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REPETITIONS AND PERMUTATIONS OF COLUMNS
IN THE SEMIJOIN ALGEBRA

DIRK LEINDERS! AND JAN VAN DEN BUSSCHE!

Abstract. Codd defined the relational algebra [E.F. Codd, Commu-
nications of the ACM 13 (1970) 377-387; E.F. Codd, Relational com-
pleteness of data base sublanguages, in Data Base Systems, R. Rustin,
Ed., Prentice-Hall (1972) 65-98] as the algebra with operations pro-
jection, join, restriction, union and difference. His projection operator
can drop, permute and repeat columns of a relation. This permuting
and repeating of columns does not really add expressive power to the
relational algebra. Indeed, using the join operation, one can rewrite
any relational algebra expression into an equivalent expression where
no projection operator permutes or repeats columns. The fragment of
the relational algebra known as the semijoin algebra, however, lacks a
full join operation. Nevertheless, we show that any semijoin algebra
expression can still be simulated in a natural way by a set of expressions
where no projection operator permutes or repeats columns.

Mathematics Subject Classification. 68P15.

1. INTRODUCTION

In the 1970s Codd introduced the now standard relational data model, in which
a database is a finite collection of relations, where a relation is a finite set of tuples.
To express queries in the relational model, Codd introduced the relational algebra
with operators selection (called restriction by Codd), projection, union, difference
and join [3]. Since then the relational algebra has been extensively studied [1]. A
very important result is that its expressive power is equivalent to the expressive
power of first-order logic, called relational calculus in database theory [4].

The projection operator of Codd’s relational algebra can permute and repeat
columns. This permuting and repeating of columns, however, does not add ex-
pressive power to the relational algebra. Indeed, the two existing perspectives on
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the relational model, namely the named perspective, in which tuples are viewed as
functions from the set of attributes to the domain, and the unnamed perspective,
in which tuples are viewed as ordered lists of domain values, are equivalent [1],
whereas permuting and repeating of columns can not be done in the named per-
spective. For completeness, we will explicitly show in this paper that any relational
algebra expression can be rewritten into an equivalent relational algebra expression
where no projection operator permutes or repeats columns.

The semijoin algebra is a natural fragment of the relational algebra, obtained
by replacing the join operator by the semijoin operator [11]. The semijoin of two
relations is equivalent to a join projected on the attributes or columns of the first
relation. While in the full relational algebra permuting and repeating of columns
does not add expressive power, this is not clear for the semijoin algebra. Indeed,
the rewrite rule to replace a permuting or repeating projection in a relational
algebra expression with a non-permuting and non-repeating one uses the join op-
erator, that the semijoin algebra lacks. Nevertheless, in this paper we show that
any semijoin algebra expression can still be simulated by semijoin algebra expres-
sions where no projection operator permutes or repeats columns. The notion of
“simulation”, however, becomes more complicated. The idea is that given an ar-
bitrary expression E, one can produce a set of permutation- and repetition-free
expressions that return the relevant values of the output tuples of E, up to certain
repetitions and permutations which are produced as a by-product of the trans-
lation. In particular, for boolean expressions, there is always a single equivalent
boolean expression that is permutation- and repetition-free.

Our interest to study the semijoin algebra and its relationship to the full rela-
tional algebra is motivated by previous work that clearly indicates the importance
and relevance of the semijoin algebra. For instance, whereas the relational algebra
is equivalent in expressive power to first-order logic, the semijoin algebra is equiv-
alent in expressive power to the guarded fragment of first-order logic [10]. This
fragment was introduced by Andréka, van Benthem and Németi [2]. It has been
studied extensively since its introduction [5-8] and a lot of nice properties were
obtained, such as the finite model property, that are thus inherited by the semi-
join algebra. Apart from this connection to the guarded fragment, the semijoin
algebra has the interesting property that it can express every relational algebra
expression that always produces intermediate results of size linear in the size of
the database [9].

2. PRELIMINARIES

In this section, we give the definitions necessary to formally state and prove
our result. We first define a number of variants of the relational algebra and the
semijoin algebra obtained by restricting the projection operator in different levels.

From the outset, we assume a universe U of basic data values, over which
a number of predicates are defined. The names of these predicates and their
arities are collected in the vocabulary ). The equality predicate (=) is always
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in Q. Quantifier-free logic formulas over 2 will be used in the relational algebra
as selection or join conditions.

A database schema is a finite set S of relation names, each associated with
its arity. S is disjoint from 2. A database D over S is an assignment of a finite
relation D(R) C U™ to each R € S, where n is the arity of R.

Definition 2.1. Let S be a database schema. Syntax and semantics of the rela-
tional algebra (RA) are inductively defined as follows:

(1) Each relation name R € S belongs to RA.

(2) If E1, B2 € RA have arity n, then Ey U Ey, E1 — Es belong to RA and are
of arity n.

(3) If E; € RA has arity n and iy,...,i; are elements of {1,...,n}, then
Ti,....ir, (E1) belongs to RA and is of arity k.

(4) If Ey € RA has arity n and 0(x1,...,2,) is a quantifier-free formula over
Q, then op(E7) belongs to RA and is of arity n.

(5) If E1,E> € RA have arities n and m, respectively, and 6(z1,...,z,,
Y1,---,Ym) 18 a quantifier-free formula over 2, then E; <9 F5 belongs
to RA and is of arity n + m.

Let E be an RA expression over S and let D be a database over S. Then the
result of E on D, denoted E(D), is defined inductively as follows:

(1) R(D) := D(R).

(2) E1 U EQ(D) = El(D) U EQ(D), E1 - EQ(D) = El(D) - EQ(D)

(3) ﬂ_il,m,ikEl(D) = {(ail, ceey aik) | (al, e ,an) S El(D)}

(4) o9, E1(D) :={a € E1(D) | 61(a) holds}.

(5) Ey g, Ey(D) :={(a,b) | a € E\(D),b € FEy(D), and 63(a,b) holds}.

Remark 2.2. The Cartesian product operator x is expressible in our setting as
a join where the condition 6 is the formula true. The intersection operator N is
expressible in our setting using the projection and the join operator: RN .S =
1, arity(r) (R >g S), where @ is the formula /\?S?(R) T = Y.

Example 2.3. Let S be the schema containing a single binary relation Knows.
Then the expression Knows N 7 1 (Knows) defines all pairs of persons who know
each other.

Definition 2.4. The semijoin algebra (SA) is the variant of RA obtained by
replacing the join operator <y by the semijoin operator xy. The semantics of the
semijoin operator is as follows:

Ey xg Eo(D) :={a € E1(D) | 3b € E2(D) such that 6(a,b) holds}.

Example 2.5. Consider again the expression KnowsNma 1 (Knows) of Example 2.3.
This expression is also an SA expression. Indeed, according to Remark 2.2 the
intersection operator can be expressed as a projection of the join onto one of the
relations, which has exactly the same semantics as a semijoin. The expression can
thus be written in SA as Knows x 3 1Knows.

T1=Y1
T2=Y2
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The restrictions RA™" and SA™" of RA and SA, respectively, are obtained by
restricting the projection operator ;, ;. by requiring that the numbers i1, ..., i
are all different. So, repeating columns in the projection list is not allowed. The re-
strictions RA™" and SA™"P are obtained by requiring the projection list i1, ..., i
to be strictly increasing, i.e., i1 < --+ < ig. So, permutations are not allowed.
Note that this also excludes repeating columns.

Example 2.6. The expression in Example 2.3 is an example of an SA™" (and
RA™") expression. It is not SA™" (nor RA™"?), but it can be equivalently written
in SA™"P (and RA™"?) as  Knows x Knows (c¢f. Ex. 2.5).

T1=Y2

T2=Y1

Finally, a notation: Let f be a function from {1,...,m} to {1,...,n} and let
a be an n-tuple. Then f(a) is the m-tuple (azqy,...,az@m))-

3. MAIN RESULT

In this section, we show our main result: allowing permuting and repeating
of columns in projections does not add expressive power to the semijoin algebra.
Note that this property is clear for the full relational algebra. Indeed, if R is a
relation of arity n and iy,...,%; are values between 1 and n, then m;, . ; R is
equivalent to the RA™"P expression

Tp),ns ) (R R) b ) pa R)

k times R
where f(j)is (j —1)n+ij and O is 1 = y1 A ... ATy, = Yn.

Example 3.1. The RA™" expression 73 1(Knows) can be expressed in RA™" as
m2,3(Knows g Knows).

C1=Y1
T2=Y2

This trick for RA does not work for SA, where we do not have the full join.
Indeed, a projection with repetitions like 7; 1 R cannot be equivalently expressed
in SA™"P. The same holds for a nonincreasing projection like 73 1 R. Nevertheless,
for any SA expression E that can use projections with arbitrary repetitions and
permutations, we can still obtain the tuples returned by FE, by means of SA™"P
expressions, as follows:

Theorem 3.2. Let E be an SA expression of arity n. Then there exists a set P
of pairs of the form (F, f), where F is an SA™"P expression and f is a function
from {1,...,n} to {1,...,£} with ¢ the arity of F, such that for each database D:

E(D)= |J {f@]aecFD)}

(F.f)ep

Before we prove the theorem, we give an example and make a remark.
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Example 3.3. If E is the expression 72 1R, then a set P according to Theo-
rem 3.2 is the singleton {(R, f)}, where f is the function from {1,2,3} to {1,2}
with f(1) =2 and f(2) = f(3) = 1.

If E is the expression (ma,1,2R) Xa=1 (73,15), then a set P according to Theo-
rem 3.2 is the singleton {(R x1=3 S, f)}, where f(1) = f(3) =2 and f(2) = 1.

Remark 3.4. To see why in general P contains more than one element, consider
the schema {R, S}, where R and S are binary relations. Let E be R U mg1(S).
Consider database D:

Let P be the singleton {(F, f)}, where F is an SA™"P expression and f is a
function from {1,2} to the set X, which can be either {1} or {1,2}. If X is {1},
then f(1) = f(2) = 1. It is clear that in this case each tuple (x,y) in the set
{f(@) |ae€ F(D)} hasz =y. If X is {1,2}, then f can be the identical function
or the permutation switching 1 and 2, i.e., f(1) = 2 and f(2) = 1. An easy
inductive argument shows that each tuple (x,y) in the result of a binary SA~"?
expression F' on database D will have x < y. Therefore, either each tuple (x,y)
in the set {f(a) | a € F(D)} will have < y (if f is the identical function), or
each tuple (z,y) in that set will have z > y (if f permutes 1 and 2). In the set
E(D) ={(1,2),(4,3)}, however, none of these three properties hold.

Proof. The construction of the set P and the correctness proof are by structural
induction. We will write Pg to denote that the set P corresponds to expression E.

(1) If E = R, then Pg := {(R,1Id)}, where Id denotes the identity function.
(2) If E = opFy, then Pg := {(0g,F,f) | (F,f) € Pg,}, where 0 :=
Oxi/xf(;]. In proof:

acopE (D) << ae€ Ei(D) and a satisfies 6

& ae U {f(b)|be F(D)} and a satisfies 6
(F,f)EPR,

e ac |J {f)|beos,F(D)}.
(F,f)EPE,

(3) If E = 7Ti1,___7inE1, then

Pg = {(F.f,_ )| (F.f) € Pg}
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where f; ,is the function mapping j to f(i;) for all 1 < j < n. In
proof:

a € ﬂil,...,i,LEl(D)
& 3be€ By(D) such that (a1,...,a,) = (biy,...,b;,)
s 3be |J {f@leceF(D)
(Ff)GPEl
such that (a1,...,an) = (biy,...,b;,)
s ae |J {fl....@leceF(D)}
(F,f)EPr,

where f; . is defined as above.
01,eenyin

(4) If E = FyUEFEs,, then Pg := .PE1 UPE2.
(5) If E = Ey — E3, then

Pg = {(F1 — U F1 o0y, B2y f1) | (F1, f1) € Ppy }
(F2,f2)€PE,

where 0f,nf, := N\i_1 T4, (i) = Yfa(i)- In proof:

a € Ey — Ey(D)
e aec |J (wlvermy- |J {f@leceF(D)}
(F.f)€PE, (F.f)EPp,

&  3(F1, fi) € Pg,,3be Fi(D) : a= fi(b)
and V(Fy, f2) € Pg,, Ve € F»(D) : a # f2(¢)
< 3(F1, fi) € Pg,,3be Fi(D) : a= fi(b)
and V(Iy, f2) € Pp,, Ve € F1 Xq, ., F2(D) : a# fi(c)

& AR, H)EPp, e — |J Fixe,., F2(D) : a=fi(b)
(F2,f2)€PEg,
& ac U {fl |b€F1 U Fy Y04 sy FQ(D)}
(F1,f1)€PE, (F2,f2)€Pp,

(6) If £ = E1 X g EQ, then

Pg = {(F1 o, ;, F2, f1) | (F1, f1) € Pe,, (F2, f2) € P, }
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where 0, r, := 0[x; /T, i), Yj/Ys.(j)]- In proof:

a < E1 X g EQ(D)
& a€ Ei(D) and 3b € Ey(D) such that 6(a,b) holds
e ae |J {h@]|ce R(D)}
(Flafl)ePEl
and 3b € U {f2(d) | d € F5(D)} such that 6(a,b) holds
(F2,f2)€PE,
=2 H(Fl,fl)EPEl,HEGFl(D) : d:fl(é)
and 3(Fy, f2) € Pg,, 3d € Fo(D), 3b : b= fa(d)

such that 0(f1(¢), f2(d)) holds

& ac |J {h@ceFixg,, F(D)}

(F1,f1)€PE,
(F2,f2)€PE,

This concludes our proof. O

If one is only interested in “boolean” queries, i.e., yes/no properties of databases,
which is often the case in practice, e.g., integrity constraints or decision queries,
then we can strengthen our simulation result into a full equivalence result:

Corollary 3.5. Let E be an SA expression of arity n. Then there exists an SA™™P
expression E' such that for each database D:

E(D)#0 <« E'(D)#0.

Proof. From Theorem 3.2, it follows that E(D) # @ if and only if for some pair
(F, f) in the set Pg, we have: F(D) # (). Note that each F is an SA™"P expression.
Expression E’ is now defined as

U 7T()F,

(F.f)ePg

where () is the empty projection list. O

4. COMPLEXITY ISSUES

The algorithm in the proof of Theorem 3.2 has an exponential worst-case com-
plexity. In order to make this statement precise, define size (E), for an SA expres-
sion F, as the number of operators in E. Furthermore, for a set P of pairs as in
Theorem 3.2, define size (P) as the sum of the sizes of the SA~"P expressions F' in
P, i.e., size (P) =3 yepsize (F). We then have:
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Proposition 4.1. Let E be an SA expression and let Pg be the set constructed
by the algorithm in the proof of Theorem 3.2. Then, size (Pg) < 23317 (E),

Proof. We simultaneously show by structural induction that size (Pg) < 2317 (F)
and |Pg| < 2size (E) - Here, we only present the case where E = E; — E5. The
other cases are similar but easier. For F = E; — Fs, we have

|PE| _ |PE1| < 2size (E1) < 23ize(E1)+size (B2)+1 _ 23ize(E),

and

size (Pg) = size (Pg,) + |Pg, | + size (Pg,) - | Pg,|
+ size (Pg,) - |Pg,| + 2+ |Pg,| - | Pg,|
< o3size(Er) | gsize (E1) 4 g3-size (E1)+size (B2)
| g¥size (Ba)dsize (B1) |y osize (Eq)-+size (Ha)+1
< 92 . g3size (B1)+3:size (Ba) | gsize (B1)+size (Bz)+1
< g¥size (E1)+3size (E2) +3

_ 23~size (E) OJ
This upper bound is sharp. Indeed, let E be the expression
(((772,1R —81) = 8y) —-- ) — Sn,

where R and S; are binary relations for all 7. Then the set Pg constructed by the
algorithm in the proof of Theorem 3.2 is the singleton {(E,, f)}, where f(1) = 2
and f(2) = 1, and where E,, is inductively defined as follows:

Ey:=R-R x 5
2=1
1=2
Ei+1 =F,—F;, X Si-i-l (fOI' 1< < n)
2=1
1=2

Clearly, the size of F),, is exponential in the size of E.

For this particular expression E, however, there is a set Pj, of pairs satisfying
the conditions in Theorem 3.2 of size polynomial in the size of E. Indeed, note
that expression E is equivalent to the expression m 1 F', where F' is

R=R x (S1U---US,).

1
1=2

Therefore, a set Py, polynomial in the size of E would be the singleton {(F, f)}.
The question whether, in Theorem 3.2 in general, such a polynomial-size set P
always exists, remains open.
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5. CONCLUSION

We have shown that SA expressions that employ repetitions and permutations
in projection lists can be simulated using SA expressions that do not employ these
features. The same holds for the full relational algebra RA, but there this is triv-
ial to prove, while here the proof is not trivial. There are probably no practical
applications of the theorem, and indeed, neither are we aware of practical applica-
tions of the corresponding theorem for RA. Nevertheless, as already mentioned in
the Introduction, the distinction between the “named” and the “unnamed” per-
spective in the relational model has received sufficient attention in a renowned
textbook [1], and SA is a sufficiently important fragment of RA, so that it seems
warranted, if only for the didactical purpose of thorough theoretical understanding
of SA, to investigate the named—unnamed distinction for SA as well as for RA, as
we have done in the present paper.
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