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COMPARING COMPLEXITY FUNCTIONS
OF A LANGUAGE AND ITS EXTENDABLE PART ∗

Arseny M. Shur1

Abstract. Right (left, two-sided) extendable part of a language con-
sists of all words having infinitely many right (resp. left, two-sided)
extensions within the language. We prove that for an arbitrary facto-
rial language each of these parts has the same growth rate of complexity
as the language itself. On the other hand, we exhibit a factorial lan-
guage which grows superpolynomially, while its two-sided extendable
part grows only linearly.

Mathematics Subject Classification. 68Q70, 68R15.

Introduction

The combinatorial complexity of a language (simply complexity throughout the
paper) is a function defined for an arbitrary language L over a finite alphabet Σ by
the rule CL(n) = |L ∩ Σn|. This is the most natural counting function associated
with the language. The complexity was intensively studied for many languages
and particular classes of languages. Probably the first results in this direction
were obtained by Morse and Hedlund [10]. A systematic study of combinatorial
complexity was initiated by Ehrenfeucht and Rosenberg in [4]; they focused mostly
on an important, but narrow class of D0L-languages. A representative selection
of results on complexity can be found in Section 9 of [1]. Besides this, some
general results on complexity of arbitrary regular (rational) languages can be found
in [6,11]; the sets of possible polynomial complexity functions coincide for regular
and context-free languages, and explicit formulas for such complexity functions
can be effectively constructed [3].

On the other hand, there exist only a few results on “general” complexity prop-
erties, which can be applied to arbitrary languages, or at least to wide classes
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of languages, apart from the top two levels of the Chomsky hierarchy. Here we
consider one of such “general” questions.

To introduce the question considered, we need two more notions. The language
is factorial, if it is closed under taking factors of its elements. In most (but not
all) cases complexity functions are studied for factorial languages. The right (left,
two-sided) extendable part of a language consists of all words having infinitely
many right (resp. left, two-sided) extensions within the language.

Here we study the following question: what is the connection between complexity
of a language and complexities of its extendable parts? This question was explic-
itly stated by Karhumäki at the Automata theory seminar in the University of
Turku. In this paper we show that the ratio of complexity of a factorial language
and complexity of any of its extendable parts always grows subexponentially, and
sometimes grows superpolynomially. To complete this result, we give a simple ex-
ample showing that for non-factorial languages this ratio can grow exponentially.

1. Preliminaries

Recall some notions on words, languages, automata, complexity, and graphs.
We consider a finite alphabet Σ and finite words over it. The length of the

word W is denoted by |W |. A word U is a factor of the word W if W can be
written as PUQ for some (possibly empty) words P and Q. The reversal of a
word is obtained by writing its letters in the reversed order. We write Σn (Σ≤n)
for the set of all words of length n (resp. of length at most n) over Σ. As usual,
Σ∗ denotes the set of all words over Σ. The subsets of Σ∗ are called languages. A
language is factorial if it is closed under taking factors of its words. The reversal
of a language consists of the reversals of all its elements.

As usual, we call a complexity function polynomial if it is O(np) for some p ≥ 0
(bounded from above by a polynomial of degree p), and exponential if its fastest
growing infinite subsequence is Ω(αn) for some α > 1 (bounded from below by an
exponential function at base α). A complexity function which is superpolynomial
and subexponential is called intermediate. We write Θ(np) for the function which
is bounded from above and from below by two polynomials of degree p.

The complexity of a language can be coarsely described by the growth rate
α(L) = lim sup

n→∞
CL(n)1/n. For factorial languages, the following theorem holds.

Theorem 1.1 [7]. For an arbitrary factorial language L,

α(L) = lim
n→∞CL(n)1/n = inf

n∈N

CL(n)1/n.

Furthermore, α(L) = 0 iff L is finite, α(L) > 1 iff L is infinite and has the
exponential complexity, and α(L) = 1 otherwise.
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We consider deterministic finite automata (dfa’s) with a partial transition func-
tion, and identify a dfa with a digraph, which contains states as vertices and tran-
sitions as directed labeled edges. A dfa is consistent if each its vertex is contained
in some accepting path.

The adjacency matrix of a digraph is nonnegative, whence its eigenvalue of the
maximum absolute value is a nonnegative real number, called the Frobenius root.
This number is usually referred to as the index of a digraph [2]. We denote the
index of a dfa A by r(A).

A strongly connected component (scc) of a digraph G is a maximal with respect
to inclusion subgraph G′ such that there exists a (directed) path from any vertex
of G′ to any other vertex of G′. A well-known result (see [2]) states that the
index of a digraph equals maximum of the indices of its scc’s. The scc’s of index
0 (singletons) and of index 1 (simple cycles) are called trivial. The index of any
nontrivial scc is strictly greater than 1.

The connection between growth rates of regular languages and Frobenius roots
of some matrices is well-known. In the most general form, this connection is
expressed in the following theorem.

Theorem 1.2. Let a language L be recognized by a consistent dfa A. Then the
growth rate of L coincides with the index of A.

As far as we know, this theorem was not yet published in this form (a restricted
version is proved, for example, in [7]). Since we need such a general form to prove
further results, we give the proof here.

Proof. Let A = (aij) be the adjacency matrix of A, m be its size, and |A| be the
sum of all elements of A. For any n, consider the matrix An = (an

ij). One of the
properties of the Frobenius root (see [5]) is the equality lim

n→∞ |An|1/n = r(A).
Note that an

ij is the number of paths of length n in A from the state qi to qj .

Hence, |An| is the total number of paths of length n in A, and Pi =
m∑

j=1

an
ij is the

number of paths of length n in A, starting at qi. Suppose that the vertex q1 is
initial, and denote Rj(n) = an

1j . Then the complexity CL(n) equals the sum of
these reading functions Rj over the set of terminal states. Thus, the maximum
growth rate of the functions Rj over the set of terminal states is α(L).

Suppose that A contains an edge (qi, qj). Then Rj(n+1) ≥ Ri(n), yielding
that the growth rate of the function Rj is greater than or equal to the one of Ri.
Therefore, the growth rates of the reading functions can only increase along a path
in the automaton. Since A is consistent, for every state there exists a path from
it to some terminal state. Thus, the overall maximum of the growth rates of the
reading functions is achieved on a terminal state. We obtain that the function

P1 =
m∑

j=1

Rj has the growth rate α(L).

There exists a path from the initial vertex to any vertex qi, because A is con-
sistent. Dually to the above argument on reading functions, we conclude that P1
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has at least the same growth rate as Pi. Since |An| =
m∑

i=1

Pi(n), the growth rate

of |An| is equal to the maximum of the growth rates of Pi, that is, to the growth
rate of P1. This gives us the required equality r(A) = α(L). �

2. Extendable parts of a language

For a language L over Σ we consider three subsets of extendable words:
right re(L) = {W ∈ L | ∀n∈N ∃V ∈Σ+ : |V | ≥ n, WV ∈ L};
left le(L) = {W ∈ L | ∀n∈N ∃U∈Σ+ : |U | ≥ n, UW ∈ L};
two-sided e(L) = {W ∈ L | ∀n∈N ∃U,V ∈Σ+ : |U |, |V | ≥ n, UWV ∈ L}.
Obviously, re(L)∩ le(L) ⊇ e(L). Actually, this inclusion is often strict; the follow-
ing example involves well-known combinatorial objects.

Example 2.1. Recall that a word is overlap-free, if it contains no factors of the
form XXc, where c is the first letter of the word X . Let OF ⊂ {a, b}∗ denote the
language of all binary overlap-free words. An infinite Thue-Morse word

T = abba baab baab abba b . . .

over the same alphabet is a fixed point of the morphism φ, defined by φ(a) = ab,
φ(b) = ba. We write T̄ for the reversal of T . It is well known that the word T is
overlap-free; hence, so is T̄ .

From the definition of the Thue-Morse word it is easy to see that T (and also
T̄ ) contains no factor bbabb. Then, the infinite words bbabbaT and T̄ abbabb are
overlap-free, and bbabb ∈ re(OF )∩ le(OF ). On the other hand, any word PbbabbQ
with nonempty P, Q contains either b3 or abbabba, whence it is not overlap-free.
Thus, bbabb /∈ e(OF ).

The following observation is simple but very useful.

Observation 2.2. e(L) = le(re(L)). (By symmetry, e(L) = re(le(L)) as well.)

Example 2.1 (continued). The word bbabb ∈ re(OF ) has no left extensions in
re(OF ), since bbbabb /∈ OF , and abbabb ∈ OF\re(OF ). This is another way to
show that bbabb /∈ e(OF ).

3. Comparing growth rates

In this section we study how the growth rate of a language relates to the growth
rates of its extendable subsets. The answers are quite different in the case of
factorial languages and in the case of arbitrary ones.

Theorem 3.1. For an arbitrary factorial language L, α(e(L)) = α(le(L)) =
α(re(L)) = α(L).
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Proof. By Observation 2.2, it is sufficient to prove the statement for re(L), because
the result for le(L) can be obtained in the same way, considering the reversal of L
instead of L.

Since re(L) ⊆ L, the inequalities Cre(L)(n) ≤ CL(n) and α(re(L)) ≤ α(L)
are straightforward. Hence, α(L) = 0 implies α(re(L)) = 0. Since an infinite
language must contain an infinite number of extendable words, α(L) = 1 implies
α(re(L)) = 1 by Theorem 1.1. From now on, we assume that α(L) > 1. First we
consider the case of a regular language.

Consider a consistent dfa A recognizing L. Then α(L) = r(A) by Theorem 1.2.
Since r(A) > 1, the automaton contains a non-trivial scc; thus, removing trivial
scc’s from it does not affect the index.

Since L is factorial, and A is consistent, we see that all vertices of A are terminal.
Let us partition these vertices into two groups, Q1 and Q2. A vertex q belongs to
Q1 iff A contains a cycle, which is attainable from q. It is easy to see that a word
W ∈ L belongs to re(L) iff the reading of W by the automaton A terminates in
some vertex of Q1. Now we remove all vertices of Q2 to obtain a consistent dfa
A′, recognizing re(L). Note that each vertex of Q2 forms a singleton scc in A.
Hence, r(A′) = r(A), and α(L) = α(re(L)), as desired.

Now turn to the general case. A factorial language L over Σ possesses an
antidictionary, which is the set of minimal forbidden words, defined by the formula

M = LΣ ∩ ΣL ∩ (Σ∗\L).

It is easy to see that L = Σ∗\Σ∗MΣ∗, whence L is regular iff M is. In particular,
we may assume for the rest of the proof that M is infinite. Consider the sequence

M1 ⊆ M2 ⊆ . . . ⊆ Mi ⊆ . . . ⊆ M

of finite antidictionaries, where Mi = M ∩ Σ≤i. Let Li be the factorial language
over Σ with the antidictionary Mi. One has

L ⊆ . . . ⊆ Li ⊆ . . . ⊆ L1, (1)

and
∀n∃in (L ∩ Σn = Lin ∩ Σn). (2)

Then for any n
CL(n) = . . . = CLin

(n) ≤ . . . ≤ CL1(n). (3)
Hence the sequence {CLi(n)} converges to CL(n) from above, implying that
{(CLi(n))1/n} converges to (CL(n))1/n from above. By Theorem 1.1, α(L) =
lim

n→∞(CL(n))1/n and α(Li) ≤ (CLi(n))1/n. Thus, {α(Li)} converges to α(L).
Now repeat this argument for right extendable parts of the languages Li.

From (1) and (2) we have

re(L) ⊆ . . . ⊆ re(Li) ⊆ . . . ⊆ re(L1), (4)
∀n∃in (re(L) ∩ Σn = re(Lin) ∩ Σn), (5)
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Figure 1. This dfa recognizes an exponential language with only
constant number of right extendable words. The bigger circle
denotes the initial vertex, the terminal vertices are filled.

and finally
Cre(L)(n) = . . . = Cre(Lin)(n) ≤ . . . ≤ Cre(L1)(n). (6)

Arguing as above, we obtain that {α(re(Li))} converges to α(re(L)). Now it
remains to note that each language Li is regular, whence α(re(Li)) = α(Li). The
result now follows. �

Remark 3.2. If we consider arbitrary languages instead of factorial ones, the
statement of Theorem 3.1 fails even for regular languages. The dfa in Figure 1
recognizes the language a∗+a∗b(a+ba)∗bb having exponential complexity but only
one right extendable word of each length. Indeed, the two “middle” vertices of the
automaton constitute a nontrivial scc, whose index is equal to the golden ratio.
At the same time, only the words from a∗ are right extendable in this language.

4. Subexponential gaps

According to Theorem 3.1, the gaps between complexities of L, re(L) and e(L)
are always subexponential. From known results it follows that all these complex-
ity functions can be polynomials of different degrees. For example, the already
mentioned language OF of binary overlap-free words has complexity Ω(n1.217) [9],
while Cre(OF )(n) = Θ(nα) with α ≈ 1.155 [8]. The language e(OF ) coincides
with the set of all finite factors of the Thue-Morse word T , and Ce(OF )(n) = Θ(n)
(folklore). We now show that such gaps can be much bigger. The language defined
below has a superpolynomial gap.

Let K ⊂ {a, b}∗ be the language consisting of all words of the form U =
ct1
1 . . . ctm

m such that m ∈ N, ci ∈ {a, b}, ci �= ci+1 for all i, and t1 < . . . < tm−1.
Thus, the powers of letters in U are strictly increasing, with the last letter being
the only possible exception. This exception is necessary to make K factorial. We
note that K is very close to the family of languages of intermediate complexity,
introduced in [12]. The binary language of that family is defined in the same way,
as K, with the only difference: the inequalities for t’s are not strict. So, we adapt
some ideas of [12] to estimate the complexity of K.

Theorem 4.1. The language K has intermediate complexity, while the complexity
of e(K) is linear.
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Proof. First we note that re(K) = K, whence e(K) = le(K) by Observation 2.2.
If m ≤ 2, then the word U can be infinitely extended to the left (by the letters c1,
for example). However, for m ≥ 3 the situation changes drastically. The word U ,
up to renaming the letters, looks like

. . .a a b b a... ... ... ...
t1 t2 ...

,

while its left extension looks like

. . . . . .a b b a a b b a...... ... ... ... ... ...
≤t2−2 ≤t2−1 t2... ...

.

U

It is clear that the length of a left extension of U does not exceed the value

(t2 − 1 − t1) + (t2 − 2) + (t2 − 3) + . . . + 1 =
t2(t2 − 1)

2
− t1,

implying U /∈ le(K). Therefore, U ∈ le(K) iff m ≤ 2. We have

le(K) ∩ Σn = {an, an−1b, . . . , abn−1, bn, bn−1a, . . . , ban−1},

whence Cle(K)(n) = 2n. By Theorems 1.1 and 3.1, the language K has subex-
ponential complexity also. Thus, it remains to show that the complexity of K is
superpolynomial.

Let Km denote the subset of K consisting of all words U = ct1
1 . . . ctm

m . We show

that for n large enough the function CKm(n) is Θ(nm−1). Since K =
∞⋃

m=1
Km, we

then obtain that CK(n) is not bounded from above by any polynomial.
Note that CKm(n) equals the number of positive solutions of the diophantine

equation
(m−1)x1 + (m−2)x2 + . . . + xm−1 + xm = n , (7)

multiplied by two. Indeed, taking

t1 = x1, t2 = x1 + x2, . . . , tm−1 = x1 + . . . + xm−1, tm = xm,

we get the required correspondence between words of Km and positive solutions
of (7) (the multiplication by two is due to the choice of the letter c1). There are
(m−1) free variables in (7), and their values are bounded from above by n. Hence,
the number of positive solutions of (8) is O(nm−1). To get the lower bound on the
number of these solutions, consider an auxiliary equation

x1 + . . . + xm−1 + xm = n1. (8)
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There is a one-to-one correspondence between (m−1)-element subsets of the set
{1, . . . , n1−1} and sequences of partial sums

x1, x1 + x2, . . . , x1 + . . . + xm−1.

Each of these sequences uniquely determines a positive solution of (8), whence (8)
has

(
n1−1
m−1

)
positive solutions.

Now represent n in the form n = (m−1)!·n1 +n2, where 0 ≤ n2 < (m−1)!. Any
positive solution (ξ̄1, . . . , ξ̄m) of (8) generates some positive solution (ξ1, . . . , ξm)
of (7) by the rule

ξi =
(m−1)!
m−i

·ξ̄i, i = 1, . . . , m−1; ξm = (m−1)!·ξ̄m + n2.

Indeed, one has

(m−1)ξ1 + . . . + ξm−1 + ξm = (m−1)!·(ξ̄1 + . . . + ·ξ̄m) + n2 = n.

Thus, the number of solutions of (7) exceeds
(
n1−1
m−1

)
. Since n1 is obtained by

dividing n by a constant, we obtain that (7) has Ω(nm−1) positive solutions for
any n satisfying the condition n1 ≥ m. Thus, we get CKm(n) = Θ(nm−1) for all
n ≥ m!, whence the result. �

We conclude the paper with a few notes on possible applications of the given
results. The extendable parts of a language can have more clear structure, than the
language itself. For example, the structure of the language OF of binary overlap-
free words is rather complicated, while the extendable words in this language are
just the factors of a single infinite word T which has a simple and regular form.
Thus, if we want to estimate the complexity of some language, we may study its
extendable part instead. Theorem 3.1 provides that we can find the growth rate
of the target language in this way (and, in particular, decide whether the target
language is exponential or subexponential). On the other hand, Theorem 4.1 shows
that this method does not allow to distinguish different low (i.e. subexponential)
complexities.
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