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A NEW ALGEBRAIC INVARIANT FOR WEAK
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Abstract. It is studied how taking the inverse image by a sliding
block code affects the syntactic semigroup of a sofic subshift. The main
tool are ζ-semigroups, considered as recognition structures for sofic
subshifts. A new algebraic invariant is obtained for weak equivalence of
sofic subshifts, by determining which classes of sofic subshifts naturally
defined by pseudovarieties of finite semigroups are closed under weak
equivalence. Among such classes are the classes of almost finite type
subshifts and aperiodic subshifts. The algebraic invariant is compared
with other robust conjugacy invariants.
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1. Introduction

Dynamical systems were first introduced in order to study systems of differential
equations used to model physical phenomena. When discretizing both time and
space, the physical system becomes a “symbolic” dynamical system that yields
information on the real one. Symbolics dynamics is a very active area that bor-
rows its methods from various fields such as combinatorics, algebra, automata
theory, probabilities, etc., and has applications in coding theory, data storage and
transmission, linear algebra...

The symbolic dynamical systems or subshifts, are sets of bi-infinite words, topo-
logically closed and invariant under a shift map. When trying to classify these
systems, there happens to be a natural notion of equivalence between them, called
conjugacy. Despite a rich literature on the subject, the decidability of conjugacy
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remains wide open, namely for the class of finite type subshifts, the most studied
subclass of sofic subshifts.

To try to cope with this major difficulty, some weaker notions of equivalence
of subshifts were introduced: see [4,16]. The shift equivalence has been the most
important of them. The more familiar and classical conjugacy invariants, like en-
tropy, zeta function, Bowen-Franks group, are in fact shift equivalence invariants.
These invariants, including shift equivalence itself, have characterizations borrowed
from linear algebra, and they are computable, although the algorithm to decide
shift equivalence is quite intricate, even in the finite type case. See Section 7 of
[16] for an account about shift equivalence and the problem of classification up to
conjugacy of sofic subshifts. At the end of that section one can see a diagram with
a complete picture of the relationship between various shift equivalence invariants
of finite type subshifts.

In this paper, we focus on weak equivalence, defined by Béal and Perrin in [4],
which relies on inverse images of sliding block codes (the morphisms between
subshifts). We deduce an algebraic invariant for weak equivalence of sofic subshifts.
Moreover, we exhibit a pair of sofic subshifts for which that invariant is used to
easily prove that they are not weak equivalent, while various robust invariants fail
to detect that they are not conjugate. The significance of this example is more
appreciated once we realize that weak equivalence relation really deserves its name,
in the sense that there are very general sufficient conditions for two subshifts to
be weak equivalent [4].

We briefly sketch the nature of our algebraic invariant. There is a natural bi-
jection between subshifts and factorial prolongable languages. The sofic subshifts
are precisely those whose corresponding language is rational. A well established
method of classification of rational languages is by grouping them in varieties of
rational languages. By the well known Eilenberg’s Correspondence Theorem, va-
rieties of languages are in a natural correspondence with pseudovarieties of finite
semigroups. In this way a pseudovariety of finite semigroups defines naturally a
class of sofic subshifts. In [11] it was determined which of these classes are closed
under conjugacy. It was also proved that such classes are closed under shift equiv-
alence. In this paper we prove they are also closed under weak equivalence. The
arguments used in [11] are based in the equational description of a pseudovari-
ety using pseudoidentities. These arguments are somewhat heavy and it seems
difficult to adapt them for weak equivalence, hence we use a different approach.

The paper is organized as follows. Preliminary definitions and results are given
in Section 2. Division between subshifts and weak equivalence are introduced in
Section 3. After a preparatory section about transducers, we arrive to Section 5,
dealing with the perspective of the first author Master’s Thesis [10] of seeing finite
ζ-semigroups (a generalization of ω-semigroups) as recognition structures for sofic
subshifts. From a Theorem of [10] about how the operation of taking the inverse
image of a subshift by a sliding block is reflected in the corresponding syntactic
ζ-semigroups, we deduce a similar result concerning syntactic semigroups in the
usual sense. With this result, we obtain in Section 6 our algebraic invariant,
and using it we list some important classes of sofic subshifts closed under weak
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equivalence. The dynamic significance of this algebraic invariant is evaluated in
Section 7. With a little additional effort, we generalize to results about ordered
semigroups : this is done in Section 8.

As general references for symbolic dynamics see [8,16]. For semigroup theory,
rational languages and finite automata see [1,19].

2. Preliminaries

2.1. Subshifts and sliding block codes

Let A be an alphabet. All alphabets in this paper are finite. Let AZ be the
set of sequences of letters of A indexed by Z. A factor of an element (xi)i∈Z of
AZ is a finite sequence xkxk+1 · · ·xk+n−1xk+n, denoted by x[k,k+n], where k ∈ Z
and n ≥ 0. We endow AZ with the product topology with respect to the discrete
topology of A. Recall that the topology of AZ is characterized by the fact that a
sequence (x(n))n of elements of AZ converges to x if and only if for every positive
integer k there is pk such that n ≥ pk implies (x(n))[−k,k] = x[−k,k]. Note that AZ

is a Cantor set. From here on, compact will mean both compact and Hausdorff.
Denote by Aω̃ (respectively Aω) the set of sequences of letters of A indexed

by the set of negative integers (respectively non-negative integers). The map
ϕ : x �→ (. . . x−3x−2x−1, x0x1x2 . . .) is a homeomorphism from AZ to Aω̃ × Aω .
The sequence ϕ−1(z, t) is usually denoted by z.t. Given an element u of A+, we
denote by uω the element of Aω given by the right-infinite concatenation uuu . . .
Dually, uω̃ = . . . uuuu. Finally, uζ denotes the element uω̃ · uω of AZ. We denote
by A<n (respectively A≤n) the set of elements of A∗ with length less (respectively
less or equal) than n.

The shift in AZ is the bijective continuous function σA (or just σ) from AZ to
AZ defined by σA((xi)i∈Z) = (xi+1)i∈Z. A shift dynamical system or subshift of
AZ is a closed subset X of AZ such that σA(X ) = X . More generally, a topological
dynamical system is a pair (X,ϕ) such that X is a topological space and ϕ is
a continuous self-map on X . A subshift X of AZ should be viewed as being the
topological dynamical system (X,σA|X ), where σA|X denotes the restriction of σA
to X . A morphism between two topological dynamical systems (X,ϕ) and (Y, ψ)
is a continuous map f : X → Y such that f ◦ϕ = ψ ◦ f . If f is a homeomorphism
then we call f a conjugacy. Two topological dynamical systems are conjugate if
there is some conjugacy between them.

Two subshifts X and Y are shift equivalent if there is some positive integer n
such that the topological dynamical systems (X , σn) and (Y, σn) are conjugate.

A conjugacy invariant (respectively, shift equivalence invariant) of subshifts is
a property of subshifts preserved for taking conjugate subshifts (respectively, shift
equivalent subshifts). See [16] for information about classical conjugacy and shift
equivalence invariants like the zeta function.

If X is a subshift of AZ then we denote by L(X ) the set of finite factors of
elements of X . There is a subset F of A+ such that L(X ) = A+ \ A∗FA∗; a set
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F in such conditions is called a set of forbidden words for X . A subshift is of
finite type if it has a finite set of forbidden words. An element x of AZ belongs
to X if and only if every finite factor of x belongs to L(X ). The correspondence
X �→ L(X ) is a bijection between the set of subshifts of AZ and the set of factorial
prolongable languages of A+.

A sliding block code F between the subshifts X of AZ and Y of BZ is a function
F : X → Y for which there are integers k, l ≥ 0 and a function f : Ak+l+1 → B
such that F (x) = (f(x[i−k,i+l]))i∈Z. If we can choose f such that k+ l+1 = n then
we say that F has window size n. We say that f is a block map of F with memory
k and anticipation l. The sliding block code F depends only on the restriction of
f to Ak+l+1 ∩ L(X ).

It is well known [14] that a map F : X ⊆ AZ → Y ⊆ BZ between subshifts is a
sliding block code if and only if it is a morphism of topological dynamical systems
(that is, F is a continuous function such that F ◦ σA = σB ◦ F ). Two sliding
block codes ϕ1 : X1 → Y1 and ϕ2 : X2 → Y2 are said to be conjugate if there are
conjugacies f : X1 → X2 and g : Y1 → Y2 such that ϕ2 ◦ f = g ◦ ϕ1. We say that
the pair (f, g) is a conjugacy between ϕ1 and ϕ2.

Given an alphabetA and k ≥ 1, consider the alphabetAk. To avoid ambiguities,
we represent an element w1 . . . wn of (Ak)+ (with wi ∈ Ak) by 〈w1, . . . , wn〉. For
k ≥ 0 let Φk be the function from A+ to (Ak+1)∗ defined by

Φk(a1 . . . an) =

{
1 if n ≤ k,

〈a[1,k+1], a[2,k+2], . . . a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A, a[i,j] = aiai+1 . . . aj−1aj , and 1 is the empty word. For a map
f : Ak → B, let f̂ be the unique monoid homomorphism from (Ak)∗ to B∗

extending f . Let f̄ be f̂ ◦ Φk−1. If F : AZ → BZ is a sliding block code with
memory k and anticipation l then F (x)[i,j] = f̄(x[i−k,i+l]).

By graph we mean an oriented graph. A labeled graph (G, π) is a pair such that
G is a graph and π is a function mapping edges of G into letters of an alphabet A.
We consider (G, π) as an automaton over the alphabet A such that all states are
initial and final. Recall that a word is recognized by an automaton over A if it
labels an oriented path going from an initial state to a final state. We say that a
labeled graph presents the subshift X if it recognizes L(X ). A (labeled) graph is
essential if all vertices lie in a bi-infinite path on the graph. A subshift X is sofic
if L(X ) is rational. Note that finite type subshifts are sofic. One can see that X
is sofic if and only if L(X ) is recognized by an essential finite labeled graph. For
a finite graph G, let E be the set of its edges. The subset XG of EZ whose finite
factors are paths of G is a finite type subshift of EZ. Given a subshift Y presented
by a labeled graph (G, π), let π∗ the map from XG to Y that maps a sequence
(ei)i∈Z into (π(ei))i∈Z. Then π∗ is an onto sliding block code with window size
zero. We call π∗ the cover associated with (G, π).

A subshift X of AZ is irreducible if for all u, v ∈ L(X ) there is w ∈ A∗ such
that uwv ∈ L(X ). A sofic subshift is irreducible if and only if it is presented by a
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strongly connected finite labeled graph [13]. We consider now a stronger property.
A subshift X of AZ is mixing if for all u, v ∈ L(X ) there is an integer N such
that for all n ≥ N there is w ∈ A∗ with length n such that uwv ∈ L(X ). Being
irreducible or mixing is a property preserved for taking images under sliding block
codes.

A state v of the minimal automaton of L(X ) is a K-state if there is x ∈ X such
that the set of words labeling a path from the unique initial state to v contains
infinitely many words of the form x−nx−(n−1) . . . x−1, with n ≥ 1. The Krieger
cover of a sofic subshift X is the cover associated with the essential labeled graph
obtained from the minimal automaton of L(X ) by deleting all the states that are
not K-states [17], Section 5. Krieger proved that two sofic subshifts are conju-
gate if and only if their Krieger covers are conjugate [15]. If the sofic subshift X
is irreducible then the labeled graph representing its Krieger cover has a unique
terminal strongly connected component which is an essential labeled graph pre-
senting X [5]. The corresponding cover is the Fischer cover of X . Two irreducible
sofic subshifts are conjugate if and only if their Fischer covers are conjugate.

2.2. Semigroups

Recall that an element e of a semigroup S is idempotent if e2 = e. If S is finite
then for every s ∈ S the set of the powers sn (with n positive integer) has a unique
idempotent of S.

A semigroup S divides a semigroup T if S is a homomorphic image of a sub-
semigroup of T . We also say that S is a divisor of T . This situation is denoted by
S ≺ T . A pseudovariety of semigroups is a class of finite semigroups closed under
taking divisors and finite direct products. The following classes are pseudovarieties
of semigroups:

(1) the class Com of finite commutative semigroups;
(2) the class Sl of finite commutative idempotent semigroups;
(3) the class Inv of finite semigroups whose idempotents commute;
(4) the class A of finite aperiodic semigroups, that is, finite semigroups whose

subgroups are trivial;
(5) the class Dk of finite semigroups satisfying the identity xy1 · · · yk = y1 · · · yk;
(6) the class D of finite semigroups whose idempotents are right zeros; one

has D =
⋃
k≥1 Dk;

(7) for every pseudovariety V of semigroups, the class LV of semigroups whose
subsemigroups that are monoids belong to V.

Let L be a language of A+. The context of a word u of A+ relatively to L is the
set CL(u) = {(x, y) ∈ A∗ × A∗ |xuy ∈ L}. The syntactic semigroup of L is the
quotient of A+ by the congruence ≡L defined by u ≡L v ⇔ CL(u) = CL(v).

A language L of A+ is recognized by a semigroup homomorphism ϕ : A+ → S
if there exists a subset I of S such that L = ϕ−1(I). We say that L is recognized
by S if there is a semigroup homomorphism ϕ : A+ → S recognizing L. The
syntactic semigroup of L recognizes L and divides all semigroups recognizing L.
A recognizable or rational language is a language recognized by a finite semigroup.
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It is well known that a language L is rational if and only if L is recognized by
a finite automaton, if and only if its syntactic semigroup is finite. Consider a
pseudovariety of semigroups V. A V-recognizable language of A+ is a language
recognized by a semigroup from V. A language is V-recognizable if and only if its
syntactic semigroup belongs to V.

Let S and T be semigroups. The set ST of maps from T to S, viewed as a direct
product of copies of S, is a semigroup; the product fg between two elements f
and g of ST is defined by the rule fg(t) = f(t)g(t).

For a semigroup T , denote by T 1 the monoid that equals T if T is a monoid, and
if not then T 1 = T ∪ {1} for some extra element 1, with the semigroup operation
of T 1 extending that of T and 1 being the neutral element of T 1.

For this paragraph, see [1] (Chap. 10) or [12]. Given semigroups S and T , let
t0 ∈ T 1 and f ∈ ST

1
. Denote by t0f the element of ST

1
given by the corre-

spondence t �→ f(tt0). The wreath product of S and T , denoted by S ◦ T , is the
semigroup with underlying set ST

1× T and the following operation:

(f1, t1) · (f2, t2) = (f1 · t1f2, t1 · t2).

The semidirect product of two pseudovarieties V and W, denoted by V ∗ W, is the
class of divisors of semigroups of the form S ◦ T , with S ∈ V and T ∈ W. The
class V ∗ W is a pseudovariety. The semidirect product of pseudovarieties is an
associative operation. One has D∗D ⊆ D, V∗D ⊆ LV, LV = LV∗D and LSl = Sl∗D.

3. Weak equivalence

Confronted with the difficulty of deciding conjugacy, some other equivalence
relations between subshifts were introduced such as the weak equivalence defined
by Béal and Perrin in [4]. Let A,B be two alphabets, let $ be a symbol that does
not belong to B and let B$ = B ∪ {$}. We say that a subshift X of AZ divides
a subshift Y of BZ if there exists a sliding block code F : AZ → B$

Z such that
X = F−1(Y); we also say X is a divisor of Y, and use the notation X ≺ Y. The
division of subshifts is reflexive and transitive. Two subshifts X and Y are weak
equivalent if X ≺ Y and Y ≺ X .

The reason why an extra letter like $ is needed in the definition of division is
that otherwise this notion produces a dependency on the involved alphabets that
prevents conjugate subshifts from being weak equivalent. Here is an illustration.
Let A be the three-letter alphabet A = {a, b, c} and let B = {a, b}. Consider
an arbitrary subshift X of BZ containing aζ and bζ . Let F be any sliding block
code from AZ to BZ. Then F (cζ) ∈ {aζ, bζ}, thus X �= F−1(X ). Hence, the
definition of division without the extra symbol $ implies that X as a subshift of
AZ does not divide X as a subshift of BZ; therefore, such alternative definition is
inadequate. On the other hand, the definition of division we adopted is adequate
for studying subshifts up to conjugacy, as it is stated in the following theorem. Its
proof, although unpublished, was put forward to us by Béal.
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Theorem 3.1. Two conjugate subshifts are weak equivalent.

Proof. Let X ⊆ AZ and Y ⊆ BZ be two conjugate subshifts and let G : X → Y be
a conjugacy. There exists an integer k and a block map g : Ak → B corresponding
to G, with memory r and anticipation s. Clearly, we can extend G into a sliding
block code Ĝ : AZ → BZ built on the block map g. Denote by F(X ) and F(Y)
the sets of forbidden words that respectively define X and Y. For each integer n,
let Fn(X ) be the set F(X ) ∩ A≤n, and denote by Xn the subshift of finite type
defined by the set of forbidden words Fn(X ). Note that X ⊆ Xn.

Using standard arguments, one concludes that there is n0 such that the restric-
tion of Ĝ to Xn0 is injective (cf. [16], Exercise 1.5.10). Consider the block map
h : Ak → B$ defined by h(u) = g(u) if u �∈ Fn0(X ) and h(u) = $ if u ∈ Fn0(X ).
Let H be the corresponding sliding block code AZ → B$

Z with memory r and an-
ticipation s. It is routine to check that X = H−1(Y), thus X ≺ Y. By symmetry,
we get that X and Y are weak equivalent. �

The properties of being mixing or irreducible are not weak equivalence invari-
ants [4]. On the other hand, all irreducible finite type subshifts containing a
constant sequence are weak equivalent [4], Proposition 4.

It is important to notice that the relation of division between subshifts cannot be
reduced to a similar relation between the corresponding languages of finite factors.
Let us be more precise. Let X and Y be subshifts of AZ andBZ, respectively. Write
X � Y if there is an integer n and a map f : An → B$ such that L(X ) \ A<n =
f̄−1(L(Y)). Then we have the following result:

Proposition 3.2. Let X and Y be the following irreducible sofic subshifts:

Then X and Y are conjugate but X � Y.

Proof. Let A = {a, b, c, d, e} and B = A \ {e}. Take the sliding block H : X → Y
such that the map sending e to b and leaving the remaining letters of A unchanged
is a block map with memory and anticipation zero. Consider the sliding block
G : Y → X with block map g : B4 → A with memory zero and anticipation three
such that g(w) is the first letter of w if w �= bbcd and g(bbcd) = e. Then H and G
are inverse of each other, thus X and Y are conjugate.

Suppose there is n ≥ 1 and f : An → B$ such that L(X ) \ A<n = f̄−1(L(Y)).
Consider the letters α = f̄(abn−1), γ = f̄(bn−1c) and β = f̄(bn). Then f̄(b2n) =
βn+1. Since b2n ∈ L(X ), we have βn+1 ∈ L(Y). This implies β = b.

Let N ≥ n. Then αb = f̄(abn), bγ = f̄(bnc) and f̄(abNc) = αbN−(n−1)γ. Since
abn, bnc ∈ L(X ), we have αb, bγ ∈ L(Y), which implies α ∈ {a, b} and γ ∈ {b, c}.
Then αbiγ ∈ L(Y) for every i ≥ 2, and so abNc ∈ f̄−1(L(Y)) for every N ≥ n.
Since f̄−1(L(Y)) ⊆ L(X ), we reach the absurd conclusion that there is an odd
integer N such that abNc ∈ L(X ). �
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4. The transducer of a block map

Consider an alphabet A and a non-negative integer k. Given u ∈ A+ define
tk(u) as follows: if the length of u is less than k then tk(u) = u, otherwise tk(u)
is the unique word v of length k such that u = wv for some w ∈ A∗. The De
Bruijn automaton Tk(A) is the complete deterministic automaton over A whose
states are the words of A≤k and whose action δ : A≤k × A+ → A≤k is given by
δ(w, u) = tk(wu). We shall use the more familiar notation w · u for δ(w, u), but
note that in general w ·u is not the same as the concatenation wu. We will consider
also the sub-automaton T̃k(A) built from Tk(A) by deleting states corresponding
to words of A<k. The restriction of δ to A≤k × A≤k gives to A≤k a semigroup
structure. Denote this semigroup by Dk.

Lemma 4.1. The transition semigroups of Tk(A) and T̃k(A) are isomorphic to Dk.

Proof. We only prove the lemma for T̃k(A), the other case being even more easy.
Let μ be the transition map of T̃k(A). Clearly if |u| ≥ k then μ(u) = μ(tk(u)). If
u ∈ Dk, then the image of μ(u) is the set Ak−|u|u, and if v ∈ A∗ and l ≥ 0 are
such that Alv = Ak−|u|u then l = k − |u| and v = u. Therefore the restriction of
μ to Dk is an isomorphism between Dk and T̃k(A). �

Note that Dk ∈ Dk and that the idempotents of Dk are the words of length k.
By a transducer with input alphabet A and output alphabet B we mean an

automaton A over the alphabet A× B. Usually in this context an element (u, v)
of A∗ × B∗ is represented by u/v. If in the transition edges of A we replace the
letter a/b by a (resp. b) the resulting automaton is called the input automaton
of A (resp. output automaton). Consider a map f : Ak → B. In the De Bruijn
automaton Tk−1(A) replace an edge from u to v labeled a by the pair (a, f̄(ua)).
Then the resulting automaton T (f) over the alphabet A×B is a transducer having
Tk−1(A) as input automaton. With the sub-automaton T̃k−1(A) define in a similar
way the transducer T̃ (f). See Figure 1.

Consider a transducer A whose input automaton over the alphabet A has a
complete and deterministic action · ofA over its states (for example, the transducer
T (f)). Then, if u ∈ A+ and q is a state of A, we denote by q ∗ u the label in the
output automaton of the unique path p in A from q to q · u; we say that u and
q ∗ u are the input and output label of p, respectively. For example, given a map
f : Ak → B, on the transducer T (f) we have f̄(u) = 1∗u. A function ϕ : A+ → B∗

for which there is some transducer and some state q such that ϕ(u) = q ∗ u for
all u ∈ A+ is a called a sequential function. The following theorem is a particular
instance of a general result about sequential functions [12] (Chap. IX, Prop. 1.1).

Theorem 4.2. For alphabets A and B and a positive integer k, consider a map
f : Ak → B. Let Y be a rational language of B+ with syntactic semigroup S.
Then the syntactic semigroup of f̄−1(Y ) divides S ◦ Dk−1.
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Figure 1. Transducer of a block map f : A3 → B.

5. ζ-semigroups

5.1. Motivation and definitions

Let X be a subshift of AZ. For the sake of conciseness, the syntactic semigroup of
L(X ) will be called the syntactic semigroup of X . When we consider the inverse
image by a sliding block code of a sofic subshift do we have a result similar to
Theorem 4.2? In this section we prove the answer is yes. As a consequence
of Proposition 3.2 we know it is not possible to do an immediate reduction to
Theorem 4.2. The passage from finite sequences to bi-infinite sequences suggests
trying a similar passage at the syntactic semigroup level. This motivates the
introduction of ζ-semigroups, a generalization of ω-semigroups.

We quickly review here basic definitions about ω-semigroups. For an exhaustive
overview, see [18]. An ω-semigroup is a two-component algebra S = (S+, Sω)
equipped with a binary product on S+, a map S+ × Sω → Sω called the mixed
product and a map π : Sω+ → Sω called the infinite product (where, remember, Sω+
is the set of sequences of elements of S+ indexed by non-negative integers), and
such that the following conditions are satisfied:

(1) the set S+ equipped with its product is a semigroup;
(2) for each s, t in S+ and u in Sω, s(tu) = (st)u;
(3) for each strictly increasing sequence (in)n>0 ofN and each sequence (sn)n∈N

of Sω+, π(s0s1 · · · s(i1−1), si1 · · · s(i2−1), · · · ) = π(s0, s1, s2, · · · ).
(4) for all s in S+ and for each sequence (sn)n∈N of Sω+, s π(s0, s1, s2, · · · ) =

π(s, s0, s1, s2, · · · ).
A homomorphism of ω-semigroups from S = (S+, Sω) into T = (T+, Tω) is a pair
ϕ = (ϕ+, ϕω) such that ϕ+ : S+ → T+ is a semigroup morphism and ϕω : Sω →
Tω preserves both infinite product and mixed product. The ω̃-semigroups and
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homomorphisms of ω̃-semigroups are similarly defined, all products operating on
the left.

Theorem 5.1 ([18], Chap. II, Th. 5.1 and [9], Lem. 4). Let S+ be a finite semi-
group and Sω a finite set. Suppose there are maps S+ × Sω → Sω and S+ → Sω,
denoted respectively (s, t) �→ st and s �→ sω, satisfying the following conditions:

s(tu) = (st)u for every s, t ∈ S+ and every u ∈ Sω; (5.1)

(sn)ω = sω for every s ∈ S+ and every n > 0; (5.2)

s(ts)ω = (st)ω for every s, t ∈ S+ such that st and ts are idempotents. (5.3)

Then the pair S = (S+, Sω) can be equipped, in a unique way, with a structure of
ω-semigroup such that for every s ∈ S+ the product sss · · · is equal to sω.

A ζ-semigroup is a four-component algebra S = (S+, Sω, Sω̃, Sζ) such that
(S+, Sω) is an ω-semigroup, (S+, Sω̃) is an ω̃-semigroup, and with a mapping
ρ : Sω̃×Sω → Sζ such that if s ∈ Sω̃, t ∈ S+, and u ∈ Sω then ρ(s, tu) = ρ(st, u).
A ζ-semigroup is finite if all its four components are finite.

Example 5.2. Denote by Aζ the quotient of AZ under the equivalence relation:

u ∼σ v ⇔ ∃n ∈ Z | u = σn(v).

The algebra A∞ = (A+, Aω, Aω̃, Aζ) equipped with the usual concatenation is then
a ζ-semigroup, called the free ζ-semigroup on A.

Let S and T be ζ-semigroups. A homomorphism of ζ-semigroups from S into
T is a quadruplet ϕ = (ϕ+, ϕω , ϕω̃, ϕζ) such that (ϕ+, ϕω) (resp. (ϕ+, ϕω̃)) is
a homomorphism of ω-semigroups (resp. homomorphism of ω̃-semigroup), and
ϕζ is a map from Sζ into Tζ such that for every s in Sω̃ and t in Sω one has
ϕζ(st) = ϕω̃(s)ϕω(t). Note that ϕ is entirely determined by ϕ+.

A subset P of Aζ is recognized by a homomorphism of ζ-semigroups ϕ : A∞ → S
if there is a subset I of Sζ such that P = ϕ−1

ζ (I). We say that P is recognized
by a ζ-semigroup S if there is a homomorphism of ζ-semigroups ϕ : A∞ → S
recognizing P .

5.2. The syntactic ζ-semigroup

Let u ∈ A+. In absence of confusion the ∼σ-class of uζ is also denoted by
uζ . Consider a subset P of Aζ . The syntactic congruence on P is the 4-tuple of
equivalence relations (∼+,∼ω,∼ω̃,∼ζ) defined by

(1) ∀s, t ∈ A+, s ∼+ t⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

∀x ∈ Aω̃ , ∀y ∈ Aω, xsy ∈ P ⇔ xty ∈ P
∀x ∈ Aω̃ , ∀y ∈ A+, x(sy)ω ∈ P ⇔ x(ty)ω ∈ P
∀x ∈ A+, ∀y ∈ Aω, (xs)ω̃y ∈ P ⇔ (xt)ω̃y ∈ P
∀x ∈ A+, (xs)ζ ∈ P ⇔ (xt)ζ ∈ P

(2) ∀s, t ∈ Aω , s ∼ω t ⇐⇒
[
∀x ∈ Aω̃, xs ∈ P ⇔ xt ∈ P

]
(3) ∀s, t ∈ Aω̃ , s ∼ω̃ t ⇐⇒

[
∀x ∈ Aω, xs ∈ P ⇔ xt ∈ P

]
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(4) ∀s, t ∈ Aζ , s ∼ζ t ⇐⇒
[
s ∈ P ⇔ t ∈ P

]
.

The proof of the following lemma consists on mere routines.

Lemma 5.3. For any subset P of A∞ we have the following:
(1) ∼+ is a semigroup congruence;
(2) if u ∼+ v then uω ∼ω vω and uω̃ ∼ω̃ vω̃, for all u, v ∈ A+;
(3) if u ∼+ v and s ∼ω t then us ∼ω vt, for all s, t ∈ Aω, u, v ∈ A+;
(4) if u ∼+ v and s ∼ω̃ t then su ∼ω̃ tv, for all s, t ∈ Aω̃, u, v ∈ A+;
(5) if s ∼ω̃ t and s′ ∼ω t′ then ss′ ∼ζ tt′, for all s, t ∈ Aω̃, s′, t′ ∈ Aω.

Denote by S(P ) the 4-tuple (A+/∼+, A
ω/∼ω, Aω̃/∼ω̃, Aζ/∼ζ) of quotient sets.

Denote by πP the quotient map from A∞ to S(P ), defined as 4-tuple of quotient
maps in the obvious way.

Proposition 5.4. If S(P ) is finite then, in a unique way, πP defines in S(P )
a structure of ζ-semigroup for which πP is a homomorphism of ζ-semigroups.
Moreover, πP recognizes P .

Proof. We want to apply Theorem 5.1. By Lemma 5.3, (A+/∼+) is a semigroup,
the map (A+/∼+) × (Aω/∼ω) → (Aω/∼ω) given by πP (u) · πP (s) = πP (us)
(where u ∈ A+ and s ∈ Aω) is well defined and satisfies condition (5.1) in Theo-
rem 5.1, and we can define πP (u)ω as being πP (uω) (where u ∈ A+). Then clearly
(πP (u)n)ω = πP (u)ω and πP (u)(πP (v)πP (u))ω = πP (uv)ω for all u, v ∈ A+. Hence
(A+/∼+, A

ω/∼ω) is an ω-semigroup. Dually, (A+/∼+, A
ω̃/∼ω̃) is an ω̃-semigroup.

Let ρP : (Aω/∼ω)×(Aω̃/∼ω̃) → Aζ/∼ζ be the map given by ρP (πP (u), πP (v)) =
πP (uv), where u ∈ Aω̃, v ∈ Aω. This map is well defined, by Lemma 5.3 (5).
Moreover, for all s ∈ Aω̃, t ∈ A+ and u ∈ Aω, we have

ρP (πP (s)πP (t), πP (u)) = πP (stu) = ρP (πP (s), πP (t)πP (u)).

Hence S(P ) has a structure of ζ-semigroup for which πP is a homomorphism of
ζ-semigroups. Since πP is onto, such structure is unique. Finally, it is obvious
that π−1

P (πP (P )) = P . �
We call S(P ) the syntactic ζ-semigroup of P , if S(P ) is finite.
Let X be a subshift of AZ. Since X is saturated by the relation ∼σ, we do not

lose information if we identify X with X/∼σ. For this reason and for the sake of
conciseness, we indistinctly consider X as a subset of both AZ and Aζ .

Next we proceed to establish a relationship between the syntactic ζ-semigroup
S(X ) of a sofic subshift X and the syntactic semigroup of L(X ). For a subshift
X of AZ and a word u of A+, the set {(x, y) ∈ Aω̃ × Aω |x.uy ∈ X} is denoted
by CX (u). We omit the proof of the following lemma, since it consists in routine
arguments.

Lemma 5.5. Consider a subshift X of AZ. For all u, v ∈ A+, we have CL(X )(u) ⊆
CL(X )(v) if and only if CX (u) ⊆ CX (v).

Proposition 5.6. Let X be a subshift of AZ. Then the syntactic semigroup of X
is S(X )+. Moreover, X is sofic if and only if S(X ) is finite.
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Proof. Let ≡ be the syntactic congruence of L(X ). Let u, v ∈ A+. Clearly, if
u ∼+ v then CX (u) = CX (v). Then u ≡ v by Lemma 5.5. Conversely, suppose
u ≡ v. Then CX (u) = CX (v), by Lemma 5.5. Let x ∈ Aω̃ and y ∈ A+. Then
(uy)n ≡ (vy)n for all positive integer n. Hence,

x(uy)ω ∈ X ⇔ [∀n > 0, x[−n,−1](uy)n ∈ L(X )]

⇔ [∀n > 0, x[−n,−1](vy)n ∈ L(X )]

⇔ x(vy)ω ∈ X .

Analogously, for every x ∈ A+ and y ∈ Aω we have

(xu)ω̃y ∈ X ⇔ (xv)ω̃y ∈ X .

And since for every x ∈ A+ and y ∈ A+ we have (xu)n ≡ (xv)n and

(xu)ζ ∈ X ⇔ [∀n > 0, (xu)n ∈ L(X )],

we also conclude that (xu)ζ ∈ X ⇔ (xv)ζ ∈ X . Therefore u ∼+ v. This concludes
the proof that the syntactic semigroup of X is S(X )+.

It is known (see [15] and [16], Exercise 3.2.8) that the number of ∼ω-classes and
∼ω̃-classes is finite if and only if X is sofic. Independently of X being sofic, S(X )ζ
has at most two elements. Hence X is sofic if and only if S(X ) is finite. �

5.3. Wreath product

The set of idempotents of a semigroup T is denoted by E(T ). Note that if
T ∈ D then E(T ) is a subsemigroup of T .

Definition 5.7. Let S be a finite ζ-semigroup, and T a semigroup from D. De-
note by S ◦ T the 4-tuple

(
S
E(T )
+ × T, S

E(T )
ω , Sω̃ × E(T ), Sζ

)
endowed with the

following structure:

(1) S
E(T )
+ × T is the semigroup defined by (f1, t1) · (f2, t2) = (f, t1t2) with
f(e) = f1(e)f2(et1);

(2) for all (f, t) ∈ S
E(T )
+ × T and for all g ∈ S

E(T )
ω we have

(a) (f, t) · g = h, with h(e) = f(e)g(et),
(b) (f, t)ω = h, with h(e) = f ′(e)(f ′(t′)

)ω, where (f ′, t′) is the idempo-
tent power of (f, t);

(3) for all (s, e) ∈ Sω̃ × E(T ) and for all (f, t) ∈ S
E(T )
+ × T

(a) (s, e) · (f, t) = (sf(e), et),
(b) (f, t)ω̃ =

(
f ′(t′)ω̃, t′

)
, where (f ′, t′) is the idempotent power of (f, t);

(4) for all (s, e) ∈ Sω̃ ×E(T ) and for all g ∈ S
E(T )
ω we have (s, e) · g = sg(e).

Proposition 5.8. If S is a finite ζ-semigroup and T ∈ D then S◦T is a ζ-semigroup.

We call S ◦T the wreath product of S and T . This construction is inspired by a
similar one by O. Carton on ω-semigroups [9]. Note that the semigroup (S ◦ T )+
is the homomorphic image of S+ ◦ T by the homomorphism (f, t) �→ (f|E(T ), t).
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Proof of Proposition 5.8. Conditions 1 and 2 of Definition 5.7 endow the pair(
S
E(T )
+ × T, S

E(T )
ω

)
with the structure of ω-semigroup: the proof of this fact is

entirely analogous to the proof in [9] of the consistency of the definition of wreath
product of a finite ω-semigroup and a finite semigroup1.

We claim that Conditions 1 and 3 of Definition 5.7 endow
(
S
E(T )
+ ×T, Sω̃×E(T )

)
with the structure of ω̃-semigroup. To prove the claim, we use the dual of The-
orem 5.1, about ω̃-semigroups. From Conditions 1 and 3 one almost imme-
diately deduce identities (5.1) and (5.2). Let (f1, t1) and (f2, t2) be elements
of SE(T )

+ × T such that (f1, t1)(f2, t2) and (f2, t2)(f1, t1) are idempotents. Let
(i, j) ∈ {(1, 2), (2, 1)}. Then tjti ∈ E(T ). Hence titjti = tjti, because T ∈ D.
Moreover, by Condition 3b we have:

(
(fi, ti) · (fj , tj)

)ω̃ =
(
(fi(titj)fj(titjti))ω̃ , titj

)
=

(
(fi(titj)fj(tjti))ω̃, titj

)
.

Then, by the latter equality and Condition 3a, we have

(
(f1, t1) · (f2, t2)

)ω̃ · (f1, t1) =
(
(f1(t1t2)f2(t2t1))ω̃, t1t2

)
· (f1, t1)

=
(
(f1(t1t2)f2(t2t1))ω̃f1(t1t2), t1t2t1

)
=

(
(f2(t2t1)f1(t1t2))ω̃, t2t1

)
=

(
(f2, t2) · (f1, t1)

)ω̃
.

Hence the identity (5.3) is proved, and the claim holds.
Finally, let (s, e) ∈ Sω̃ × E(T ), (f, t) ∈ SE(T ) × T and g ∈ S

E(T )
ω . Then(

(s, e) · (f, t)
)
· g = (sf(e), et) · g = sf(e)g(et).

On the other hand, let h be the map (f, t) · g. Then

(s, e) ·
(
(f, t) · g

)
= (s, e) · h = sh(e) = sf(e)g(et).

Hence
(
(s, e) · (f, t)

)
· g = (s, e) ·

(
(f, t) · g

)
. �

Lemma 5.9. Let P be a subset of Bζ recognized by a homomorphism of ζ-
semigroups ϕ : B∞ → Z, where Z is a finite ζ-semigroup. Consider the transducer
T̃ (f), where f is a map from Ak to B. Let ψ be the unique homomorphism of
ζ-semigroups from A∞ to Z ◦ Dk−1 such that

ψ+(a) = (ga, a), where ga : e �→ ϕ+(e ∗ a).

Then ψ has the following properties:
(1) if u ∈ A+ then ψ+(u) = (gu, tk−1(u)), where gu : e �→ ϕ+(e ∗ u);

1In fact, according to that definition,
(
S

E(T )
+ × T, S

E(T )
ω

)
is a homomorphic image of the

wreath product of (S+, Sω) and T .
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Figure 2. A path in the transducer T̃ (f).

(2) if u ∈ Aω then ψω(u) = (e �→ ϕω(e ∗ u));
(3) if u ∈ Aω̃ then ψω̃(u) = (ϕω̃(u ∗ q(u)), q(u)), where q(u) is the final state

of the unique left-infinite path in T̃ (f) with input label u, and u ∗ q(u) is
the corresponding output label.

Proof. The proof of the first two properties is entirely similar to the proofs of
Lemmas 7 and 8 in [9]. We prove the third property. By [18] (Chap. II, Th. 2.2),
there is a factorization u = · · ·u2u1u0 such that ψ+(ui) = ψ+(u1) = ψ+(u1)2 for
all i > 0 and ψ+(u1)ψ+(u0) = ψ+(u0). Hence ψω̃(u) = ψ+(u1)ω̃ ψ+(u0). By the
first part of the theorem we have ψ+(ui) = (gui , tk−1(ui)) for all i ≥ 0. Then, since
ψ(u1) is idempotent, we use Condition 3 of Definition 5.7 deducing the following:

ψω̃(u) =
(
gu1(tk−1(u1))ω̃ , tk−1(u1)

)
· (gu0 , tk−1(u0))

=
(
gu1(tk−1(u1))ω̃ · gu0(tk−1(u1)), tk−1(u1u0)

)
=

(
(ϕ+(tk−1(u1) ∗ u1))ω̃ · ϕ+(tk−1(u1) ∗ u0)

)
, tk−1(u1u0)

)
=

(
ϕω̃

[
(tk−1(u1) ∗ u1)ω̃ · (tk−1(u1) ∗ u0)

]
, tk−1(u1u0)

)
. (5.4)

For all i > 0, since tk−1(u1) = tk−1(ui), we have tk−1(u1) · u1 = tk−1(ui+1) · ui
and tk−1(u1)∗u1 = tk−1(ui+1)∗ui. Hence (see Figure 2) we have q(u) = tk−1(u1u0)
and (tk−1(u1) ∗ u1)ω̃ · (tk−1(u1) ∗ u0) = u ∗ q(u). The result now follows from
(5.4). �

Let F : AZ → BZ be a sliding block code. Since F commutes with the shift
map, one can define the function from Aζ to Bζ mapping x/∼σ into F (x)/∼σ.
We also denote such map by F , and call it sliding block code. The following result
appears in the first author Master’s thesis [10], Theorem 2.7.

Theorem 5.10. Let F : Aζ → Bζ be a sliding block code with window size k and
let P be a subset of Bζ recognized by a finite ζ-semigroup Z. Then F−1(P ) is
recognized by Z ◦ Dk−1.

Proof. Consider a block map f : Ak → B for F . Let ϕ be a homomorphism of
ζ-semigroups from B∞ to Z recognizing P , and let ψ be the homomorphism of
ζ-semigroups from A∞ to Z ◦ Dk−1 as defined in Lemma 5.9. We are going to
prove that for all u in Aζ we have ψζ(u) = ϕζ(F (u)). In fact, if u = st with s ∈ Aω̃
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and t ∈ Aω, then

ψζ(u) = ψω̃(s) · ψω(t)

=
(
ϕω̃(s ∗ q(s)), q(s)

)
· (e �→ ϕω(e ∗ t))

= ϕω̃(s ∗ q(s)) · ϕω(q(s) ∗ t)
= ϕζ

(
(s ∗ q(s)) · (q(s) ∗ t)

)
.

Hence ψζ(u) is the image by ϕζ of the output label of the unique bi-infinite path
with input label u. Since T̃ (f) realizes the map F , this output label is precisely
F (u) and ψζ(u) = ϕζ(F (u)). Let I be a subset of Zζ such that P = ϕ−1

ζ (I). Then
F−1(P ) = ψ−1

ζ (I), thus F−1(P ) is recognized by Z ◦ Dk−1. �

Lemma 5.11. Consider a subset P of Aζ and a homomorphism of ζ-semigroups
ψ : A∞ → T . Suppose I is a subset of Tζ such that P = ψ−1

ζ (I). Consider the
sets

L(P ) = {u ∈ A+ | ∃x ∈ Aω̃ ∃y ∈ Aω : xuy ∈ P},
Iψ = {t ∈ T+ | ∃x ∈ Aω̃ ∃y ∈ Aω : ψω̃(x) t ψω(y) ∈ I}.

Then L(P ) = ψ−1
+ (Iψ).

Proof. u ∈ ψ−1
+ (Iψ) ⇔

[
∃x ∈ Aω̃ ∃y ∈ Aω : ψζ(xuy) ∈ I

]
⇔ u ∈ L(P ). �

Theorem 5.12. Let F : AZ → BZ be a sliding block code with window size k and
let Y be a sofic subshift of BZ with syntactic semigroup S. Then the syntactic
semigroup of the subshift F−1(Y) divides S ◦ Dk−1.

Proof. Let Z be the syntactic ζ-semigroup of Y. By Theorem 5.10 the subshift
F−1(Y) is recognized by Z ◦Dk−1. Then by Lemma 5.11 the language L(F−1(Y))
is recognized by (Z ◦ Dk−1)+. Hence, if R is the syntactic semigroup of F−1(Y)
then R ≺ (Z ◦ Dk−1)+. Since (Z ◦ Dk−1)+ ≺ Z+ ◦ Dk−1, and the division be-
tween semigroups is transitive, we deduce R ≺ Z+ ◦ Dk−1. By Proposition 5.6 we
have S = Z+. �

6. Classes of sofic subshifts closed under taking divisors

A full shift is a subshift of the form AZ, for some alphabet A. The syntactic
semigroup of a language L of A+ may depend on the alphabet A. For example,
the syntactic semigroup of A+ as a language of A+ is the trivial semigroup, while
if A � B then the syntactic semigroup of A+ as language of B+ is the monoid
{0, 1} with the usual multiplication. The pseudovariety Sl is the least pseudovariety
containing this monoid. To avoid ambiguities, we consider the syntactic semigroup
of a full shift to be the trivial semigroup. On the other hand, if X is a subshift of
AZ different from a full shift then the syntactic semigroup of L(X ) is independent
of A, basically because all elements of the non-empty set A+\L(X ) are in the same
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class of the syntactic congruence, which is a zero of the syntactic semigroup [6].
For a pseudovariety V, consider the class S (V) of subshifts X whose syntactic
semigroup belongs to V.

Theorem 6.1. Let V be pseudovariety of semigroups containing Sl. Then the
class S (V ∗ D) is closed under taking divisors.

Proof. Suppose Y is a subshift of AZ belonging to S (V∗D). Let X be a subshift of
BZ dividing Y. Then there is an integer k and a sliding block code F : AZ → B$

Z

with window size k such that X = F−1(Y). Since Sl ⊆ V the syntactic semigroup
of L(Y) as a language of (B$)+ also belongs to V ∗ D. By Theorem 5.12, we
have X ∈ S ((V ∗ D) ∗ Dk−1). But V ∗ D ∗ Dk−1 = V ∗ D, because D ∗ D ⊆ D. �

Therefore, when V is a pseudovariety containing Sl, the class S (V∗D) defines an
algebraic invariant for weak equivalence. It is proved in [11] that this class defines
a shift equivalence invariant. Let SI(V) be the class of irreducible subshifts in
S (V). For every pseudovariety V of semigroups we have LV = LV ∗ D, thus if
Sl ⊆ V then SI(LV) is closed under taking weak equivalent irreducible subshifts.
There are infinitely many such classes [11]. Theorem 6.1 has the following converse:

Theorem 6.2 ([11]). Let V be a pseudovariety of semigroups. Let O be any of the
operators S or SI . If O(V) is closed under conjugacy then LSl ⊆ V and O(V) =
O(V ∗ D).

Theorem 6.1 can be used as a method of proving that a certain class of sub-
shifts is closed under division and therefore under weak equivalence. For example,
the class of sofic subshifts is the class S (S), where S is the pseudovariety of all
finite semigroups. Hence, an immediate corollary of Theorem 6.1 is that the class
of sofic subshifts is closed under divisions. The class of finite type subshifts is also
closed under division, but it is not of the form S (V); on the other hand, the class
of irreducible finite type subshifts is equal to SI(LCom) [11].

Two elements x and y of AZ are right-asymptotic if there is an integer n such
that x[n,+∞[ = y[n,+∞[. A sliding block code ϕ : X → Y between two subshifts is
left-closing if distinct right-asymptotic elements of X have distinct images by ϕ.
For an algorithm to decide whether the cover associated to a labeled graph is left-
closing or not see [8]. Clearly one can consider the dual definition of right-closing
sliding block code. A sliding block code is bi-closing if it is simultaneously right-
closing and left-closing. An almost finite type subshift is the image of an irreducible
finite type subshift by a bi-closing sliding block code. Almost finite type subshifts
form a class of irreducible sofic subshifts strictly containing the irreducible finite
type subshifts. An irreducible sofic subshift is of almost finite type if and only if its
right Fischer cover is left-closing [8], Proposition 2.16. It is known that this class
is closed under conjugation [8], Proposition 4.1. Independently from this result,
in [2] it was proved that almost finite type subshifts belong to SI(LInv), and
the second author proved in [11] that in fact all elements of SI(LInv) are almost
finite type subshifts. Therefore, since Sl ⊆ Inv, from Theorem 6.1 we deduce the
following sharper result:
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Theorem 6.3. The class of almost finite type subshifts is closed under taking
irreducible divisors.

The class of aperiodic subshifts is a class of almost finite type subshifts that
deserves some attention [8]. It is proved in [3] that this class is equal to SI(A).
Since Sl ⊆ A = LA, Theorem 6.1 also has the following corollary:

Theorem 6.4. The class of aperiodic subshifts is closed under taking irreducible
divisors.

7. Comparison with other invariants

Let Y1 and Y2 be the sofic subshifts whose right Fischer covers π1 and π2 are
respectively realized by the following labeled graphs (where x/α means that the
edge x is labeled α):

We are going to prove that Y1 and Y2 are not weak equivalent, using Theo-
rem 6.1. But first we want to compare this invariant with other conjugacy invari-
ants, and in fact we shall first prove that Y1 and Y2 are not conjugate using other
methods.

Subshifts Y1 and Y2 are mixing almost finite type subshifts with the same zeta
function. The domains of the right and left Krieger/Fischer covers are respectively
equal.

For the next invariants to be tested, we need to introduce some definitions. For
a sliding block code ϕ : X → Y, let M(ϕ) be the set {x ∈ X : |ϕ−1ϕ(x)| > 1}.
Clearly, σ(M(ϕ)) = M(ϕ). Hence M(ϕ) is a subshift, called multiplicity subshift
of ϕ. In general M(ϕ) is not closed. On the other hand, if ϕ : X → Y is a
bi-closing sliding block code then M(ϕ) is closed [7]. The multiplicity subshift of
a sofic subshift is effectively computable: see the Appendix, page 500. Note that
if (f, g) is a conjugacy between ϕ and ψ, then (f|M(ϕ), g|ϕ

(
M(ϕ)

)) is a conjugacy

between ϕ : M(ϕ) → ϕ
(
M(ϕ)

)
and ψ : M(ψ) → ψ

(
M(ψ)

)
.

Back to our example, the multiplicity subshifts of Y1 and Y2 are equal to the
following subshift X :

The following lemma gives a sufficient condition for shift equivalence of mixing
subshifts of almost finite type.
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Theorem 7.1 ([7], Th. 2.8). Suppose that Z1 and Z2 are mixing subshifts of
almost finite type. For each i ∈ {1, 2}, let πi : Xi → Zi be the right Fischer cover
of Zi. Suppose that (π1)|M(π1) and (π2)|M(π2) are conjugate, and that X1 and X2

are shift equivalent. Then Z1 and Z2 are shift equivalent.

Since shift equivalence is a very strong conjugacy invariant, and we want to
prove that Y1 and Y2 are not conjugate, and since Y1 and Y2 have right Fischer
covers with equal domain, by Theorem 7.1 one expects that π1|X is not conjugate
with π2|X . For proving that we shall use the following lemma:

Lemma 7.2 ([7], Lem. 2.3). Let ϕ : D → Y and ψ : D → Z be sliding block codes
with equal domain D. Then ϕ and ψ are conjugate if and only if there is for D an
automorphism2 F such that ψ ◦ F and ϕ have the same kernel3.

Let F be an automorphism of X , with block map f with window size n. Since
F permutes constant sequences, there is i ∈ {1, 3, 5, 7} such that F (xζi ) = xζ1.
Suppose i �= 1. Then there are k, j such that k �= i and xω̃k .xjx

ω
i ∈ X . Since

f(xni ) = x1, we have F (xω̃k .xjx
ω
i ) ∼σ y.xω1 for some y ∈ Aω̃ . Since xlx1 ∈ L(X )

implies l = 1, we have F (xω̃k .xjx
ω
i ) = xζ1 = F (xζi ), contradicting F being one-

to-one. Hence F (xζ1) = xζ1. Analogously, F (xζ5) = xζ5, thus {F (xζ3), F (xζ7)} =
{xζ3, x

ζ
7}. Let z = xω̃1 .x2x

ω
3 and t = xω̃3 .x4x

ω
5 . Then z, t ∈ X and π1(z) = π1(t) =

aω̃.baω. Suppose F (xζ3) = xζ7 and F (xζ7) = xζ3. Then F (z) ∼σ xω̃1 .x8x
ω
7 and

F (t) ∼σ xω̃7 .x6x
ω
5 , thus π2F (z) ∼σ aω̃.caω and π2F (t) ∼σ aω̃.baω. In particular,

π2F (z) �= π2F (t), and the same conclusion holds if F (xζ3) = xζ3 and F (xζ7) = xζ7.
Therefore π1|X and π2|X are not conjugate, by Lemma 7.2. Hence Y1 and Y2 are
not conjugate.

The preceding arguments are somewhat ad-hoc, and depend on knowing the
group of automorphisms of a subshift, a very difficult problem in general [16]
(Chap. 13). On the other hand, as observed in [11], for the pseudovariety V of finite
semigroups satisfying the identity x3 = x2, one has Y1 /∈ S (LV) and Y2 ∈ S (LV).
Since Sl ⊆ V, by Theorem 6.1 we conclude that Y1 and Y2 are not weak equivalent.
Moreover, this also proves that Y1 and Y2 are not shift equivalent, since it was
proved in [11] that S (W) is closed under conjugacy if and only if it is closed under
shift equivalence, for any pseudovariety W.

Theorem 6.1 provides a quick proof not only that Y1 and Y2 are not conjugate,
but also that they are far from being conjugate, in the sense that weak equivalence
is considered a very weak conjugacy invariant.

8. Ordered semigroups

In a partial ordered set (X,≤), an order ideal is a subset I of X such that if
x ≤ y and y ∈ I then x ∈ I. The order ideal generated by a set Y is the set
↓Y = {x ∈ X | ∃y ∈ Y : x ≤ y}.

2An automorphism for D is a conjugacy from D to D.
3Recall that the kernel of a map h : P → Q is the set {(x, y) ∈ P × P | h(x) = h(y)}.
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An ordered semigroup is a semigroup S endowed with a partial order ≤ such
that if s ≤ t then xsy ≤ xty, for all x, y ∈ S1. For an introduction to ordered semi-
groups see [20]. Usual semigroups are considered as ordered semigroups for the
equality order. The morphisms between ordered semigroups are the order preserv-
ing homomorphisms of semigroups. Divisors and direct products have the obvious
definitions, and there is also a theory of pseudovarieties of ordered semigroups.

The syntactic ordered semigroup of a language L of A+ is the syntactic semi-
group of L endowed with the partial order ≤ such that u ≤ v if and only if
CL(v) ⊆ CL(u). A language L of A+ is recognized by a homomorphism ϕ from A+

into an ordered semigroup S if there is an order ideal I in S such that L = ϕ−1(I).
We say that L is recognized by the ordered semigroup S if there are such homo-
morphism ϕ and ideal I. If ≡ is the syntactic congruence of L, then the language
L is recognized by the homomorphism ϕ : u �→ u/ ≡ into its syntactic ordered
semigroup.

The natural partial order for the wreath product of two ordered semigroups is
defined as follows: given (f1, t1), (f2, t2) ∈ S ◦ T we have

(f1, t1) ≤ (f2, t2) ⇔
{
f1(t) ≤ f2(t), ∀t ∈ T 1,

t1 ≤ t2.

Theorem 8.1. Let F : AZ → BZ be a sliding block code with window size k and let
Y be a sofic subshift of BZ with syntactic ordered semigroup S. Then the syntactic
ordered semigroup of F−1(Y) divides the ordered wreath product S ◦ Dk−1.

Proof. Consider the syntactic ζ-semigroup Z of Y. Let ϕ be the canonical ho-
momorphism of ζ-semigroups from B∞ to Z, and ψ be the homomorphism of
ζ-semigroups from A∞ to Z ◦ Dk−1 as defined in Lemma 5.9. Denote by X the
subshift F−1(Y).

Let I be a subset of Zζ such that Y = ϕ−1
ζ (I). By the proof of Theorem 5.10

we know that X = ψ−1
ζ (I). Consider the following set:

Iψ = {t ∈ (Z ◦ Dk−1)+ | ∃x ∈ Aω̃ , y ∈ Aω : ψω̃(x) t ψω(y) ∈ I}.

By Lemma 5.11 we have L(X ) = ψ−1
+ (Iψ). Let u ∈ ψ−1

+ [↓ ψ+(L(X ))]. There
is v ∈ L(X ) such that ψ+(u) ≤ ψ+(v). That is, (gu, tk−1(u)) ≤ (gv, tk−1(v)).
Equivalently,

ϕ+(e ∗ u) ≤ ϕ+(e ∗ v), ∀e ∈ E(Dk−1), (8.1)

tk−1(u) = tk−1(v). (8.2)

Since v ∈ ψ−1
+ (Iψ), there are x ∈ Aω̃, y ∈ Aω such that ψζ(xvy) ∈ I. By the proof

of Theorem 5.10, we have

ψζ(xvy) = ψω̃(x)ψω(vy) = ϕω̃(x ∗ q(x)) · ϕω(q(x) ∗ vy) ∈ I. (8.3)
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By Lemma 5.9, we have

ϕω(q(x) ∗ vy) = ψω(vy)[q(x)]

= ψ+(v)ψω(y)[q(x)]

= (gv, tk−1(v))ψω(y)[q(x)]

= gv[q(x)] · ψω(y)[q(x) · tk−1(v)]

= ϕ+[q(x) ∗ v] · ϕω[(q(x) · tk−1(v)) ∗ y]
= ϕ+[q(x) ∗ v] · ϕω[(q(x) · tk−1(u)) ∗ y] (by (8.2)).

Therefore, by (8.3), we have

[x ∗ q(x)] · [q(x) ∗ v] · [(q(x) · tk−1(u)) ∗ y] ∈ ϕ−1
ζ (I) = Y. (8.4)

By Lemma 5.5 we have ϕ+(w1) ≤ ϕ+(w2) ⇔ CY(w2) ⊆ CY(w1). Therefore, from
(8.1) and (8.4) we deduce that

[x ∗ q(x)] · [q(x) ∗ u] · [(q(x) · tk−1(u)) ∗ y] ∈ ϕ−1
ζ (I) = Y.

Going backwards in the arguments, we conclude that

ψζ(xuy) = ϕζ([x ∗ q(x)] · [q(x) ∗ u] · [(q(x) · tk−1(u)) ∗ y]) ∈ I,

thus u ∈ ψ−1
+ (Iψ) = L(X ). This proves that ψ−1

+ [↓ ψ+(L(X ))] ⊆ L(X ). The
inclusion L(X ) ⊆ ψ−1

+ [↓ψ+(L(X ))] is trivial. We conclude that L(X ) is recognized
by (Z ◦ Dk−1)+. For the remaining part of the proof the arguments are the same
as those used in the proof of Theorem 5.12. �

Using Theorem 8.1, it is now easy to prove that the results about pseudovarieties
of semigroups from Section 6 generalize to pseudovarieties of ordered semigroups,
in a similar way to the corresponding results from [11].

Appendix: the computation of the multiplicity subshift

A labeled graph is faithfully labeled if distinct co-terminal edges have distinct
labels. Next we describe an algorithm to compute the multiplicity subshift of the
cover associated to a faithfully labeled graph. This algorithm has similarities with
the algorithm appearing in [8] for deciding if the cover is left-closing or not. In
a graph G, we say that an edge e from r to s is a descendant (respectively, an
ascendant) of a vertex p if there is in G a path from p to r (respectively, from s
to p). Supposing that (G, π) is a faithfully labeled graph, denote by (p, a, q) the
unique edge from p to q labeled a, if such edge exists. The π-square of G is the
graph Gπ whose vertices are the pairs of vertices of G, and where the set of edges
between two vertices (p, r) and (q, s) is the set of triples ((p, r), a, (q, s)) such that
(p, a, q) and (r, a, s) are edges from G. A diagonal vertex of Gπ is a vertex of the
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form (p, p). The projections defined by the rules ((p, r), a, (q, s)) �→ (p, a, q) and
((p, r), a, (q, s)) �→ (r, a, s) will be denoted by λ and ρ, respectively.

Proposition A1. Consider the faithfully labeled graph (G, π). Let W be the set
of the elements of XGπ corresponding to bi-infinite paths over Gπ passing at a non-
diagonal vertice. Then M(π∗) = λ∗(W ). The language L(M(π∗)) is recognized by
the labeled graph obtained from the essential part of (Gπ , λ) by removing the edges
which are neither ascendants or descendants of non-diagonal vertices.

Proof. Let c = (pi, ai, pi+1)i∈Z be an element of M(π∗). Then there is in XG an
element (qi, ai, qi+1)i∈Z distinct from c. Let ĉ = ((pi, qi), ai, (pi+1, qi+1))i∈Z. Then
ĉ ∈ W and λ∗(ĉ) = c, thus M(π∗) ⊆ λ∗(W ). Conversely, for every c ∈ XGπ

we have π∗(λ∗(c)) = π∗(ρ∗(c)), and c ∈ W if and only if λ∗(c) �= ρ∗(c), thus
λ∗(W ) ⊆ M(π∗).

In an essential graph, an edge is ascendant or descendant of a given vertex
if and only if it belongs to a bi-infinite path passing at such vertice. Therefore,
by the first part of the proof, in the essential part of (Gπ, λ) the labels of paths
whose edges are ascendants or descendants of non-diagonal vertices are precisely
the elements of L(M(π∗)). �

Since L(M(π∗)) = L(M(π∗)), Proposition A1 allows us to compute a presen-
tation of the subshift M(π∗).
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[3] M.-P. Béal, F. Fiorenzi, and D. Perrin, The syntactic graph of a sofic shift is invariant under
shift equivalence. Int. J. Algebra Comput. 16 (2006), 443–460.
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