
RAIRO-Theor. Inf. Appl. 43 (2009) 145–163 Available online at:

DOI: 10.1051/ita:2008005 www.rairo-ita.org

PALINDROMIC COMPLEXITY OF INFINITE WORDS
ASSOCIATED WITH NON-SIMPLE PARRY NUMBERS

L’uboḿıra Balková1 and Zuzana Masáková1

Abstract. We study the palindromic complexity of infinite words uβ ,
the fixed points of the substitution over a binary alphabet, ϕ(0) = 0a1,
ϕ(1) = 0b1, with a − 1 ≥ b ≥ 1, which are canonically associated with
quadratic non-simple Parry numbers β.
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1. Introduction

Palindromes, words which stay the same when read backwards, is a popular
linguistic game. The longest palindrome listed in Oxford Dictionary is “tattarrat-
tat”. This word arose in the fantasy of James Joyce and signified to tap on the
door in his novel Ulysses. Not only words, but also palindromic numbers have been
attracting attention for ages. Such numbers appear already in a sanskrit manu-
script Ganitasarasâmgraha dated around 850 AD. However, palindromes occur in
serious disciplines as well. For instance, nucleotides in most of human genomes
form palindromic sequences.

In this paper, we focus on palindromes in infinite aperiodic words which can
serve as models for one dimensional quasicrystals. Quasicrystals are materials
with long-range orientational order demonstrated by sharp bright spots on their
diffraction images, nevertheless, of non-crystallographic symmetry which testifies
their aperiodicity. For their particular features, these materials have been in the
center of interest of physicists, chemists, and mathematicians since their discovery
in 1982 [19]. To understand physical properties of these materials, it is important
to describe their combinatorial properties, such as factor complexity which corre-
sponds to the number of local configurations of atoms, but also the palindromic
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structure which describes local symmetry of the material. Moreover, the palin-
dromic structure of the infinite words turns out to be important for the description
of the spectral properties of Schrödinger operators with potentials adapted to ape-
riodic structures [13].

Here, we concentrate on infinite words uβ coding numbers with integer β-expan-
sion. Such words are defined over a finite alphabet if the base β of the numeration
system is a Parry number, i.e., such that its Rényi expansion of unity dβ(1) is
eventually periodic. For the definition of dβ(1) see Section 2. If dβ(1) is finite, β is
called a simple Parry number. For such β, diverse combinatorial aspects of infinite
words uβ have been investigated. In [11], one describes the factor complexity of a
large subclass of these words. In [1], the palindromic complexity is given for the
same subclass. In paper [5], the authors determine the number of return words.
The balance properties of quadratic simple Parry numbers are studied in [21].

Much less is known about infinite words uβ associated with non-simple Parry
numbers. Some preliminary results about their factor complexity are given in [12].
Otherwise, one finds concrete results only about infinite words uβ where β is
a quadratic non-simple Parry number. In this case, uβ is a fixed point of the
substitution ϕ(0) = 0a1, ϕ(1) = 0b1, a > b ≥ 1. The factor complexity of such
infinite words has been determined in [11]. In [4], one studies their arithmetical
and balance properties.

The aim of this paper is to determine the palindromic complexity of infinite
words uβ associated with non-simple Parry numbers. In fact, we explain that the
only interesting case is again the case of quadratic non-simple Parry numbers,
since the language of the infinite word uβ for other non-simple Parry numbers β
contains only finitely many palindromes.

2. Notations and definitions

2.1. Combinatorics on words

An alphabet A is a finite set of symbols called letters. A concatenation w =
w1w2 . . . wn of letters is called a word of length |w| = n. The set of all finite
words, including the empty word ε, is denoted by A∗, and has the structure of
a free monoid with respect to the operation of concatenation. We deal also with
right-sided infinite words, and, if need be, bidirectional infinite words, i.e., with
sequences of letters u = u0u1u2 . . ., or u = . . . u−1u0u1u2 . . ., respectively. A finite
word w is called a factor of a word u (finite or infinite) if there exist a finite word
w(1) and a word w(2) (finite or infinite) such that u = w(1)ww(2). The word w is
a prefix of u if w(1) = ε. Analogously, w is a suffix of u if w(2) = ε. A concatenation
of k words z will be denoted by zk, a concatenation of infinitely many words z by
zω. An infinite word u is said to be eventually periodic if there exist words w, z such
that u = wzω. Let u = u1u2u3 . . . , ui ∈ A, then u−1

1 u = u2u3 . . .. The language of
u, denoted by L(u), is the set of all factors of the word u. A letter z ∈ A is called
a left extension of a factor w of the word u if zw belongs to L(u). The factor w is
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a left special factor of u if w has more than one left extensions. Similarly we define
right special factors. The factor complexity (or simply complexity) of an infinite
word u is the function C : N → N such that

C(n) = the number of different factors of u of length n.

We will denote by w the reversal of w, i.e., if w = w1w2 . . . wn, then w =
wn . . . w2w1. A palindrome is a word w which is equal to its reversal w. The
palindromic complexity of an infinite word u is the function P : N → N such that

P(n) = the number of different palindromic factors of u of length n.

If for a palindrome w ∈ L(u) there exists z ∈ A such that zwz is also a factor of u,
then z is a palindromic extension of w. The language of u is closed under reversal
if for every factor w of u, also w is in L(u).

A substitution on A∗ is a morphism ϕ : A∗ → A∗ such that there exists a letter
z ∈ A and a non-empty word w ∈ A∗ satisfying ϕ(z) = zw and ϕ(y) �= ε for
all y ∈ A. Since any morphism satisfies ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗, it
suffices to define the substitution over the alphabet A. An infinite word u is said
to be a fixed point of the substitution ϕ if it fulfills

u = u1u2u3 . . . = ϕ(u1)ϕ(u2)ϕ(u3) . . . = ϕ(u). (1)

It is obvious that a substitution ϕ has at least one fixed point, namely
limn→∞ ϕn(z).

A substitution ϕ over the alphabet A is called primitive if there exists k ∈ N

such that for any z ∈ A the word ϕk(z) contains all the letters of A. It has been
proved [9] that if u is a fixed point of a primitive substitution ϕ, then u is uniformly
recurrent, that is, for every n ∈ N there exists R(n) > 0 such that any factor of u
of length ≥ R(n) contains all the factors of u of length n.

2.2. Beta-expansions, beta-integers, and Rényi expansion of unity

Let β > 1 be a real number. For any non-negative real number x there exist a
series of coefficients (xi)k

i=−∞ such that xi ∈ N satisfying

0 ≤
k∑

i=N

xiβ
i < βN for all N ∈ Z, N ≤ k.

The representation of x in the form of the convergent series x =
∑k

i=−∞ xiβ
i

is called the β-expansions of x. Note that the elements of the sequence (xi)i≤k

can also be obtained using the mapping Tβ : [0, 1] �→ [0, 1) defined by Tβ(x) :=
βx − �βx	, by the prescription xi =

⌊
βT k−i

β (x/βk+1)
⌋
. This implies that the

‘digits’ xi of the β-expansion take values in the set {0, 1, . . . , 
β� − 1}.
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Numbers x ≥ 0 whose β-expansion is of the form
∑k

i=0 xiβ
i are called non-

negative β-integers, their set is denoted Z
+
β . The set of β-integers is Zβ = −Z

+
β ∪

Z
+
β . The properties of β-integers depend on the so-called Rényi expansion of unity

in base β defined as

dβ(1) = t1t2t3 . . . , where ti := �βT i−1
β (1)	 .

Note that t1 = �β	 ≥ 1. It is interesting to mention that not every sequence of
nonnegative integers is equal to dβ(1) for some β. Parry studied this problem in
his paper [16] and showed that a sequence (ti)i≥1, ti ∈ N, is the Rényi expansion
of unity for some number β if and only if the sequence satisfies

tjtj+1tj+2... ≺ t1t2t3... for every j > 1,

where ≺ stands for strictly lexicographically smaller.

2.3. Infinite words associated with beta-integers

If β is an integer, then Zβ = Z. For β �∈ N, Thurston [20] has shown that
the distances between consecutive β-integers take values in the set {Δk

∣∣ k ∈ N},
where

Δk :=
∞∑

i=1

ti+k

βi
for k ∈ N0. (2)

It is evident that the set {Δk

∣∣ k ∈ N0} is finite if and only if dβ(1) is eventually
periodic. Numbers β with eventually periodic Rényi expansion of unity are called
Parry numbers. Coding the distances Δi by letters, the set Z

+
β of non-negative

integers can be naturally represented by an infinite word over a finite alphabet;
such a right-sided infinite word is usually denoted by uβ .

If the Rényi expansion of unity in base β is finite (i.e., dβ(1) ends in infinitely
many 0’s), β is said to be a simple Parry number. In this paper, we focus on non-
simple Parry numbers β, i.e., numbers having eventually periodic, but infinite
Rényi expansion of unity. Let β be a non-simple Parry number and let m, p be
minimal such that

dβ(1) = t1 . . . tm(tm+1 . . . tm+p−1)ω (3)

is the Rényi expansion of unity in base β. In this case, there are m + p − 1
different distances between neighboring β-integers. If we assign the letter i to
the distance Δi, then Z

+
β is represented by an infinite word uβ over the alphabet

i ∈ {0, . . . , m + p − 1}. It has been proved [10] that the infinite word uβ is the
unique fixed point of the following primitive substitution:

ϕ(j) = 0tj (j + 1) for j ∈ {0, 1, . . . , m + p − 2} ,

ϕ(m+p−1) = 0tm+pm .
(4)
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3. Languages closed under reversal for Parry numbers

The existence of palindromes in an infinite word is strongly related with in-
variance under reversal of the corresponding language. This property singles out
among all the words uβ with non-simple Parry number β those, for which β is a
quadratic number.

We remind two results; at first, a proposition, proved in [1], which explains how
the number of palindromes is connected with the invariance of the language L(uβ)
under reversal.

Proposition 3.1. Let u be an infinite uniformly recurrent word. If for every
n ∈ N there exists a palindrome in L(u) of length greater than n, then L(u) is
closed under reversal.

It follows immediately that if there exists a factor w ∈ L(u) such that its reversal
w �∈ L(u), then there is only a finite number of palindromes in L(u). The following
proposition taken from [6] determines the non-simple Parry numbers β, for which
the language L(uβ) is closed under reversal.

Proposition 3.2. Let β be a non-simple Parry number with the Rényi expansion
of unity dβ(1) = t1 . . . tm(tm+1 . . . tm+p−1)ω, where m, p are minimal, and let uβ be
the fixed point of the substitution (4). The language L(uβ) is closed under reversal
if and only if m = p = 1.

The condition m = p = 1 in the above proposition implies that the Rényi
expansion of unity of the number β is of the form

dβ(1) = abω , where a − 1 ≥ b ≥ 1. (5)

Consequently, β is the larger root of the polynomial x2 − (a + 1)x + a − b, the
substitution ϕ is defined over the alphabet {0, 1} by

ϕ(0) = 0a1 , ϕ(1) = 0b1 , (6)

and its fixed point uβ = limn→∞ ϕn(0) is a right-sided infinite word of the form

uβ = 0a1 . . . 0a1︸ ︷︷ ︸
a times

0b1 0a1 . . . 0a1︸ ︷︷ ︸
a times

0b1 . . . (7)

As a result of Propositions 3.1 and 3.2, if β is a non-simple Parry number which
is not quadratic, then the language of the infinite word uβ contains only a finite
number of palindromes. Therefore in the study of palindromic complexity of in-
finite words uβ, we will be particularly interested in quadratic non-simple Parry
numbers with dβ(1) of the form (5).

The case of b = a− 1 has been already studied and the palindromic complexity
of the corresponding infinite word uβ is known. If b = a − 1, then β is the larger
root of the polynomial x2 − (a + 1)x+ 1, i.e., β is a quadratic Pisot unit. In [7], it
has been shown that the complexity of uβ in this case is C(n) = n+1 for n ∈ N, i.e.,
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C(n) is the smallest possible for aperiodic words. Infinite words having the smallest
possible complexity are called Sturmian words. It has been shown in [8] that each
palindrome p of a Sturmian word u has exactly one palindromic extension, i.e.,
there exists exactly one letter z ∈ {0, 1}, such that zpz ∈ L(u). Consequently,
there are exactly 2 palindromes of any odd length and one palindrome of any even
length, i.e.,

P (2n) = P (0) = 1 and P (2n + 1) = P (1) = 2 for all n ∈ N. (8)

From now on, we will limit our considerations to quadratic non-simple and non-
Sturmian Parry numbers with the Rényi expansion of unity equal to dβ(1) = abω,
where a − 1 > b ≥ 1.

4. Factor complexity of uβ

Let us recall some results from [3,12] concerning the factor complexity of the
infinite words uβ for a quadratic non-simple Parry number β. It turns out that
the notions, tools, and ideas developed for determining the factor complexity of
uβ will be useful also in determining its palindromic complexity.

Recall that in order to describe the factor complexity of an infinite word, it
suffices to describe its left special factors. For the case of an infinite word over
a binary alphabet, the reason is particularly simple. Denoting by Mn the set of all
left special factors of length n, it is obvious that the first difference of complexity
satisfies

ΔC(n) = C(n + 1) − C(n) = #Mn.

The first observation about special factors is presented by the following lemma.

Lemma 4.1. Let 10r1 be a factor of uβ, then either r = a or r = b. Let v be
a left (right) special factor of uβ containing the letter 1, then v has the prefix 0b1
(the suffix 10b).

Proof. The first statement follows immediately from the form of substitution (6).
See (7) to understand that there are no other blocks of the form 10r1. Conse-
quently, a left special factor must have the prefix 0b1, otherwise, it would have a
unique left extension. �

Taking a factor w of uβ, by Lemma 4.1, the word 0b1ϕ(w)0b is also a factor
of uβ. On the other hand, every factor of uβ with the prefix 0b1 and suffix 10b

can be written as 0b1ϕ(w)0b for some factor w of uβ. Thus, defining a mapping
T : {0, 1}∗ → {0, 1}∗ which will be very useful throughout the paper, we have

w ∈ L(uβ) ⇐⇒ T (w) := 0b1ϕ(w)0b ∈ L(uβ). (9)

For the description of the left special factors of uβ , one introduces the following
notions.
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Definition 4.2. Let uβ be the infinite word associated with dβ(1) = abω, a−1 >
b ≥ 1.

• An infinite word v is called an infinite left special branch of uβ if each
prefix of v is a left special factor of uβ.

• A left special factor w ∈ L(uβ) is called maximal if neither w0 nor w1 are
left special.

• A factor w of uβ is called total bispecial if both w0 and w1 are left special
factors of uβ.

The following facts, proved in [12], represent the consecutive steps needed for the
determination of the factor complexity of uβ :

– Every left special factor is a prefix of a maximal left special factor or of
an infinite left special branch. A total bispecial factor is a common prefix
of an infinite left special branch and a maximal left special factor.

– The only maximal left special factor which does not contain the letter 1
has the form 0a−1 and the only total bispecial factor containing no letter
1 is 0b.

– Every maximal left special (total bispecial) factor of uβ that contains at
least one letter 1 is also right special, and therefore by Lemma 4.1, can
be written as 0b1ϕ(w)0b for some maximal left special (total bispecial)
factor w.

– If w ∈ L(uβ), then w is a left special factor if and only if T (w) is a left
special factor. Moreover, w is maximal if and only if T (w) is maximal and
w is total bispecial if and only if T (w) is total bispecial.

– From the previous, all maximal left special factors have the form:

U (1) = 0a−1,

U (n) = T (U (n−1)) for n ≥ 2.
(10)

– All total bispecial factors have the form:

V (1) = 0b,

V (n) = T (V (n−1)) for n ≥ 2.
(11)

– V (n−1) is a prefix of V (n), V (n) is a prefix of U (n), and

|V (n)| < |U (n)| < |V (n+1)| for all n ∈ N . (12)

– There exists a unique infinite left special branch of uβ, namely the infinite
word limn→∞ V (n).
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If we sum up the previous results, we notice that there is one left special factor
of length n being the prefix of the infinite left special branch for any n ∈ N. Since
|V (k)| < |U (k)| < |V (k+1)| and V (k) is a prefix of U (k), there exists a left special
factor of length n being prefix of U (k) and not prefix of V (k) if |V (k)| < n ≤ |U (k)|.
Thus, we obtain the following theorem.

Theorem 4.3. Let uβ be the fixed point of the substitution ϕ(0) = 0a1, ϕ(1) = 0b1
for a − 1 > b ≥ 1. Then for all n ∈ N,

ΔC(n) =
{

2 if |V (k)| < n ≤ |U (k)| for some k ∈ N,
1 otherwise.

5. Palindromic complexity of uβ

In this section, we reach the main goal of this paper which is to determine
the palindromic complexity P(n) of infinite words associated with quadratic non-
simple Parry numbers β with the Rényi expansion dβ(1) = abω. As we have
mentioned, the case b = a − 1 has been already solved, the infinite word uβ

being Sturmian under this assumption. Thus we limit our considerations to the
case of a − 1 > b. We proceed in more steps: first, we investigate palindromic
extensions of palindromic factors of uβ. Second, we study centers of palindromes,
and, finally, we focus on infinite palindromic branches. This allows us to conclude
by determination of the palindromic complexity.

5.1. Palindromic extensions of palindromic factors of uβ

Since the word uβ is defined over a binary alphabet, a palindrome in uβ can have
two, one, or no palindromic extensions. It turns out that most usually, palindromes
in uβ have exactly one palindromic extension. In this section, we determine the
exceptional palindromes, i.e., those that do not have any palindromic extensions
(called maximal palindromes), and those that have two palindromic extensions.

Definition 5.1. Let p and q be palindromes in L(uβ).
• The palindrome p is a central factor of the palindrome q if there exists

a finite word w ∈ L(uβ) such that q = wpw.
• The palindrome p is called maximal if neither 0p0 nor 1p1 belong to L(uβ),

i.e., if the only palindrome having p as its central factor is p itself.

Every palindrome is either a central factor of a maximal palindrome or a central
factor of a sequence of palindromes with increasing length. In the latter case, we
will speak about infinite palindromic branches. The exact definition and descrip-
tion of infinite palindromic branches in uβ follows in Section 5.3.

Let us now determine all maximal palindromes in uβ. First, realize a simple
consequence of Lemma 4.1.

Lemma 5.2. Let p be a palindrome of uβ containing at least one letter 1. Then
p is a central factor of a palindrome with prefix 0b1 (and, equivalently, suffix 10b).
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Consequently, a palindrome which has not the prefix 0b1 is either not maximal,
or does not contain the letter 1. Such palindrome must be of the form 0r for some
1 ≤ r ≤ a, and it can be easily shown that the only maximal palindrome of such
form is 0a−1.

In order to determine all maximal palindromes of uβ , let us now study the
behaviour of palindromes with respect to the substitution ϕ. Since every maximal
palindrome p containing the letter 1 has the prefix 0b1 and the suffix 10b, one
can always write it as 0b1ϕ(q)0b for some factor q ∈ L(uβ). The following lemma
shows that similarly as in the case of left special factors studied for determining the
factor complexity, we can use the substitution ϕ to reduce all maximal palindromes
containing at least one letter 1 to the maximal palindrome 0a−1.

Lemma 5.3. Let p ∈ L(uβ). Then p is a palindrome in uβ if and only if T (p) =
0b1ϕ(p)0b is a palindrome in uβ. Moreover,

{
z ∈ {0, 1} ∣∣ zpz ∈ L(uβ)

}
=

{
z ∈ {0, 1} ∣∣ zT (p)z ∈ L(uβ)

}
.

Proof. Let us investigate under which condition 0b1ϕ(p)0b is a palindrome in uβ .
We will study for which p it holds that

0bϕ(p)10b = 0b1ϕ(p)0b.

Note that we can write ϕ(0) = 10a = 1ϕ(0)1−1 and ϕ(1) = 10b = 1ϕ(1)1−1. Then
denoting p = p1...pk, we have

ϕ(p)1 = ϕ(p1) . . . ϕ(pk)1 = ϕ(pk) . . . ϕ(p1)1 = 1ϕ(p).

As ϕ(p) = ϕ(p) if and only if p = p, the first statement of the lemma is proved.

Let us now verify {z ∈ {0, 1} ∣∣ zpz ∈ L(uβ)} = {z ∈ {0, 1} ∣∣ zT (p)z ∈ L(uβ)}.
⊂ Let 0p0 ∈ L(uβ). Then T (0p0) = 0b1ϕ(0)ϕ(p)ϕ(0)0b ∈ L(uβ). Since ϕ(0)

has the suffix 00b1 and the prefix 0b0, we have 0T (p)0 ∈ L(uβ).
Let now 1p1 ∈ L(uβ). Then T (1p1) = 0b1ϕ(1)ϕ(p)ϕ(1)0b ∈ L(uβ) and

from ϕ(1) = 0b1, we deduce that 1T (p)1 ∈ L(uβ).
⊃ Let 0T (p)0 ∈ L(uβ). Due to Lemma 4.1, 0T (p)0 = 0b+11ϕ(p)0b+1 can be

uniquely extended on both sides to the factor

0b10a1ϕ(p)0a10b = 0b1ϕ(0p0)0b = T (0p0) ∈ L(uβ),

which implies 0p0 ∈ L(uβ).
Similarly, let 1T (p)1 ∈ L(uβ). Then 1T (p)1 = 10b1ϕ(p)0b1 is a central

factor of 0b10b1ϕ(p)0b10b = 0b1ϕ(1p1)0b = T (1p1) ∈ L(uβ), which implies
1p1 ∈ L(uβ). �

Using Lemma 5.3, we can see that the maximal left special factors U (n), defined
by (10), are at the same time maximal palindromes.
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Proposition 5.4. Let p be a palindrome in uβ. Then p is a maximal palindrome
if and only if p = U (n) for a positive integer n.

Proof. From their definition by (10) and from Lemma 5.3, every U (n) is a maximal
palindrome. We show the opposite implication by induction on the number of
letters 1 contained in p. If p does not contain 1 and p is maximal, then p is
equal to U (1) = 0a−1. There is no maximal palindrome containing only one letter
1. Let p contain at least two letters 1. Then by Lemma 5.2, p is of the form
p = 0b1ϕ(q)0b. Using Lemma 5.3, we know that q is a maximal palindrome and q
contains a smaller number of letters 1 than p. By induction hypothesis, q = U (k)

for some k ∈ N and p = 0b1ϕ(U (k))0b = U (k+1). �

Let us now determine the palindromes which have two palindromic extensions.
Such a palindrome is both a left special and a right special factor of uβ. Therefore
by Lemma 4.1, it must have the prefix 0b1 and the suffix 10b, whenever it contains
at least one letter 1. Thus again, we can write such a palindrome p as p = 0b1ϕ(q)0b

for some q ∈ L(uβ). Now it suffices to realize that the only palindrome of the
form 0r with two palindromic extensions, is V (1) = 0b. Using Lemma 5.3, we
deduce that the total bispecial factors V (n) defined by (11) have two palindromic
extensions.

Proposition 5.5. Let p be a palindrome in uβ. Then p has two palindromic
extensions if and only if p = V (n) for a positive integer n.

Proof. From Lemma 5.3, it is clear that palindromes V (n) have two palindromic
extensions. It suffices to show that any palindrome with two palindromic exten-
sions is equal to some V (n). Let p be a palindrome such that 0p0, 1p1 ∈ Pal(uβ),
then p is a left special factor and it is not maximal. Without loss of generality, we
can suppose that p0 is a left special factor, i.e., 0p0, 1p0 ∈ L(uβ). Using the fact
that L(uβ) is closed under reversal, we have 0p1, 1p1 ∈ L(uβ). It means that also
p1 is a left special factor. Consequently, p is a total bispecial factor, i.e., p = V (k)

for some k ∈ N. �

Let us summarize the results of this section by classifying palindromes in uβ

according to their number of palindromic extensions. This a crucial step for the
determining of palindromic complexity of uβ. It is interesting to notice that se-
quences U (n) of maximal left special factors and V (n) of total bispecial factors
play an important role not only in computing the factor complexity, but also in
determining the palindromic complexity. For illustration, consider the example
from Figure 1 in Section 4 and check that the total bispecial factors and maximal
left special factors illustrated there are indeed palindromes.

Proposition 5.6. Let p be a palindrome in uβ. Then

(1) p is a maximal palindrome ⇔ p = U (n) for a positive integer n.
(2) p has two palindromic extensions ⇔ p = V (n) for a positive integer n.
(3) p has one palindromic extension ⇔ p �= U (n) ∧ p �= V (n) for all n ∈ N.
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0

1
ε 0

0

1 0 0 0 1 0
0

1 0 0 0 1 0 0 · · ·
0 1 0

�
V (1) = 0

��U (1) = 00

� �U (2) = 01000100010

� �
V (2) = 0100010

Figure 1. Illustration of the tree of left special factors for uβ

being the fixed point of the substitution ϕ(0) = 0001, ϕ(1) = 01.
We can see total bispecial factors V (k) and maximal left special
factors U (k) for k = 1, 2.

Using the inequality |V (n)| < |U (n)| < |V (n+1)| for all n ∈ N, we obtain the
following corollary of Proposition 5.6.

Corollary 5.7. Let uβ be the fixed point of the substitution ϕ(0) = 0a1, ϕ(1) =
0b1, a − 1 > b ≥ 1. Then

P(n + 2) − P(n) =

⎧⎨
⎩

1 if n = |V (k)| for a positive integer k,

−1 if n = |U (k)| for a positive integer k,
0 otherwise.

Combining with Theorem 4.3, we can derive a simple connection of palindromic
complexity with the second difference of factor complexity:

Δ2C(n) = ΔC(n + 1) − ΔC(n) = P(n + 2) − P(n).

This relation is essential to show the following corollary.

Corollary 5.8. Let uβ be the fixed point of the substitution ϕ(0) = 0a1, ϕ(1) =
0b1, a − 1 > b ≥ 1. Then

P(n + 1) + P(n) = ΔC(n) + 2 for all n ∈ N. (13)

Proof. We have P(n + 1) + P(n) = P(0) + P(1) +
n∑

i=1

(P(i + 1) − P(i − 1)
)

= 1 + 2 +
n∑

i=1

(
ΔC(i) − ΔC(i − 1)

)
= 3 + ΔC(n) − C(1) + C(0) = ΔC(n) + 2. �

Let us mention that for uniformly recurrent infinite words in general, one has
P(n + 1) + P(n) ≤ ΔC(n) + 2 for all n ∈ N. This is shown in [2] together with
several examples of infinite words where the equality is reached. By Corollary 5.8,
we have found yet another class of infinite words with this property.
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A direct consequence of the above corollary is the fact that the palindromic
complexity of uβ is bounded since P (n + 1) + P (n) ≤ 4.

5.2. Centers of palindromes

We have seen that the set of palindromes of uβ is closed under the mapping p �→
T (p) = 0b1ϕ(p)0b. Let us study how T acts on the central factors of palindromes.

Definition 5.9. Let p ∈ L(uβ) be a palindrome of odd length. The center of
p is a letter z ∈ {0, 1} such that p = wzw, where w ∈ L(uβ). The center of
a palindrome of even length is the empty word.

Lemma 5.10. Let p, q be palindromes in uβ. If q is a central factor of p, then
T (q) is a central factor of T (p).

Proof. Let p = w0q0w for a w ∈ L(uβ). Then T (p) = 0b1ϕ(w)0a1ϕ(q)0a1ϕ(w)0b.
According to Lemma 5.3, T (p) is a palindrome, and clearly, T (q) = 0b1ϕ(q)0b is
its central factor. The proof is similar for p = w1q1w. �

Now, using Lemma 5.10, we can describe how the center of the palindrome T (p)
depends on the center of the palindrome p.

Lemma 5.11. Let p be a palindrome in uβ.

(i) If p has the center ε, then T (p) has the center 1.

(ii) If p has the center 0, then T (p) has the center
{

0 for a odd,
ε for a even.

(iii) If p has the center 1, then T (p) has the center
{

0 for b odd,
ε for b even.

Proof. Let us verify for example the statement (ii). Using Lemma 5.10, it is evident
that if p has the center 0, then T (p) has the central factor T (0) = 0b10a10b. Con-
sequently, the center of T (p) is either 0 if a is odd, or ε if a is even. Statements (i)
and (iii) can be proved analogously. �

Lemmas 5.10 and 5.11 allow us to describe the centers of palindromes with two
palindromic extensions V (n) and the centers of maximal palindromes U (n).

Proposition 5.12. The centers and central factors of palindromes V (n) with
two palindromic extensions depend on the values of parameters a, b.

(i) Let b be even. Then for all n ∈ N, V (n) is a central factor of V (n+2).
Moreover, V (2n) has the center 1 and V (2n−1) has the center ε.

(ii) Let b be odd and a even. Then for all n ∈ N, V (n) is a central factor of
V (n+3). Moreover, V (3n) has the center 1, V (3n−1) has the center ε, and
V (3n−2) has the center 0.

(iii) Let both b and a be odd. Then for all n ∈ N, V (n) is a central factor of
V (n+1) and has the center 0.
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Proof. In order to show the statement (i), it suffices to verify that V (1) is a central
factor of V (3) and that V (1) has the center ε and V (2) has the center 1. The state-
ment (i) then follows by induction on n ∈ N. Since b is even, V (1) = 0b has the
center ε. By Lemma 5.11, V (2) has the center 1. Applying Lemma 5.10, one can
see that V (3) has the central factor T (1) = 0b10b10b, i.e., it has also V (1) as its
central factor.

Proofs of statements (ii) and (iii) are analogous. �
Proposition 5.13. The centers and central factors of maximal palindromes U (n)

depend on the values of a and b. Let n ∈ N, we have the following cases:
(i) Let b be even and a odd. Then for all n ∈ N, V (n) is a central factor of

U (n). Moreover, U (2n−1) has the center ε and U (2n) has the center 1.
(ii) Let both b and a be even. Then U (1) = 0a−1 is the only maximal palindrome

with the center 0. For all n ∈ N, V (n) is a central factor of U (n+1).
Moreover, U (2n) has the center ε and U (2n+1) has the center 1.

(iii) Let b be odd and a even. Then for all n ∈ N, V (n) is a central factor of
U (n). Moreover, U (3n−2) has the center 0, U (3n−1) has the center ε, and
U (3n) has the center 1.

(iv) Let both b and a be odd. The only maximal palindrome with the center ε
is U (1) = 0a−1. The only maximal palindrome having the center 1 is U (2).
For n ≥ 3, U (n) has the center 0 and the central factor V (n−2).

Proof. Let us show for example the statement (ii). Since a is even, U (1) = 0a−1

has the center 0, Lemma 5.11 implies that U (2) has the center ε and the central
factor T (0) = 0b10a10b. Consequently, V (1) = 0b is also a central factor of U (2),
b being even. Applying Lemma 5.11, we obtain that U (3) has the center 1. The
statement follows by induction on n ∈ N. �

5.3. Infinite palindromic branches

Every palindrome is either a central factor of a maximal palindrome U (n), or
a central factor of an infinite palindromic branch. Their knowledge is essential for
determination of the palindromic complexity of uβ .

Definition 5.14. Let v = v1v2v3 . . . be a right-sided infinite word over the alpha-
bet {0, 1}. Denote by v the left-sided infinite word v = . . . v3v2v1. Let z ∈ {ε, 0, 1}.
If for every n ∈ N, the palindrome p = vnvn−1...v1zv1v2...vn belongs to L(uβ), then
the bidirectional infinite word vzv is called an infinite palindromic branch of uβ

with the center z, and the palindrome p is called the central factor of the infinite
palindromic branch vzv.

Lemma 5.15. Let z ∈ {ε, 0, 1}. Then there exists at most one infinite palindromic
branch with the center z.

Proof. It follows from Lemma 5.10 that applying the substitution ϕ on an infinite
palindromic branch, one obtains again an infinite palindromic branch. More pre-
cisely, from vzv one obtains ϕ(v)10a1ϕ(v) if z = 0, ϕ(v)10b1ϕ(v) if z = 1, and
ϕ(v)1ϕ(v) if z = ε.
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We show the statement of the lemma by contradiction. Suppose that there are
two different infinite palindromic branches with the same center z. By applying the
substitution ϕ, we obtain two different infinite palindromic branches with longer
common central factor. Repeating this procedure, we can construct infinitely many
different infinite palindromic branches, which is a contradiction with boundedness
of the palindromic complexity. �

We now describe the infinite palindromic branch of uβ with the center z ∈
{ε, 0, 1} and the common central factors of this branch with maximal palindromes
having the same center z. With this in hand, we will be able to summarize the
values of the palindromic complexity. Note that the candidate for the longest
common prefix of a maximal palindrome and an infinite palindromic branch with
the same center is a palindrome, which has two palindromic extensions, thus one
of the palindromes V (n). Using Proposition 5.12, we can describe all infinite
palindromic branches of uβ.

Proposition 5.16.
(i) Let b be even and a odd. There exists an infinite palindromic branch with

the center z for all z ∈ {ε, 1, 0}, namely the bidirectional limit:

lim
n→∞V (2n−1) having the center ε,

lim
n→∞V (2n) having the center 1,

lim
n→∞W (n) where W (1) = 0, W (n) = T (W (n−1)),

having the center 0.

For n ∈ N, the longest common central factor of a maximal palindrome
U (n) and the infinite palindromic branch with the same center is V (n). The
limit of W (n) has a common central factor with no maximal palindrome.

(ii) Let both b and a be even. There exists an infinite palindromic branch with
the center z for z ∈ {ε, 1}, namely the bidirectional limit:

lim
n→∞ V (2n−1) having the center ε,

lim
n→∞ V (2n) having the center 1.

There is no infinite palindromic branch with the center 0. For n ∈ N,
n ≥ 2, the longest common central factor of a maximal palindrome U (n)

and the infinite palindromic branch with the same center is V (n−1).
(iii) Let b be odd and a even. There exists an infinite palindromic branch with

the center z for z ∈ {0, ε, 1}, namely the bidirectional limit:

lim
n→∞ V (3n−2) having the center 0,

lim
n→∞ V (3n−1) having the center ε,

lim
n→∞ V (3n) having the center 1.
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For n ∈ N, the longest common central factor of a maximal palindrome
U (n) and the infinite palindromic branch with the same center is V (n).

(iv) Let both b and a be odd. There exists an infinite palindromic branch with
the center 0, namely the bidirectional limit of palindromes V (n), n ∈ N.
There is neither an infinite palindromic branch with the center ε, nor with
the center 1. For n ∈ N, n ≥ 3, the longest common central factor of a
maximal palindrome U (n) and the infinite palindromic branch is V (n−2).

Proof. It follows from Lemma 5.15 that there is at most one infinite palindromic
branch with the center z for each z ∈ {ε, 0, 1}. In order to verify that the
bidirectional limits of palindromes exist, it suffices to use Proposition 5.12, or
Lemma 5.10, to see that the palindromes are central factors of one another. Let
us explain why in cases (ii) and (iv) one does not have an infinite palindromic
branch with every center.

(ii) Let b and a be even, suppose that there is a palindromic branch with the
center 0. Necessarily, this branch has a block of the form 0a or 0b as its central
factor. It is impossible owing to the fact that both a and b are even.

(iv) Let both b and a be odd, suppose that there is an infinite palindromic
branch with the center ε. Then it has a block of the form 0a or 0b as its central
factor. It is impossible since both a and b are odd. Suppose now that there exists
an infinite palindromic branch with the center 1. Take a central factor of this
palindromic branch of the form T (p) for a palindrome p containing at least two
letters 1. Using Lemma 5.11, p must have the center ε, and thus have a central
factor 0a or 0b, which is impossible.

The statements about the maximal common central factor of maximal palindro-
mes and infinite palindromic branches are a consequence of Proposition 5.13. �

5.4. Explicit values of the palindromic complexity of uβ

We are now in position to derive explicitly the values of the palindromic com-
plexity of the infinite word uβ dependingly on the parity of parameters a, b of the
Rényi expansion of unity dβ(1) = abω. We have investigated maximal palindromes,
infinite palindromic branches, and their centers. Determining the complexity is
easy with the use of Figures 2–5, which visualize the structure of maximal palin-
dromes and of infinite palindromic branches, according to Proposition 5.16.

Theorem 5.17. Let uβ be the fixed point of the substitution ϕ(0) = 0a1, ϕ(1) =
0b1, a− 1 > b ≥ 1. Then 4 cases can appear according to the values of parameters
a and b, n ∈ N ∪ {0}:

(i) Let b be even and a odd.

P (2n) =
{

2 if |V (2k−1)| < 2n ≤ |U (2k−1)| for some k ∈ N ,
1 otherwise.

P (2n + 1) =
{

3 if |V (2k)| < 2n + 1 ≤ |U (2k)| for some k ∈ N ,
2 otherwise.
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0
��W (1)

��W (2)

��
W (3)

1
�� V (2)

��
V (4)

��� ���
U(2)

��� ���
U(4)

ε
��V (1)

��
V (3)

��� ���
U(3)

��� ���
U(1)

Figure 2. Illustration of maximal palindromes and infinite palin-
dromic branches for b even and a odd. There is one infinite branch
with center ε, one with center 1, and one with center 0. There
are infinitely many maximal palindromes with center ε and 1.

� 0 �
U(1)

1
�� V (2)

��
V (4)

					

������ U(3)

ε
��V (1)

��
V (3)

				
 ����� U(2)

					

������ U(4)

Figure 3. Illustration of maximal palindromes and infinite palin-
dromic branches for a and b even. There is one infinite branch
with center ε and one with center 1. There are infinitely many
maximal palindromes with center ε and 1. There is only one
maximal palindrome with center 0.

(ii) Let both b and a be even.

P (2n) =
{

2 if |V (2k−1)| < 2n ≤ |U (2k)| for some k ∈ N ,
1 otherwise.

P (2n + 1) =

⎧⎨
⎩

2 if 2n + 1 ≤ |U (1)| = a − 1 ,

2 if |V (2k)| < 2n + 1 ≤ |U (2k+1)| for some k ∈ N ,
1 otherwise.
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1 ��
V (6)

ε
�� V (2)

��
V (4)

��� ���
U(2)

��� ���
U(4)

��
V (5)

0
��V (1)

�� V (3)

��� ���
U(3)

��� ���
U(1)

Figure 4. Illustration of maximal palindromes and infinite palin-
dromic branches for b odd and a even. There are infinite branches
and infinitely many maximal palindromes with centers 0, 1, ε.

� ε �
U(1)

� 1 �
U(2)

��
V (2)

��
V (4)

�������

							�

U(3)

0
��V (1)

�� V (3)

							

��������

						

�������

U(4)

U(5)

Figure 5. Illustration of maximal palindromes and infinite palin-
dromic branches for a and b odd. The only infinite palindromic
branch has center 0. There are infinitely many maximal palin-
dromes with center 0. There is only one maximal palindrome
with center ε and one with center 1.

(iii) Let b be odd and a even.

P (2n) =
{

2 if |V (3k−1)| < 2n ≤ |U (3k−1)| for some k ∈ N ,
1 otherwise.

P (2n + 1) =
{

3 if |V (k)| < 2n + 1 ≤ |U (k)| for some k ∈ N, k �≡ 2 mod3,
2 otherwise.
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(iv) Let both b and a be odd. We have

P (2n) =
{

1 if 0 ≤ 2n ≤ |U (1)| = a − 1,
0 otherwise.

P (2n + 1) =

⎧⎨
⎩

2 if 2n + 1 ≤ |V (1)| = b,

4 if |V (k)| < 2n + 1 ≤ |U (k)| for some k ≥ 2,
3 otherwise.

Note that we can either derive the values of the palindromic complexity for both
even and odd n directly from Proposition 5.16, or we can determine only P(2n) and
then use the relation (12) between palindromic complexity and the first difference
of factor complexity,

P (2n + 1) = �C(2n) + 2 − P (2n),

knowing the first difference of factor complexity from Theorem 4.3.

6. Conclusion

The present paper completes the study of palindromic complexity of infinite
words associated with β-integers for β with eventually periodic Rényi expansion of
unity in base β, i.e., β a Parry number. The study started already in [1] for simple
Parry numbers; here we focus on non-simple Parry numbers β, and among them,
only on quadratic ones, since this is the only case where one finds infinitely many
palindromes in uβ. Such infinite words were studied for their balance properties
in [4]. Other properties to be investigated are for example recurrent times or return
words, which are sofar described only for a class of simple Parry numbers [5].
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[3] L’. Balková, Complexity for infinite words associated with quadratic non-simple Parry num-
bers. J. Geom. Sym. Phys. 7 (2006) 1–11.
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