.
For example, when A = {a, b}, ϑ = E ◦R where E is the interchange morphism

defined by E(a) = b and E(b) = a, one has (aabab)⊕ = aababb and (aabab)� =
ababbaabab.

The following lemma will be useful in the sequel.
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Lemma 3.1. For any u ∈ PALϑ \ {ε} and a ∈ A, (ua)⊕ is a first return to u,
i.e., if (ua)⊕ = λuρ with λ, ρ ∈ A∗, then either λ = ε or ρ = ε.

Proof. By contradiction, let λ, ρ ∈ A+ be such that

(ua)⊕ = λuρ. (1)

Clearly |λ|+ |u|+ |ρ| = |(ua)⊕| ≤ 2|u|+2, which implies |λ| ≤ |u|+2−|ρ| ≤ |u|+1.
Let us show that actually one has |λ| ≤ |u|. Indeed, if λ = ua then from (1) one
derives |(ua)⊕| = 2|u|+ 2; this implies that a /∈ PALϑ and (ua)⊕ = uaāu = uauρ,
so that uρ = āu. It follows that for some k > 0, u = āk /∈ PALϑ, a contradiction.

Let then v, w ∈ A∗ be such that u = λv and (ua)⊕ = uw = w̄u, whence λuρ =
uw = λvw. Thus uρ = vw, so that v is also a prefix of u and therefore a border
of u. Since u is a ϑ-palindrome, v is a ϑ-palindrome too, so that u = λv = vλ̄.
Therefore

(ua)⊕ = λuρ = λvλ̄ρ.

Thus λvλ̄ is a ϑ-palindrome beginning with ua and strictly shorter than (ua)⊕,
which is a contradiction. �

We can naturally define a map ψϑ : A∗ → A∗ by ψϑ(ε) = ε and

ψϑ(ua) = (ψϑ(u)a)⊕

for u ∈ A∗, a ∈ A. For any u, v ∈ A∗ one has ψϑ(uv) ∈ ψϑ(u)A∗ ∩ A∗ψϑ(u),
so that, as done for the iterated palindrome closure, the domain of ψϑ can be
extended to infinite words too. More precisely, if x ∈ Aω, then

ψϑ(x) = lim
n→∞ψϑ(wn),

where {wn} = Pref(x) ∩ An for all n ≥ 0. The word x is called the directive
word of ψϑ(x) and is denoted by Δ(ψϑ(x)). The images of infinite words over A
by ψϑ have been called ϑ-standard words in [6]. If ϑ = R, then ψR = ψ, where
ψ is the iterated palindrome closure operator introduced in Section 1, so that an
R-standard word is a standard episturmian word. A ϑ-standard word, without
specifying the antimorphism ϑ, has been called pseudostandard word.

Example 3.2. Let A = {a, b} and ϑ = E ◦ R, so that ā = b. For x = (ab)ω, we
have ψϑ(a) = ab, ψϑ(ab) = abbaab, and

s = ψϑ(x) = abbaababbaabbaab . . .

The word s is the ϑ-standard word having x as its directive word.

The following theorem, proven in [6], shows that any ϑ-standard word is a
morphic image of the standard episturmian word having the same directive word.

Theorem 3.3. For any w ∈ A∞, one has ψϑ(w) = μϑ(ψ(w)), where μϑ is the
injective morphism defined as μϑ(a) = a⊕ for any letter a ∈ A.
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For instance, one easily verifies that the word s of Example 3.2 is equal to μ(f),
where f is the Fibonacci word and μ = μϑ is the Thue-Morse morphism defined
as μ(a) = ab, μ(b) = ba.

A new proof of Theorem 3.3 will be given in Section 4, as a consequence of
a more general result. Some general properties of ϑ-standard words have been
considered in [6]. In particular, we recall that

Proposition 3.4. Let s = ψϑ(x) be a ϑ-standard word. The following hold:
(1) w is a prefix of s if and only if w⊕ is a prefix of s,
(2) the set of all ϑ-palindromic prefixes of s is given by ψϑ(Pref(x)),
(3) s is closed under ϑ, i.e., if w ∈ Fact(s), then w̄ ∈ Fact(s).

Moreover, the following holds:

Proposition 3.5. If s is a ϑ-standard word over A and two letters of A occur
infinitely often in Δ(s), then any prefix of s is a left special factor of s.

Proof. A prefix p of s is also a prefix of any ϑ-palindromic prefix B of s such that
|p| ≤ |B|. Since B is a suffix of any ϑ-palindromic prefix of s whose length is at least
|B|, and there exist two distinct letters (say a and b) which occur infinitely often in
Δ(s), by Proposition 3.4 one derives Ba,Bb ∈ Fact(s). Therefore, as p̄ ∈ Suff(B),
we have p̄a, p̄b ∈ Fact(s), i.e., p̄ is right special. Since by Proposition 3.4 s is closed
under ϑ, one has āp, b̄p ∈ Fact(s); as ā �= b̄, p is left special. �

For the converse of the previous proposition, we observe that a ϑ-standard word
s can have left special factors which are not prefixes of s. For instance, consider
the ϑ-standard word s in Example 3.2. As one easily verifies, b and ba are two left
special factors of s, which are not prefixes.

However, we will show that if a left special factor w of a ϑ-standard word s is
not a prefix of s, then |w| ≤ 2. For a proof of this we need a couple of lemmas.
We denote by A′ = A \ PALϑ the set of letters of A that are not ϑ-palindromic.

Lemma 3.6. The following holds:

A′μϑ(A∗) ∩ μϑ(A∗) = μϑ(A∗)A′ ∩ μϑ(A∗) = ∅.

Proof. It is sufficient to observe that any word in μϑ(A∗) has an even number of
occurrences of letters in A′. �
Lemma 3.7. Let b, c ∈ A′, and let f = b̄μϑ(u) and g = μϑ(v)c be factors of a
ϑ-standard word t = μϑ(s), with s ∈ SEp. Then:

(1) If bu, vc ∈ Fact(s) and |f | > 1, then f �= g.
(2) If u ∈ Fact(s) and |f | > 3, then bu ∈ Fact(s).

Proof. (1) Since |f | > 1, one has u �= ε. By contradiction, if f = g, one has also
v �= ε, so that, from the definition of μϑ, b̄b is a prefix of μϑ(v). Then bb̄ is a prefix
of μϑ(u), and so on; therefore, f = b̄(bb̄)k = (b̄b)k b̄ for k = |u| = |v| ≥ 1. Hence
c = b̄, u = bk, and v = b̄k. As k ≥ 1, by Proposition 1.6, bu = bk+1 and vc = b̄k+1

cannot be both factors of the episturmian word s, a contradiction.
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(2) Since |f | > 3, one derives |u| > 1. By contradiction, suppose bu /∈ Fact(s).
By the preceding lemma and by Theorem 3.3, one derives f = μϑ(v′)c′ for some
suitable v′ ∈ A∗ and c′ ∈ A′ such that v′c′ ∈ Fact(s). As done before, one then
obtains f = (b̄b)k b̄ so that bk, b̄k ∈ Fact(s), which is absurd by Proposition 1.6, as
k ≥ 2. �

Theorem 3.8. Let w be a left special factor of a ϑ-standard word t = μϑ(s), with
s ∈ SEp. If |w| ≥ 3, then w is a prefix of t.

Proof. By Theorem 3.3, w can be written in one of the following ways:

(1) w = μϑ(u), with u ∈ Fact(s),
(2) w = b̄μϑ(u), with bu ∈ Fact(s) and b ∈ A′,
(3) w = μϑ(u)c, with uc ∈ Fact(s) and c ∈ A′,
(4) w = b̄μϑ(u)c, with buc ∈ Fact(s) and b, c ∈ A′.

In case 1, let xw, yw ∈ Fact(t) with x �= y letters of A. If x is ϑ-palindromic, then
clearly one must have xu ∈ Fact(s). If x ∈ A′, then by the preceding lemma one
has x̄u ∈ Fact(s), as |xw| > 3. Since the same holds for y, u is a left special factor
of the episturmian word s, and therefore a prefix of it. Thus w = μϑ(u) is a prefix
of t.

Cases 2 and 4 are absurd; indeed, by the preceding lemma one derives that
every occurrence of w is preceded by b.

Finally, in case 3, by the preceding lemma one derives that every occurrence of
w is followed by c̄. Hence μϑ(uc) is a left special factor of t and one can apply the
same argument as in case 1 to show that it is a prefix of t. �

An infinite word t is a ϑ-word if there exists a ϑ-standard word s such that
Fact(t) = Fact(s). An R-word is an episturmian word.

Proposition 2.1 and Theorem 2.5 can be extended to the class of ϑ-words,
showing that if w is a factor of a ϑ-word, then w⊕ and w� are also factors of
ϑ-words. A proof can be obtained as a consequence of Theorems 2.5 and 3.3 and
of Corollary 2.6. However, we need the following lemma (cf. [6]):

Lemma 3.9. Let u ∈ A∗ and x ∈ A ∪ {ε}. Then

(μϑ(u)x)⊕ = μϑ

(
(ux)(+)

)
.

Theorem 3.10. Let w be a factor of a ϑ-standard word. Then each of w⊕ and
w� is a factor of a ϑ-standard word.

Proof. We shall suppose w /∈ PALϑ, otherwise the result is trivial. Since w� = w̄⊕,
it suffices to prove the result for w⊕. Let A′ = A \ PALϑ as above. From Theo-
rem 3.3, one derives that w can be written in one of the following ways:

(1) w = μϑ(u)x, with x ∈ A ∪ {ε} and ux ∈ Fact(Ep),
(2) w = āμϑ(u)b, with a, b ∈ A′ and aub ∈ Fact(Ep),
(3) w = āμϑ(u), with a ∈ A′ and au ∈ Fact(Ep).
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In the first case, by Theorem 2.5 there exists a standard episturmian word
s = ψ(Δ) such that (ux)(+) ∈ Fact(s). Thus, by Lemma 3.9 and Theorem 3.3,
w⊕ = μϑ

(
(ux)(+)

)
is a factor of the ϑ-standard word ψϑ(Δ) = μϑ(s).

In the second case, by using Lemma 3.9, one has:

w⊕ = ā (μϑ(u)b)⊕ a = āμϑ

(
(ub)(+)

)
a ∈ Fact

(
μϑ

(
a(ub)(+)a

))
.

Moreover, aub is not a palindrome, since otherwise one would derive, for instance
using Lemma 3.9, that w = āμϑ(u)b is a ϑ-palindrome, which contradicts our
assumption. Thus (aub)(+) = a(ub)(+)a and the result is a consequence of Theo-
rem 3.3.

In the third case, since w is not a ϑ-palindrome, by Lemma 3.9 one obtains

w⊕ = āμϑ(u)⊕a ∈ Fact
(
μϑ(au(+)a)

)
.

If u = ak for some k ≥ 0, then au(+)a = ak+2 ∈ Fact(Ep); otherwise au(+) is not
a palindrome and au(+)a = (au(+))(+), so that au(+)a is episturmian by Corol-
lary 2.6 and Theorem 2.5. Once again, the assertion follows from Theorem 3.3. �
Corollary 3.11. Let w be a factor of a ϑ-standard word. Then there exists a
ϑ-standard word having both w⊕ and w� as factors.

Proof. Trivial if w ∈ PALϑ. Let then w = Pbt = saQ, where P (resp. Q) is
the longest ϑ-palindromic prefix (resp. suffix) of w, and a, b ∈ A. Thus wā and
b̄w, being respectively factors of w⊕ = saQās̄ and w� = t̄b̄P bt, are factors of
ϑ-standard words by Theorem 3.10.

Suppose wā /∈ PALϑ. Then (wā)� = aw�ā, so that w�ā is a factor of some
ϑ-standard word, by Theorem 3.10. Consider the word

(w�ā)⊕ = (t̄b̄P btā)⊕ = (t̄b̄saQā)⊕,

and call Q′ the longest ϑ-palindromic suffix of w�ā; then Q′ = aQā. Indeed, since
aQā is a ϑ-palindrome, one has |Q′| ≥ |aQā|; but |aQā| < |Q′| ≤ |saQā| is absurd,
for Q would not be the longest ϑ-palindromic suffix of w, and |Q′| > |saQā| cannot
happen, for otherwise there would exist a ϑ-palindromic proper suffix of w� having
w as a suffix, contradicting the definition of w�. Thus

(w�ā)⊕ = t̄b̄saQās̄bt = t̄b̄P btās̄bt

is a factor of some ϑ-standard word, again by Theorem 3.10, and it contains both
w⊕ and w� as factors.

If wā ∈ PALϑ but b̄w /∈ PALϑ, one can prove by a symmetric argument that
(b̄w⊕)� is a factor of some ϑ-standard word having both w⊕ and w� as factors.
Let then wā, b̄w ∈ PALϑ, so that

w⊕ = wā = aw̄ and w� = b̄w = w̄b. (2)
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If w is a single letter, one derives w = a = b, so that w⊕ = aā and w� = āa.
Therefore w⊕ and w� are factors of any ϑ-standard word whose directive word
begins with a2. Let us then suppose |w| > 1. From (2) it follows w = aRb for
some R ∈ A∗ such that aR = R̄ā = P and Rb = b̄R̄ = Q. Moreover,

w = aRb = ab̄R̄ = R̄āb, (3)

showing that R̄ is a border of w. Therefore one has either w = (ab̄)k or w = (ab̄)ka,
for some k > 0. In the first case, from (3) one derives a = ā and b = b̄, so
that any ϑ-standard word whose directive word begins with abk+1 contains both
w⊕ = (ab)ka and w� = b(ab)k as factors. In the latter case, by (3) one obtains
a = b, so that any ϑ-standard word whose directive word begins with ak+1 contains
both w⊕ = (aā)k and w� = (āa)k as factors. �
Remark 3.12. For a finite episturmian word w, the proof of the preceding result
can be simplified by using Theorem 2.5 and Corollary 2.6. Indeed, if w is not a
palindrome, we can write w = Pbt = saQ, where P and Q are respectively the
longest palindromic prefix and suffix of w, and a, b ∈ A. By Theorem 2.5, w(+)

and w(−) are finite episturmian words; moreover bw is a factor of w(−), so that
by Corollary 2.6, bw(+) is a finite episturmian word. By Theorem 2.5,

(
bw(+)

)(−)

is a finite episturmian word, which has also w(−) as a factor, as one can prove
similarly as in the proof of Corollary 3.11.

In the case of Sturmian words, results analogous to Theorem 3.10 and Corol-
lary 3.11 were proven in [6] with a different and simpler technique based on the
structure of finite Sturmian words.

Example 3.13. Let τ be the Tribonacci word

τ = ψ ((abc)ω) = abacabaabacababacabaabacabac . . .

If w = bac ∈ Fact(τ), one has that w(+) = bacab and w(−) = cabac are factors of τ .
However, in the case of the factor v = abacabab, one has v(+) = abacababacaba ∈
Fact(τ), whereas v(−) = babacabab is not a factor of τ , since otherwise v would be a
left special factor of τ , which is a contradiction as v /∈ Pref(τ). Nevertheless, both
v(+) and v(−) are factors of any episturmian word whose directive word begins
with abcbb. Indeed, v = Pb where P = abacaba is the longest palindromic prefix
of v, and (

bv(+)
)(−)

= abacababacababacaba = ψ(abcbb).

4. Words generated by nonempty seeds

We now consider a generalization of the construction of ϑ-standard words. De-
fine the map ψ̂ϑ : A∗ → A∗ by setting ψ̂ϑ(ε) = u0 with u0 a fixed word of A∗

called seed, and

ψ̂ϑ(ua) =
(
ψ̂ϑ(u)a

)⊕

for u ∈ A∗ and a ∈ A.
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As usual, we can extend this definition to infinite words t ∈ Aω by:

ψ̂ϑ(t) = lim
n→∞ ψ̂ϑ(wn),

where {wn} = Pref(t) ∩ An for all n ≥ 0. The word t is called the directive word
of ψ̂ϑ(t), and denoted by Δ(ψ̂ϑ(t)). When the seed u0 is empty, one has ψ̂ϑ = ψϑ

so that one obtains ϑ-standard words. If u0 �= ε, then any word ψ̂ϑ(t) is called
ϑ-standard with seed.

Example 4.1. Let A = {a, b, c}, ϑ be the involutory antimorphism exchanging a
and b and fixing c, u0 = acbbc, and w = abc. Then

ψ̂ϑ(w) =
(
ψ̂ϑ(ab)c

)⊕
=

((
ψ̂ϑ(a)b

)⊕
c

)⊕
=

((
(acbbca)⊕b

)⊕
c
)⊕

=
(
(acbbcaacbb)⊕c

)⊕ = acbbcaacbbcaacbcacbbcaacbbcaacb.

Let t = xt1t2 . . ., with x ∈ A and ti ∈ A for i ≥ 1. We remark that the set of
ϑ-palindromic prefixes of the word w = ψ̂ϑ(t) is

(PALϑ ∩ Pref(u0)) ∪ {un | n ≥ 1},

where u1 = (u0x)⊕ and ui+1 = (uiti)⊕ for i ≥ 1.
Define the endomorphism φx of A∗ by setting

φx(a) = ψ̂ϑ(xa)ψ̂ϑ(x)−1

for any letter a ∈ A. From the definition, one has that φx depends on ϑ and u0;
moreover, φx(a) ends with ā for all a ∈ A, so that any word of the set X = φx(A)
is uniquely determined by its last letter. Thus X is a suffix code, and φx is an
injective morphism.

Example 4.2. Let A, ϑ, and u0 be defined as in Example 4.1, and let x = a.
Then

φa(a) = ψ̂ϑ(aa)ψ̂ϑ(a)−1 = acbbcaacb,

φa(b) = ψ̂ϑ(ab)ψ̂ϑ(a)−1 = acbbca, (4)

φa(c) = ψ̂ϑ(ac)ψ̂ϑ(a)−1 = acbbcaacbc.

To simplify the notation, in the following we shall often omit in the proofs the
subscript x from φx, when no confusion arises.

Theorem 4.3. Fix x ∈ A and u0 ∈ A∗. Let ψ̂ϑ and φx be defined as above. Then
for any w ∈ A∗, the following holds:

ψ̂ϑ(xw) = φx(ψ(w))ψ̂ϑ(x).
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Proof. In the following we shall often use the property that if γ is an endomorphism
of A∗ and v is a suffix of u ∈ A∗, then γ(uv−1) = γ(u)γ(v)−1.

We will prove the theorem by induction on |w|. It is trivial that for w = ε the
claim is true since ψ(ε) = ε = φ(ε). Suppose that for all the words shorter than
w, the statement holds. For |w| > 0, we set w = vy with y ∈ A.

First we consider the case |v|y �= 0. We can then write v = v1yv2 with |v2|y = 0,
so that

ψ̂ϑ(xv) = ψ̂ϑ(xv1yv2) = ψ̂ϑ(xv1)yλ = λ̄ȳψ̂ϑ(xv1),

for a suitable λ ∈ A∗. Note that ψ̂ϑ(xv1) is the largest ϑ-palindromic prefix
(resp. suffix) followed (resp. preceded) by y (resp. ȳ) in ψ̂ϑ(xv). Therefore,

ψ̂ϑ(xvy) = λ̄ȳψ̂ϑ(xv1)yλ = ψ̂ϑ(xv)ψ̂ϑ(xv1)−1ψ̂ϑ(xv). (5)

By a similar argument one has:

ψ(vy) = ψ(v)ψ(v1)−1ψ(v). (6)

By induction we have:

ψ̂ϑ(xv) = φ(ψ(v))ψ̂ϑ(x), ψ̂ϑ(xv1) = φ(ψ(v1))ψ̂ϑ(x).

Replacing in (5), and by (6), we obtain

ψ̂ϑ(xvy) = φ(ψ(v))φ(ψ(v1))−1φ(ψ(v))ψ̂ϑ(x)

= φ(ψ(v)ψ(v1)−1ψ(v))ψ̂ϑ(x)

= φ(ψ(vy))ψ̂ϑ(x),

which was our aim.
Now suppose that |v|y = 0 and PALϑ∩Pref(u0x)y−1 �= ∅. Let αy be the longest

word in PALϑ∩Pref(u0x)y−1, that is the longest ϑ-palindromic prefix of u0x which
is followed by y. Since |v|y = 0, one derives that the longest ϑ-palindromic suffix
of ψ̂ϑ(xv)y is ȳαyy, whence

ψ̂ϑ(xvy) =
(
ψ̂ϑ(xv)y

)⊕
= ψ̂ϑ(xv)α−1

y ψ̂ϑ(xv). (7)

By induction, this implies

ψ̂ϑ(xvy) = φ(ψ(v))ψ̂ϑ(x)α−1
y φ(ψ(v))ψ̂ϑ(x). (8)

By using (7) for v = ε, one has ψ̂ϑ(xy) = ψ̂ϑ(x)α−1
y ψ̂ϑ(x), and

φ(y) = ψ̂ϑ(xy)
(
ψ̂ϑ(x)

)−1

= ψ̂ϑ(x)α−1
y .
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Moreover, since ψ(v) has no palindromic prefix (resp. suffix) followed (resp. pre-
ceded) by y one has

ψ(vy) = ψ(v)yψ(v). (9)
Thus from (8) we obtain

ψ̂ϑ(xvy) = φ(ψ(v))φ(y)φ(ψ(v))ψ̂ϑ(x)

= φ(ψ(v)yψ(v))ψ̂ϑ(x)

= φ(ψ(vy))ψ̂ϑ(x).

Finally we consider |v|y = 0 and PALϑ ∩ Pref(u0x)y−1 = ∅. In this case, since
ψ̂ϑ(xv) has no ϑ-palindromic suffix preceded by ȳ (has no ϑ-palindromic prefix
followed by y), we have

ψ̂ϑ(xvy) = ψ̂ϑ(xv)y⊕ψ̂ϑ(xv). (10)

By induction we then obtain

ψ̂ϑ(xvy) = ψ̂ϑ(xv)y⊕ψ̂ϑ(xv) (11)

= φ(ψ(v))ψ̂ϑ(x)y⊕φ(ψ(v))ψ̂ϑ(x).

In particular, if v = ε,
ψ̂ϑ(xy) = ψ̂ϑ(x)y⊕ψ̂ϑ(x),

so
ψ̂ϑ(xy)ψ̂ϑ(x)−1 = ψ̂ϑ(x)y⊕ = φ(y).

Then from (11) and (9) one derives

ψ̂ϑ(xvy) = φ(ψ(v))φ(y)φ(ψ(v))ψ̂ϑ(x)

= φ(ψ(v)yψ(v))ψ̂ϑ(x)

= φ(ψ(vy))ψ̂ϑ(x),

which completes the proof. �
Example 4.4. Let us refer to Example 4.1. We have w = abc, u0 = acbbc, and ϑ
defined by ā = b, c̄ = c. By the preceding theorem, one has

ψ̂ϑ(abc) = φa(ψ(bc))ψ̂ϑ(a).

Since ψ(bc) = bcb, φa(bcb) = φa(b)φa(c)φa(b), and ψ̂ϑ(a) = (u0a)⊕ = acbbcaacb,
by using (4) we obtain

ψ̂ϑ(abc) = acbbcaacbbcaacbcacbbcaacbbcaacb,

as already shown in Example 4.1.
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From Theorem 4.3, in the case that w is an infinite word, we obtain:

Theorem 4.5. Let w ∈ Aω and x ∈ A. Then

ψ̂ϑ(xw) = φx(ψ(w)),

i.e., any ϑ-standard word s with seed is the image, by an injective morphism, of
the standard episturmian word whose directive word is obtained by deleting the first
letter of the directive word of s.

Proof. Let w ∈ Aω , t = ψ(w), and wn = Pref(w) ∩ An for all n ≥ 0. From
Theorem 4.3, for all n ≥ 0, ψ̂ϑ(xwn) = φ(ψ(wn))ψ̂ϑ(x). Since ψ(wn+1) = ψ(wn)ξn
with ξn ∈ A+, one has φ(ψ(wn+1)) = φ(ψ(wn))φ(ξn). Hence, ψ̂ϑ(xwn+1) has the
same prefix of ψ̂ϑ(xwn) of length |φ(ψ(wn))|, which diverges with n. Since

lim
n→∞φ(ψ(wn)) = φ (ψ(w)) ,

the result follows. �
In the case of an empty seed, from Theorem 4.3 one has

ψϑ(xw) = φx(ψ(w))ψϑ(x) = φx(ψ(w))x⊕ . (12)

Moreover, one easily derives that

φx(x) = x⊕, φx(y) = x⊕y⊕ for y �= x.

When u0 = ε and ϑ = R, the morphism φx reduces to μx defined as μx(y) = xy for
y �= x and μx(x) = x. Since x⊕ = x, from (12) one obtains the following formula
due to Justin [9]:

ψ(xw) = μx(ψ(w))x. (13)

It is noteworthy that Theorem 4.3 provides an alternate proof of Theorem 3.3:

Proof of Theorem 3.3. It is sufficient to observe that, in the case of an empty seed,
x⊕ = μϑ(x) and φx = μϑ ◦ μx, so that by (12) and (13) one derives:

ψϑ(xw) = (μϑ ◦ μx)(ψ(w))μϑ(x) = μϑ(μx(ψ(w))x) = μϑ(ψ(xw)),

as desired. �
Our next goal is to prove a result analogous to Theorem 3.8 for words generated

by nonempty seeds. However, because of the presence of an arbitrary seed, one
cannot hope to prove exactly the same assertion; thus in Theorem 4.9 we shall
prove that any sufficiently long left special factor of a ϑ-standard word with seed
is a prefix of it, and give an upper bound for the minimal length from which this
occurs, in terms of the length of (u0x)⊕.

In the following, we shall set

u1 = ψ̂ϑ(x) = (u0x)⊕,

so that φx(a) = (u1a)⊕u−1
1 and |φx(a)| ≤ |u1| + 2 for any a ∈ A.
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u1

u1

λ′ ρ′p s

s̄φ(a) w

Figure 1. Proposition 4.7.

For any letter a, ua will denote (if it exists) the longest ϑ-palindromic suffix
(resp. prefix) of u1 preceded (resp. followed) by ā (resp. by a). One has then
u1 = φx(a)ua for any a such that ua is defined, and φx(a) = u1a

⊕ otherwise.

Lemma 4.6. Let X = φx(A). If w ∈ X∗, then u1 ∈ Pref(wu1).

Proof. Trivial if w = ε. We shall prove by induction that for all n ≥ 1, if w ∈ Xn,
then u1 ∈ Pref(wu1). Let w ∈ X . Then there exists a ∈ A such that w = φ(a) =
(u1a)⊕u−1

1 . Thus wu1 = (u1a)⊕, so that the statement holds for n = 1.
Let us suppose the statement is true for n, we will prove it for n+1. If w ∈ Xn+1,

there exist a ∈ A and v ∈ Xn such that w = φ(a)v. By induction, vu1 can be
written as u1v

′ for some v′ ∈ A∗. Then one has wu1 = φ(a)u1v
′ and, as shown

above, u1 is a prefix of φ(a)u1, which concludes the proof. �
Recall (cf. [2]) that a pair (p, q) ∈ A∗×A∗ is synchronizing for the code X over

the alphabet A if for all λ, ρ ∈ A∗,

λpqρ ∈ X∗ =⇒ λp, qρ ∈ X∗.

Proposition 4.7. The pair (ε, u1) is synchronizing for X = φx(A).

Proof. Since X is a suffix code, it suffices to show that for any λ, ρ ∈ A∗,

λu1ρ ∈ X∗ =⇒ u1ρ ∈ X∗.

This is trivial if λ = ε. Let us factorize λu1ρ by the elements of X . Then we can
write λ = λ′p and u1ρ = sρ′, where λ′, ρ′ ∈ X∗, and ps = φ(a) ∈ X for some
letter a (see Fig. 1). If p = ε, then trivially u1ρ ∈ X∗. Suppose then p �= ε, so
that s /∈ X .

Since ps ∈ X , it follows |s| ≤ |u1| + 1. Let us prove that |s| ≤ |u1|. By
contradiction, suppose |s| = |u1| + 1. Then φ(a) = ps = u1aā and s = u1ā.
Therefore ps = u1aā = pu1ā, so that u1a = pu1. This implies a = p and u1 = ak

for a suitable k > 0. Since a is not a ϑ-palindrome, it follows u1 /∈ PALϑ, a
contradiction.

Thus one has u1 = sw for some w ∈ Pref(ρ′). By Lemma 4.6, u1 is a prefix
of ρ′u1; clearly, w is a prefix of ρ′u1 too. Therefore w is a prefix of u1, as |w| =
|u1| − |s|. Thus u1 = ws̄, and

(u1a)⊕ = φ(a)u1 = psu1 = psws̄ = pu1s̄.

Since p �= ε, by Lemma 3.1 one obtains s̄ = ε. Hence u1ρ = ρ′ ∈ X∗. �
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u1
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r s
uy

v′φ(y)

Figure 2. Lemma 4.8.

In the following, if Z is a finite subset of A∗, we shall denote by Zω the set of
all infinite words which can be factorized by the elements of Z. As is well-known
(cf. [2]) a word t ∈ Zω has a unique factorization by means of the elements of
Z if and only if Z is a code having finite deciphering delay. By Lemma 4.6, the
code X = φx(A) has the property that there exists an integer n > 0 such that
u1 ∈ Pref(v) for all v ∈ Xn; from Proposition 4.7 it follows that all pairs of
Xn ×Xn are synchronizing for X , so that X has a bounded synchronization delay
and therefore a finite deciphering delay.

Lemma 4.8. Let X = φx(A) and w = ru1azs ∈ X∗, with a, z ∈ A and r, s ∈ A∗.
If we set v′ = φx(a)−1u1az, then (r, v′s) is in X∗ ×X∗ and it is an occurrence of
φx(a) in w.

Proof. Let w ∈ X∗ be such that w = ru1azs, with z ∈ A. From Proposition 4.7 we
have that r and u1azs are in X∗. Let y ∈ A be a letter such that v = φ(y)−1u1azs
is in X∗ and set v′ = φ(y)−1u1az. It is clear from the definition of φ that either
v′ = ε, v′ = z or v′ = uyaz, where uy is the longest ϑ-palindromic suffix of u1

preceded by ȳ. In the first two cases, it must be φ(y) = u1a
⊕, so that a = y; let

then v′ = uyaz (see Fig. 2). Since v = v′s ∈ X∗, from Lemma 4.6 it follows that
u1 is a prefix of v′su1, so uya, whose length is less than |u1|, is a prefix of u1. By
definition, uy is a prefix of u1 followed by y, hence uyy = uya and a = y. Thus
(r, v′s) ∈ X∗ ×X∗ is an occurrence of φ(a) in w. �

Theorem 4.9. Let t = ψ̂ϑ(xΔ) be a ϑ-standard word with seed. Then there exists
an integer N ≥ 0 such that any left special factor of t of length greater than or
equal to N is a prefix of t.

Proof. Set z = ψ(Δ) = z1z2 . . . zn . . ., where zi ∈ A for all i ≥ 1. From Theo-
rem 4.3 we have that t = φ(z), so that t can be factorized uniquely as

t = φ(z1)φ(z2) . . . φ(zn) . . . ∈ Xω,

where X = φx(A). We shall prove that each left special factor w of t longer than
2|u1| + 2 is also a prefix of t. Since w is left special, there exist two different
occurrences of w in t preceded by distinct letters, say a and b. Moreover, since
|w| > 2|u1| + 2, we can write

w = pφ(zi+1 . . . zi+h)s = p′φ(zj+1 . . . zj+k)s′, (14)
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where φ(zi) = rap, φ(zj) = r′bp′, φ(zi+h+1) = sλ, and φ(zj+k+1) = s′λ′, with
λ, λ′ ∈ A+ and i, j, h, k positive integers. Thus one can rewrite t as

t = φ(z1 . . . zi−1)rawλφ(zi+h+2 . . .) = φ(z1 . . . zj−1)r′bwλ′φ(zj+k+2 . . .).

Without loss of generality, we can suppose |p| ≤ |p′|. From (14) and from the
preceding equation, we have

rap′φ(zj+1 . . . zj+k)s′λφ(zi+h+2 . . .) ∈ Xω.

Since |w| > 2|u1| + 2 and p′ ≤ |u1| + 1, one has |φ(zj+1 . . . zj+k)s′| > |u1| +
1, so that from Lemma 4.6, u1 is a prefix of φ(zj+1 . . . zj+k)s′λ′u1 and then of
φ(zj+1 . . . zj+k)s′.

By Proposition 4.7, (p′, φ(zj+1 . . . zj+k)s′) is a synchronizing pair for X , so that
rap′ is in X∗. If p′ �= ε, then r′bp′ is the only word of the code X having p′ as
a suffix (recall that any codeword of X is determined by its last letter); hence it
should be a suffix of rap′, which is clearly a contradiction as a �= b. Then p′ = ε,
that implies also p = ε. Thus, we can write

t = φ(z1 . . . zi)wλφ(zi+h+2 . . .) = φ(z1 . . . zj)wλ′φ(zj+k+2 . . .),

and zi �= zj , as w is left special. Since

w = φ(zi+1 . . . zi+h)s = φ(zj+1 . . . zj+k)s′

is longer than 2|u1| + 2, and |s|, |s′| ≤ |u1| + 1, there exists a letter c ∈ A such
that u1c is a prefix of both φ(zi+1 . . . zi+h) and φ(zj+1 . . . zj+k). By Lemma 4.8
one has φ(zi+1 . . . zi+h) = φ(c)ρ and φ(zj+1 . . . zj+k) = φ(c)ρ′ with ρ, ρ′ ∈ X∗, so
that zi+1 = zj+1 = c since X is a code.

Let l be the greatest integer such that zi+m = zj+m for all m ≤ l. Then both
zizi+1 . . . zi+l and zjzj+1 . . . zj+l = zjzi+1 . . . zi+l are factors of z. Since zi �= zj ,
zi+1 . . . zi+l is a left special factor of the episturmian word z, thus a prefix of z,
i.e., zi+1 . . . zi+l = z1 . . . zl. Hence φ(zi+1 . . . zi+l) is a prefix of t.

Now let us suppose that w′ = φ(zi+l+1 . . . zi+h)s = φ(zj+l+1 . . . zj+k)s′ is
strictly longer than u1. By Lemma 4.6, there exists a letter d such that u1d
is a prefix of w′, so, by applying Lemma 4.8 to w′λ ∈ X∗ and to w′λ′ ∈ X∗

one derives φ(zi+l+1) = φ(zj+l+1) = φ(d), contradicting the fact that i + l was
the largest of such indexes. Then |w′| ≤ |u1|. By Lemma 4.6, u1 is a pre-
fix of w′λu1. Thus w′ is a prefix of u1 and w = φ(zi+1 . . . zi+l)w′ is a pre-
fix of φ(zi+1 . . . zi+l)u1 = φ(z1 . . . zl)u1. Let m be an integer such that |u1| ≤
|φ(zl+1 . . . zl+m)|. By Lemma 4.6, u1 is a prefix of φ(zl+1 . . . zl+m) and φ(z1 . . . zl)u1

is a prefix of φ(z1 . . . zl+m) which is a prefix of t. In conclusion, we obtain that w
is a prefix of t. �

We observe that the proof of the preceding theorem shows that for a ϑ-standard
word s with seed u0, all left special factors of length greater than or equal to
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N = 2|u1| + 3 are prefixes of s. However, this bound is not tight. In fact, for
instance, if u0 = ε then N = 5, whereas from Theorem 3.8 one has that all left
special factors of a ϑ-standard word s, having length at least 3, are prefixes of s.

In conclusion, we mention that some further general results on ϑ-standard words
with seed have been recently proved in [4].

Acknowledgements. The authors thank the anonymous referee for his/her valuable com-
ments and suggestions.

References

[1] V. Anne, L.Q. Zamboni and I. Zorca, Palindromes and pseudo-palindromes in epistur-
mian and pseudo-palindromic infinite words, in Words 2005, number 36 in Publications

du LaCIM, edited by S. Brlek and C. Reutenauer (2005) 91–100.
[2] J. Berstel and D. Perrin, Theory of Codes. Academic Press (1985).
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