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MINIMAL NFA AND BIRFSA LANGUAGES*

MicHEL LATTEUX!, YVES Roos! AND ALAIN TERLUTTE?

Abstract. In this paper, we define the notion of biRFSA which is a
residual finate state automaton (RFSA) whose the reverse is also an
RFSA. The languages recognized by such automata are called biRFSA
languages. We prove that the canonical RFSA of a biRFSA language
is a minimal NFA for this language and that each minimal NFA for
this language is a sub-automaton of the canonical RFSA. This leads to
a characterization of the family of biRFSA languages. In the second
part of this paper, we define the family of biseparable automata. We
prove that every biseparable NFA is uniquely minimal among all NFAs
recognizing a same language, improving the result of H. Tamm and
E. Ukkonen for bideterministic automata.

Mathematics Subject Classification. 68Q45.

1. INTRODUCTION

Finite automata constitute a useful model in several domains of computer sci-
ence like in lexical analysis, coding theory, formal verification. .. The study of finite
automata began in the 50’s and led to a very rich and fecund theory (see for in-
stance [7,12]). More recently, finite automata were also used in bioinformatics or
in machine learning where, in this last domain, they are used as a representation
of regular languages which are the targets of learning algorithms. In this case, it
is important to get small automata with respect to the number of states, but it is
also important to get a canonical representation of regular languages.

The structure of deterministic finite automata (DFA) recognizing a given recog-
nizable set L is simple since these DFAs have a common model, the unique minimal
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DFA of L. This nice property does not hold for the set of nondeterministic finite
automata (NFA) recognizing L. Indeed, it may happen that L is recognizable by
two completely different NFAs that are both minimal with respect to the num-
ber of states (see [2,3]). Recently the notion of residual finite state automaton
(RFSA), a natural extension of DFAs, has been introduced (see [5]). This new
family of automata is particularly interesting since the above property of DFAs
has been preserved: there exists a unique RFSA called the canonical RESA of
L that is minimal among the RFSAs recognizing L. For some recognizable set
L, this canonical RFSA is also minimal among the NFAs recognizing L. and has
much less states than the minimal DFA of L. Unfortunately, this is not true in
general and it seems natural to wonder what kind of recognizable sets have this
property. In order to get a family of such recognizable sets, we extend the notion
of O-reversible automaton, called also bideterministic automaton, introduced by
Angluin [1] for learning questions. So we define biRFSAs that are RFSAs whose
the reverse is also an RFSA. The languages recognized by biRFSAs are called
biRFSA languages. We prove that the canonical RFSA of a biRFSA language L
is a minimal NFA for L. More precisely, each minimal NFA for L is isomorphic
to a sub-automaton of the canonical RFSA of L. Canonical RFSAs are full NFAs,
that is, it is not possible to add a transition or to transform a non initial (resp.
non final) state into an initial (resp. final) one without changing the associated
language. As each minimal NFA, they are also thin, that is, it is not possible to
remove a state without changing the associated language. With these two prop-
erties, one can establish a characterization of the family of biRFSA languages: a
recognizable language L is a biRFSA language if and only if there is a unique full
and thin NFA recognizing it.

It can be easily seen that the unicity of the minimal NFA does not hold for
biRFSA languages. Indeed, the canonical RFSA of a biRFSA L can contain in-
comparable (minimal) NFAs recognizing L. The second part of this paper concerns
recognizable languages having a unique minimal NFA. In [15], it has been proved
that bideterministic automata are uniquely minimal, that is they are the unique
minimal NFA for the associated language. We improve this result by showing that
this property does hold for a larger family of finite automata, called biseparable
NFAs. The proof of this result uses the above characterization of the family of
biRFSA languages since it is seen that biseparable NFAs are special canonical
RFSAs. We also prove the following characterization result: a recognizable lan-
guage L is recognized by a biseparable NFA if and only if no prime residual of L
is included in the union of the other prime residuals of L.

2. PRELIMINARIES

Let us recall the definition of residuals of a language: let > be an alphabet and
L C ¥* be a language. A language L’ C ¥* is a residual of L if there exists a
word u € ¥* such that L’ = {v € ¥* | uwv € L}, that is denoted L' = u~'L.
Symmetrically is defined the notion of left residual: a language L' is a left residual
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of L if there exists a word v € ¥* such that L' = {u € ¥*|uv € L}, that is denoted
L' = Lv~!. To avoid ambiguity, any residual of a language L will also be called a
right residual of L.

It is well known that a language is recognizable if and only if it has a finite
number of residuals. In order to precise the link between residuals of a recogniz-
able language and the states of automata which recognize it, let us introduce the
following notation: let A = (X,Q, I, F,§) be a finite non deterministic automaton
(NFA), where ¥ is the input alphabet, ) is the set of states, I C @ is the set
of initial states, F' C ( is the set of final states, and J is the transition function
from Q x ¥ — 2. We extend, as usually, the transition function § in a function
from 2¢ x ¥ — 29 by: VS C Q,Vx € %,8(S,7) = Uyesd(q, ), and also in a
function from 2% x ¥* — 2@ that is inductively defined by: VS C Q,d(S,¢) = S
and VS C Q,Vu € ¥*,Va € X,6(S,zu) = §(6(S, z),u). We sometimes consider §
as the set of transitions of automaton A that is the subset of @ x ¥ x @ defined
by § = {(¢,z,¢') | ¢ € d(q,x)}. Also, in this paper, we shall always consider
equality between automata up to isomorphism, and we say that two automata are
equivalent if they recognize a same language.

For any state ¢ € (), we define the language post, , by post, , = {u € ¥* |
6(q,u) N F # 0}, and we define the language pre, , by pre, , = {u € ¥* | ¢ €
d(I,u)}. Notice that post, , (resp. pre,,) is the language recognized by the
automaton (X%, @, {q}, F, ) (resp. (X,Q,1,{q},0)). When there is no ambiguity
on the used automaton, we shall just write post, for post, , and pre, for pre, ..

If we consider any trim deterministic automaton A = (X,Q, {qo}, F,0), it is
clear that, for any state ¢ in @), the language post, is a residual of the language
recognized by A. Moreover it is well known that the set of states of the minimal
deterministic automaton of any recognizable language L is isomorphic to the set
of the residuals of L. This fine property is not satisfied by non deterministic
automata: if 4 = (X,Q, I, F,0) is a non deterministic automaton, then for any
state ¢ in @, the language post, is included in a residual of the language recognized
by A, but not always equal to it. This is the reason why the following notion has
been introduced in [5]:

Definition 2.1. A (non deterministic) automaton A = (X, Q, I, F, §) is a residual
finite state automaton (RFSA for short) if for every state ¢ € @, the language
post, is a residual of the language recognized by A.

The notion of minimal deterministic automaton is essential, unfortunately there
does not exist a similar notion for NFA. Nevertheless, such a canonical represen-
tation exists for the class of RFSA. Indeed it has been proved in [5] that every
recognizable language can be recognized by a unique non deterministic reduced
RFSA, called the canonical RFSA of the language. In order to give its definition,
let us first introduce the notion of prime residual of a language.

Definition 2.2. Let L be a language. A residual of L is prime if it is non empty
and if it cannot be obtained as the union of other residuals of L. The set of all
prime residuals of L is denoted by prime(L).
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In a similar way, one can define the notion of prime left residual.

Definition 2.3. Let X be an alphabet and L C ¥* be a recognizable language.
The canonical RFSA A of L is the automaton A = (X, Q, I, F, §) where

(1) X is the alphabet of L;

(2) @Q = prime(L), is the set of prime residuals of L;

(3) I C prime(L) is the set of prime residuals of L which are included in L;
(4) F C prime(L) is the set of prime residuals of L containing the empty word;
(5) VS € prime(L),Va € £,6(S,z) = {5’ € prime(L) | S’ C S}.

The following result has been proved in [5].

Lemma 2.4. Let A= (X,Q,I,F,d) be a canonical RFSA recognizing a language
L. Then for any state q € Q, there exists a word uq € pre, such that post, = uq_lL.
Such a word uq is called an (incoming) characteristic word of state g.

Let us now recall the definition of the reverse of a language and the reverse of
an automaton: let ¥ be an alphabet. The reverse of a word v € £* is denoted u’
and is defined inductively by: ¢® = ¢, and Vv € ¥*,Vx € ¥, (vo)? = z(vF). Then
this definition is extended to languages: if L is a language, then LT = U,cpuft.

Let A = (%,Q, 1, F, ) be an automaton. Then the reverse of A is the automaton
AR = (2, Q, F,1,6%) where 6% = {(¢,2,¢) | (¢, z,q) € §}. Tt is well known that
an automaton A recognizes a language L if and only if its reverse, AR recognizes
L%, the reverse of L.

The case when the reverse of a deterministic automaton is still deterministic
leads to the class of O-reversible languages (see[l]) or bideterministic languages
(see [13,15]) which have been studied in the context of machine learning, or in terms
of minimal representation of recognizable languages. When NFA are considered,
we define the notion of biRFSA:

Definition 2.5.
e An automaton A is a biRFSA if A is an RFSA and the reverse of A is
also an RFSA.
e A language is a biRFSA language if there exists a biRFSA which recognizes
it.

Note that, as an equivalent definition, we can say that A = (3,Q,1, F,J),
recognizing a language L, is a biRFSA if, for any state ¢ € @, post, is a (right)
residual of L and pre, is a left residual of L.

Example 2.6. Let us consider the four automata of Figure 1, each of them rec-
ognizing the same language (a + b)*a.
The right residuals of (a+b)*a are the two languages (a+b)*a and (a+b)*a+-e.
The non empty left residuals of (a+b)*a are the two languages (a+b)*a and (a+b)*.
Automaton A; is not an RFSA because post 4, =~ = {e} which is not a right
residual of (a + b)*a. Automaton Az is an RFSA since it is the minimal DFA of
(a4 b)*a but it is not a biRFSA since pre 4, .= (a + b)*b + & which is not a left
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FIGURE 1. Some automata for (a + b)*a.

residual of (a + b)*a. Automaton As is a biRFSA since now pre 4 = (a +b),
but it is not the canonical RFSA of (a + b)*a. Indeed, a(post 4, , ) € post 4, ..

but there is no transition (qi,a, qo) in automaton As. Finally, automaton 44 is a
biRFSA which is the canonical RFSA of (a + b)*a.

The family of biRFSA languages is strictly included in the family of recognizable
languages; even over a one-letter alphabet, there exist finite languages which are
not biRFSA languages.

Example 2.7. The language L = a+a? is not a biRFSA language: let us suppose
that there exists a biRFSA A = (%, Q, I, F, §) recognizing L; the set of non empty
right residuals of L is {a + a?,¢ + a,e} and it is equal to the set of non empty
left residuals of L; all these residuals are prime. Since a? € L, there exists a
state ¢ € () such that a € pre, and a € post,. Since a® ¢ L, it follows that
pre, = post, = € + a then A would recognize the empty word which is not in L.
This example also shows that the family of biRFSA languages is not closed by
union: indeed, any singleton language is clearly a biRFSA language. It is also
easy to verify, as presented in [10], that the family of biRFSA languages is not
closed by intersection, complementation, concatenation or quotient. Notice also
that the language L’ = ¢ + a + a? is a biRFSA language since it is recognized by
the biRFSA given in Figure 2.

Despite its bad closure properties, the family of biRFSA languages is an in-
teresting family in terms of identification by learning algorithms from positive
examples. Indeed, the task of identifying a language from a set of its words is
not an easy one. For instance, it is not feasible to identify regular languages from
positive examples in the general case. Therefore, it is interesting to look for sub-
classes of regular languages that can be identified in this framework. One of the
most classical identifiable classes is the class of reversible languages, introduced
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FIGURE 2. A biRFSA for € + a + a2.

in [1] and also studied in [13]. Concerning biRFSA languages, the subfamily of
ordered biRFSA, introduced in [9], strictly contains the family of reversible lan-
guages and has been proved identifiable from positive examples. Moreover, the
algorithm works in polynomial time from a set of positive examples whose size is
polynomially bounded on the size of the target of the learning algorithm.

3. A DECIDABLE CHARACTERIZATION OF BIRFSA LANGUAGES

The aim of this section is to give a way for deciding whether a given recognizable
language is a biRFSA language. We shall use the following property, satisfied by
canonical RFSA:

Lemma 3.1. Let A = (X,Q,I,F,0) be a canonical RFSA. Then for any states
4,4 € Q, post, C post,, if and only if pre,, C pre,.

Proof. Let u be a word which belongs to pre,; we will prove by induction on |,
the length of u, that u belongs to pre,. If |u| = 0, then u = ¢ and it follows that
q' € I and post,, C L, where L denotes the language recognized by automaton A.
Since post, C post,, C L, it follows from item 3 of definition 2.3 that state ¢ is also
an initial state and v = ¢ € pre,. Let us suppose now that u = u'r with v/ € ¥*
and x € ¥. If v’z € pre,, there exists a state ¢” € @ such that ¢” € 6(/,u’) and
q' € 6(¢", ). Since A is a canonical RFSA, it follows that zpost, C post,,. Now,
since post, C post,,, we obtain from item 5 of Definition 2.3 that zpost, C post,,
and g € 0(¢", ). Finally ¢ € 0(,u'x) that is u = u'z € pre,. O

Then we can state:

Proposition 3.2. A recognizable language is a biRFSA language if and only if its
canonical RFSA is a biRFSA.

Proof. Let A = (X,Qu, 14, F4,04) be a biRFSA recognizing a language L and
B = (%,Qs,Is, F5,05) the canonical RFSA of L. Let ¢ be an arbitrary state of
(s and u a word such that post, , = u~1L. We have to prove that preg , is a left
residual of L.

Set S = {s € Qa|ueprey,} then u='L = Usegpost, .. Since u 'L is a
prime right residual and the post , , are right residuals, there exists p € S such that
u € prey , and post , , = u~'L. Now, since pre, , is a left residual, pre, , = Lv ™!
for some word v € ¥*. Then uv € L and v € u™'L = posty ,. It remains to prove
that prey , = Lo~
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Clearly, pres , C Lv~'. For the reverse inclusion, let us take w € Lv~!. Then
wv € L and there is a state p’ such that w € pres v, and v € posty . As posty .
is a right residual, posty , = 27 !L for some z € £*. Then zv € L and z € Lv~! =
pre, ,. Hence, zpost, , C L and post,, = u 'L = posts , C z7'L = posty .
Since B is a canonical RFSA, it comes from Lemma 3.1 that pres ,, C prey , and
w € preg . U

The previous result is equivalent to:

Corollary 3.3. A recognizable language L is a biRFSA language if and only if
the reverse of its canonical RFSA is the canonical RFSA of the reverse of L.

Proof. From Proposition 3.2, it is sufficient to prove that if A = (X,Q, 1, F, )
is the canonical RFSA of a biRFSA language L, then for each state ¢ in @, the
language pre, is prime, that is, there does not exist a set of states S C @, such
that every state s € S satisfies pre, C pre, and pre, = Usecgpre,. Let us suppose
that there exists such a set S and let us consider u, the characteristic word of g,
Le. such that post, = u;lL. We know from Lemma 2.4 that such a u, exists.
Now, since pre, = Usespre,, there exists p € S such that u, € pre,. It follows that
post, C uw L = post,. From Lemma 3.1, we obtain pre, C pre, which leads to a
contradiction since every state s € S satisfies pre, C pre,. ]

In order to decide whether a given NFA A recognizes a biRFSA language,
Proposition 3.2 and Corollary 3.3 lead to decision algorithms in which the canonical
RFSA of the language L(A) recognized by A must be computed. Unfortunately, it
is shown in [5] that the canonical RFSA of the language L(.A) may be exponentially
larger than the automaton A. In next section, another characterization of biRFSA
languages in terms of minimal NFA will lead to a PSPACE-algorithm and we shall
prove that the problem to decide whether a given NFA A recognizes a biRFSA
language is PSPACE-complete.

4. BIRFSA LANGUAGES AND MINIMAL NFA

In general, the canonical RFSA of a recognizable language is not always a
minimal NFA. However, we shall prove that it becomes true when we are dealing
with biRFSA languages. For biRFSA languages, the notion of canonical biRFSA
can be easily defined, thanks to Proposition 3.2: a biRFSA is canonical if it is the
canonical RFSA of a biRFSA language.

Clearly, the following is a direct consequence of Lemma 2.4:

Lemma 4.1. Let A = (X,Q, I, F,0) be a canonical biRFSA recognizing a language
L. Then for any state q € Q, there exist words ug, v, € X* such that post, = u;lL
and pre, = qu’l. The word ug (resp. vq) is called an incoming (resp. outgoing)

characteristic word of state q.
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Then we can state that the canonical biRFSA is a minimal NFA which recog-
nizes a biRFSA language:

Proposition 4.2. The canonical RFSA of a biRFSA language L is a minimal
NFA for L.

Proof. For any canonical biRFSA A = (3,Q, I, F, ), recognizing a language L,
and any NFA A" = (X,Q’, I’, F’,§') recognizing the same language L, let us con-
sider now a mapping h : Q@ — @’ which maps each state ¢ € Q to a state
h(q) = ¢' € Q' such that u, € pre,, , and v, € posty , where u, and v, are
respectively incoming and outgoing characteristic words of ¢q. For any two dis-
tinct states p,q € Q, if u,vy € L then u, € qu_l and uppost, C L which implies
post, C u;lL = post,,. Similarly, if u4v, € L then post, C post,. Since p and g are
distinct, post, # post, and upvy & L or ugv, & L. 1t follows that h is injective. [

The converse is not true: there exist non biRFSA languages such that there
does not exist a smaller automaton than their canonical RFSA. For instance the
language a + a® of the example 2.7 is not a biRFSA language, but its canonical
RFSA has three states and it is not possible to recognize a 4 a? with less states.

We shall see now that a canonical biRFSA of a biRFSA language L, satisfies
another property than being a minimal NFA recognizing L: it also contains as
sub-automata all the minimal NFAs which recognize L. This follows from the fact
that a canonical RFSA is full, i.e. it is not possible to add transitions to it without
changing the language that it recognizes. Let us give precisely the definition of
sub-automaton; :

Definition 4.3. An NFA B is a sub-automaton of an NFA A = (X, Q, I, F,0) if
B=(XQ,I'F',§)with Q CQ,I' CI, F/C Fand ¢ CJ.

Then we can give the definition of full automata:

Definition 4.4. An NFA A is full if for any automaton B having the same set
of states than A and recognizing the same language, A is a sub-automaton of 15
implies A = B.

In other words, an NFA A = (3,Q, I, F, ), is full if adding a non initial state
of @ in I, or adding a non final state of @) in F or adding a new transition in ¢
changes the language recognized by A.

Clearly, every automaton is included in a (non necessarily unique) full automa-
ton recognizing the same language. When an automaton is a canonical RFSA, we
have:

Lemma 4.5. Any canonical RFSA s full.

Proof. By definition of a canonical RFSA, a non initial state ¢ of a canonical
RFSA A= (%,Q,1, F,5), recognizing a language L, satisfies post, L, then it is
not possible to add such a ¢ in I. Symmetrically, let p be a non final state of A
and let us consider u,, an incoming characteristic word of p. Since p is not final,
€ ¢ post, = u];IL, then u, ¢ L, and it is not possible to add p in F. At last,
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let us consider two states p,q € Q and a letter z € ¥ such that (p,z,q) € 6. Tt
follows from item 5 of Definition 2.3 that zpost, £ post,. Let v, € post, such
that zvy & post,, then if u), is an incoming characteristic word of p we get that
upzvg ¢ L since post, = u~!L. Then it is impossible to add (p,z,q) in J else A
would recognize the word uy,xv,. O

Since we are interested in state minimality, a natural notion is the following:

Definition 4.6. An NFA A = (X, Q, I, F,¢) is thin if, for any proper subset @’ of
@, the language recognized by the automaton (X, Q’, INQ’, FNQ',iN(Q' xXx Q"))
is strictly included in the language recognized by A.

In other words, an NFA A = (X,Q, I, F,J), is thin if deleting any state in .4
(and its associated transitions) changes the language recognized by the automaton.

Clearly, every NFA contains a (non necessarily unique) thin sub-automaton
recognizing the same language and every minimal NFA is thin. But the converse
does not hold.

Lemma 4.7. Any canonical RFSA is thin.

Proof. Let us consider a canonical RFSA A = (¥,Q, 1, F,0), recognizing a lan-
guage L and let ¢ € @ be a state of A. Let u € ¥* be an incoming characteristic
word of state ¢, then post, = u~!'L. We shall prove that there exists a word v
in post, such that uv were not recognized anymore if the state ¢ is deleted. Let
us consider the language K = Upcs(1,u)\{q}POSt,. The language K is included in
post, and, since A is a canonical RFSA, post, is a prime residual, this inclusion
is strict. It follows that there exists a word v € (post, \ K). Then uv € L and uv
were no more recognized if state ¢ is deleted. O

Then we can state:

Proposition 4.8. If a language L is recognized by a unique thin and full NFA
then L is a biRFSA language.

Proof. Let L be a recognizable language. Let A be the canonical RFSA of L and
B be the canonical RFSA of L%, the reverse of L. From Lemmata 4.5 and 4.7 ,
these two automata are full and thin. Moreover, it is clear that the reverse of a
full and thin automaton is full and thin, then automaton BT, the reverse of B, is
full and thin. Hence, automata A and BT are full and thin NFA which recognize
L. Then A = B and, by Corollary 3.3, L is a biRFSA language. g

In order to obtain the converse of Proposition 4.8, we shall use the following
lemmata.

Lemma 4.9. Let A= (X,Q,1,F,§) be a canonical biRFSA. Then for any states
p,q € Q and for any non empty word u € BT, if upost, C post,, then q € o(p,u).
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Proof. Let L be the language recognized by automaton A. Let u, € ¥* be an
incoming characteristic word of state p and v, € ¥* be an outgoing characteristic
word of state q. Then upuv, € L, and upu € qu’l = pre,. Let u = xu’ with z € 2.
Then, there exists states s,¢ € @ such that u, € pre, t € §(s,z) and g € §(¢,u’)
which implies zpost, C post,. Now, since upypost, C L, it follows post, C post,,
and x(post,) C post,. Finally, from definition of canonical biRFSA, ¢ € §(p, x)
then g € §(p, u). O

Let us consider again the mapping h defined in order to prove Proposition 4.2.
Recall that h : Q@ — @' maps each state ¢ € @ to a state h(q) = ¢’ € Q" such
that u, € prey , and vy € post, ., where u, and v, are respectively incoming
and outgoing characteristic words of g. Remark that post, ., C uq_lL = post 4 4
and pre,, ,» C Lug ' =prey .

Lemma 4.10. Let A = (X,Q, I, F,0) be a canonical biRFSA recognizing a lan-
guage L and A" = (X,Q", ', F', ') be an NFA which recognizes L. For any states
p,q € Q and for any word u € ¥*, if h(q) € §'(h(p),u) then q € 6(p,u).

Proof. If u = ¢ then h(p) = h(q) and p = ¢. Else, upuvy € L and it follows u,u €
Pre 4, and upupost 4 . C L. Then upost 4 C post 4 , and, from Lemma 4.9,

q € d(p,u). O

We are now able to state:

Proposition 4.11. If L is a biRFSA language, the canonical biRFSA of L is a
sub-automaton of any full NFA recognizing L.

Proof. Let A = (3,Q,I,F,d) be the canonical biRFSA of a language L and let
A = (3,Q',I',F',§") be a full NFA which recognizes L. Let us consider automa-
ton A” = (3,h(Q), I' "h(Q), F' N h(Q),d5 Nh(Q) x ¥ x h(Q)). We shall prove
that A and A" are isomorphic.

Let us prove first that, Vp,q € Q,Vx € X, (h(q) € ¢'(h(p),x)) <= ¢ € §(p, z).

(1) Ifh(q) € &'(h(p), x) then upzv, € L, where u,, is an incoming characteristic
word of p and v, is an outgoing characteristic word of ¢. It follows u,x €
pre , and upzpost , , C L. Since xpost, , C post, ,, we get g € d(p, ).

(2) If g € §(p, x), let us suppose that h(q) & ¢’ (h(p),x). Let B be the automa-

ton obtained from automaton A, adding the transition (h(p),z, h(q)). We
shall prove that B recognizes language L which leads to a contradiction
since A’ is full.
Let w be a word recognized by automaton B. If there exists a path labelled
by w from I’ to F’ which does not use transition (h(p),z,h(q)) then w
is recognized by A" and w € L. Else, w = wozw; ... 2wy with wy €
Pre s n(p)s Wkt € POSt g gy and, V1 < i < k, h(p) € ¢'(h(q), w;). From
Lemma 4.10, V1 < i < k,p € 6(¢q, w;). Now, since wy € Pre nip) S Pre,
and w41 € post 4/ jq) © POSt 4 4. We get that w is recognized by A and
w € L.
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FIGURE 3. The canonical RFSA of aa + ab + ca + cc + db + dd.

Finally, since for any state s, post 4 sy © post, , and pre 4 () € prey 5, we get
h(I) CI'" and h(F) C F'. O

Finally, we are able to give the following characterization of biRFSA languages,
in term of minimal automata.

Theorem 4.12. The following properties are equivalent:
(1) L is a biRFSA language.
(2) The canonical RESA of L is a sub-automaton of any full NFA recognizing
L.
(3) There exists a unique thin and full NFA recognizing L.

Proof. From Proposition 4.11, we get that 1 implies 2, and from Proposition 4.8,
we get that 3 implies 1. At last, if the canonical RFSA of a language L is a sub-
automaton of any full NFA recognizing L, it is a sub-automaton of every thin and
full NFA recognizing language L, and since it is thin and full, it is isomorphic to
every thin and full NFA recognizing language L. ]

An easy corollary of Theorem 4.12 is the following:

Corollary 4.13. If L is a biRFSA language then every minimal NFA recognizing
L is a sub-automaton of the canonical RFSA of L.

The converse of this corollary is false: the canonical RFSA given Figure 3
contains as sub-automata all minimal NFA recognizing the same language, since
it is uniquely minimal, but it is not a biRFSA.

Let us finish this section with the study of the complexity of the problem to
decide whether a language is a biRFSA language.

Proposition 4.14. The problem to decide whether a given NFA recognizes a
biRFSA language is PSPACE-complete.

Proof. Let A be an NFA, and let us consider the following algorithm:
(1) Compute a minimal NFA B, equivalent to .A.
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FIGURE 4. The canonical RFSA of (e + $ + $2)#X*.

(2) Compute a full and thin NFA C equivalent to B.
(3) Check if C is a biRFSA.

If C is a biRFSA, then L(A) = L(C) is a biRFSA language and if L(.A) is a biRFSA
language, it follows from the theorem 4.12 that C is the unique full and thin NFA
equivalent to A and it is the canonical biRFSA of L(A). According to [6], step
1 can be done in PSPACE. For step 2, since B is minimal, it is thin and it is
sufficient to try all possibilities of adding transitions, or transforming states in
final of initial ones without changing the recognized language: this can be done
in PSPACE since it has been proved in [14] that the equivalence of two NFAs is
a PSPACE-complete problem and we have only to add a number of transitions
which is polynomially bounded on the number of states of 5. Finally it has been
proved in [5] that the problem to decide whether a given NFA is an RFSA is a
PSPACE-problem, then step 3 can be done in PSPACE testing whether C is an
RFSA and whether the reverse of C is also an RFSA.

Conversely, in order to prove that the problem is PSPACE-hard, we shall reduce
the problem of the universality of NFAs which has been proved to be PSPACE-
complete in [8]. Let us consider a regular language K defined over an alphabet ¥,
and two fresh letters $§ and # which do not belong to 3. We shall prove that the
language R = ($ + $2)#X* + #K is a biRFSA language if and only if K = *.
First, it is easy to verify that the language (¢ +$ + $2)#X* is a biRFSA language,
since its canonical RFSA, given Figure 4 is clearly a biRFSA. Conversely, let
A= (3,Q,I,F,J) be the canonical RFSA of R and let us suppose that A4 is a
biRFSA. If K C ¥*, then for any word u € ¥* \ K we get R($#u)"! = ¢+ $.
Moreover, it is easily seen that the language $ is not a left residual of R, then e+ $
is a prime left residual of R and there exists a state ¢ € () such that pre, = ¢ + $.
It follows that post, = e 'R = R or post, = $7'R = (¢ + $)#X*. In both cases A

would recognize a word that is not in R: if post, = R then $3# ¢ pre,.post, and
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if post, = (¢ + $)#X* then #u € pre,.post,. Thus, if K C ¥*, R is not a biRFSA
language.

It follows that the problem to decide whether a given NFA recognizes a biRFSA
language is PSPACE-hard and then PSPACE-complete. g

5. BISEPARABLE AUTOMATA

In [15], Tamm and Ukkonen prove that the minimal DFA recognizing a bide-
terministic language L, that is a DFA whose reverse is deterministic, is the unique
minimal NFA among all NFAs recognizing L. Proposition 4.2 states that the
canonical RFSA of a biRFSA language is minimal. In this section, we study the
family of languages for which the canonical RFSA is the unique minimal NFA.

Definition 5.1. A trim NFA A = (3, Q, I, F, §) is called separable if: Vg € Q,Ju €
¥ 0(1,u) = {q}.

Clearly, any separable automaton is always an RFSA, but the converse is false
since the biRFSA given Figure 5 , recognizing the language a™ is not separable:

Definition 5.2. An NFA A is called biseparable if both A and its reverse are
separable. A language L is called biseparable if it is recognized by some biseparable
NFA.

Any biseparable NFA is clearly a biRFSA; we shall prove in Proposition 5.4 a
stronger result. First, let us state:

Lemma 5.3. Any biseparable NFA is full and thin.

Proof. Let A= (%,Q,I,F,0) be a biseparable automaton for a language L. For
any state ¢ € @, there exists a word u, such that u, € pre, and Vq' # q,u, & pre,
and there exists a word v, such that v, € post, and Vq' # ¢,v, ¢ post, . Clearly,
A is thin, since if we remove a state ¢, the word u,v, were not recognized any
more. Moreover, if ¢ € I, it follows that v, ¢ L and it is not possible to add ¢ in 1
without changing the language recognized by the automaton. Similarly, if ¢ & F
then u, ¢ L and it is not possible to add ¢ in F' without changing the language
recognized by the automaton. Let us consider now (p,z,q) € (@ x X xQ)\J. Then
wv, & post,, else it should exists a state ¢’ such that (p,z,¢') € ¢ and v, € post,.
It follows that u,zv, ¢ L and it is not possible to add transition (p, z, q). O
a

a
a

FIGURE 5. The canonical RFSA of a™.
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Clearly, any biseparable NFA is a biRFSA, so we obtain, from Theorem 4.12
and Lemma 5.3, the two following propositions.

Proposition 5.4. Any biseparable NFA is a canonical biRFSA.

Proposition 5.5. A language is biseparable if and only if its canonical RFSA is
biseparable.

Proposition 5.5 leads to a decision procedure to know whether a regular lan-
guage is biseparable: for instance, since the canonical RFSA given Figure 5 is not
biseparable, it follows that a™ is not a biseparable language. More precisely, we
can give the complexity of the problem to decide whether a language is a biRFSA
language:

Proposition 5.6. The problem to decide whether a given NFA recognizes a bisep-
arable language is PSPACE-complete.

Proof. Let A be an NFA, and let us consider the following algorithm:

(1

(2
(3
(4

) Compute a minimal NFA B, equivalent to .A.

) Compute a full and thin NFA C equivalent to B.

) Check if C is a biRFSA.

) Check that it is not possible to remove any transition in C without changing
the language which is recognized.

Steps 1, 2 and 3 are the same as in the PSPACE algorithm given in the proof of

Proposition 4.14, and it is easily seen that step 4 can be done in PSACE, then the

problem is in PSACE.

Conversely, we shall reduce again the problem of the universality of NFAs. For
any regular language K defined over the alphabet {z,y}, let us consider L =
(a +b)K + a(x + y)*. Then L is biseparable if and only if K = ( + y)* and the
problem is PSPACE-hard, then PSPACE complete. O

We are now able to state:
Proposition 5.7. Any biseparable NFA is uniquely minimal.

Proof. Let B = (X,Q,I', F’,¢') be a biseparable NFA for a language L and let
A = (X,Q,1,F,6) be a minimal NFA for L. From Proposition 5.4, B is the
canonical RFSA of L and it follows from Corollary 4.13 that A is a sub-automaton
of B. For any state g, let us denote by u, a word such that ¢'(I’, uq) = {q} and
by v, a word such that &'F(F’,v,) = {q}. Since A is a sub-automaton of B,
§(I,uy) = {q} and 6% (F,v,) = {q}. It follows that A is biseparable, then it is full
and thin from Lemma 5.3, and it is equal to B from Theorem 4.12. 0

Remark that the above proposition improves the result of Tamm and Ukkonen
since the family of bideterministic automata is strictly included in the family of
biseparable automata, even over a one letter alphabet: let n be an integer strictly
greater than 1, then the canonical RFSA of language L, = (a™(a"!)*)* is not
bideterministic but is biseparable. For example, the automaton given Figure 6 is
the canonical RFSA of language Ls.
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(o)
O
FIGURE 6. The canonical RFSA of (a3(a?)*)*.

Let us finish this section by the following characterization of the family of
languages that are recognized by biseparable automata:

Proposition 5.8. For any recognizable language L, the three following properties
are equivalent:

(1) L is a biseparable language;

(2) L is a biRFSA language which is recognized by a unique minimal NFA;

(3) No prime residual of L is included in the union of the other prime residuals
of L.

Proof. Implication 1 = 2 is stated in Proposition 5.7.

Let us prove 2 = 3: let A = (X, Q, I, F, 0) be the canonical RFSA of a biRFSA
language L, by hypothesis, and from Proposition 4.2, A is uniquely minimal. For
any state ¢ € @, let u, and v, be respectively an incoming and an outgoing
characteristic word of state q. Let us suppose that there exists a state p such that
post, C Useq\ (pyPost,. Then it exists p’ # p such that v, € post,, . It follows that
pre,, C pre, then post, C post,. If p’ is an initial state then, p is an initial state
too since A is full, but the automaton A" = (X, Q, I'\ {p}, F, §) recognizes L and is
different from A. If p’ is not an initial state, then there exist a state s and a letter
x € X such that (s,z,p’) € . Then (s,z,p) € ¢ since A is full, but the automaton
A =(2,Q,I,F, 5\ {(s,z,p)}) recognizes L and is different from A.

Let us now prove implication 3 = 1: let L be a language such that every
prime residual of L is not included in the union of others prime residuals of L, let
us consider B = (X, Q’,I', F', ") the canonical RFSA of L. Let ¢ € ', then there
exists a word v, € posty , such that vy & Uy e\ (q)POSts  and the reverse of B
is separable. Let u, be an incoming characteristic word for state ¢ in B, then for
any state ¢’ # g, it is not possible to have ¢’ € ¢'(1,u,), else post, ,, which is a
prime residual of L were included in post, , which is another prime residual. It
follows that B is separable, hence biseparable. O

Notice that the unicity of a minimal NFA for a language L is not a sufficient
condition for L to be a biseparable language as it is shown in Example 2.7
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6. CONCLUSION

We have defined biRFSAs that are RFSAs whose the reverse is also an RFSA
and biRFSA languages which are those languages recognized by biRFSAs. We
proved that the canonical RFSA of a biRFSA language L is a minimal NFA for
L and that each minimal NFA for L is isomorphic to a sub-automaton of the
canonical RFSA of L.

We have established a characterization of the family of biRFSA languages in
term of minimal NFA: a recognizable language L is a biRFSA language if and only
if there is a unique full and thin NFA recognizing it.

We have introduced the family of biseparable NFAs which strictly contains the
family of bideterministic automata. We have shown that biseparable NFAs are
uniquely minimal, improving the result of [15].

Further works on the family of biRFSA languages will concern identification
of these languages by learning algorithms. The good properties of the family
of biRFSA languages in term of minimal NFAs allow to represent biRFSA lan-
guages by small canonical (non deterministic) automata that can be the targets
of the learning algorithms. Moreover, most of the learning algorithms defined for
the already known family of regular languages which are learnable from positive
examples exploit the determinism of the target automaton. With the family of
biRFSA languages, one can define some efficient new learning algorithms, based
on the notion of residuals languages, which infer non deterministic automata.

Acknowledgements. We are grateful to the referee for comments which helped improve
the presentation of this paper.
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