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MACHINE REPAIR PROBLEM IN PRODUCTION
SYSTEMS WITH SPARES AND SERVER VACATIONS
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Abstract. This paper studies the machine repair problem consisting
of M operating machines with S spare machines, and R servers (re-
pairmen) who leave for a vacation of random length when there are
no failed machines queuing up for repair in the repair facility. At the
end of the vacation the servers return to the repair facility and operate
one of three vacation policies: single vacation, multiple vacation, and
hybrid single/multiple vacation. The Markov process and the matrix-
geometric approach are used to develop the steady-state probabilities of
the number of failed machines in the system as well as the performance
measures. A cost model is developed to obtain the optimal values of the
number of spares and the number of servers while maintaining a mini-
mum specified level of system availability. Some numerical experiments
are performed and some conclusions are drawn.

Keywords. Hybrid multiple/single vacation, machine repair problem,
matrix-geometric approach, multiple vacations, single vacation.
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1. Introduction

We consider a machine repair problem where a group of M operating machines
is under the supervision of one or more repairmen (servers) in the repair facility. If
at any time a machine fails, it is sent to the repair facility for repair. This incidence
may lead to loss of production because the failed machine must stay in the repair
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facility for some time. To avoid any loss of production, the plant always keeps some
spare machines, say S, so that a spare machine can immediately act as a substitute
when an operating machine fails. Meanwhile, the repairmen leave for a vacation
of random length whenever there are no failed machines queuing up for repair in
the repair facility. If the repairmen find at the repair facility any failed machines
in the queue when they return from a vacation, they immediately repair the failed
machines until there are no failed machines on the waiting list. A real-world
example of this vacation model can be realized in the manufacturing/production-
assembly system where the servers in their idle time may be assigned to perform
some extra operations such as additional work, preventive maintenance.

In a classical machine repair model, it is assumed that the servers remain idle
until the next machine fails. Numerous machine repair problems have been pro-
posed, for example, no-spare M/M/R model by Feller [1], cold-standby M/M/R
model by Toft and Boothroyd [2], and warm-standby M/M/R model by Sivazlian
and Wang [3]. The M/M/R machine repair problem with mixed-standby spare
was investigated by Wang [4]. Wang and Lee [5] generalized Sivazlian and Wang’s
model [3] to the M/M/R machine repair problem with cold-standby and multiple
modes of failure. Recently, Jain et al. [6] examined the reliability characteristics
of a M/M/1 machine repair model with M operating and S warm spares, where
the failed machines may renege when the server is busy. Cost (profit) models in
the machine repair problem have been investigated by several authors including
Ashcroft [7], Elsayed [8], Hilliard [9], Gross et al. [10,11], Sivazlian and Wang [3],
and Wang [4,5]. Recently, Wang et al. [12] examined the profit analysis of the
M/M/R/ machine repair problem with balking reneging, and standby switch fail-
ures. In [12], the direct search and Quasi-Newton methods were used to calculated
optimum values of two discrete variables and two continuous variables, respec-
tively. As for a vacation model, comprehensive and excellent surveys, including
some applications, were proposed by Doshi [13] and Takagi [14]. Gupta [15] first
analysed the M/M/1 machine repair problem with warm spares and server vaca-
tions. He gave an algorithm to compute the steady-state probability distribution
of the number of failed machines in the system, but no cost analysis was provided.
Recently, Jain et al. [16] studied bi-level switch-over policy of M/M/2 machine re-
pair model with spares, where one of two servers performs setup before providing
services, and performs vacations when no failed machines are queued for services.
Ke [17] studied the M/M/1 machine interference problem with an un-reliable server
and state-dependent service rate under single/multiple vacation policy. Compara-
ble work on machine repair models with multi-server involving multiple vacations
and single vacation is rarely found in the literature. This motivates us to develop
the M/M/R machine repair problem with spares where the servers are charac-
terized by three vacation policies: multiple vacations, single vacation, and hybrid
single/multiple vacation.

The purpose of this paper is threefold. The first is to develop steady-state
solutions for M/M/R machine repair problems with spares and server vacations.
These solutions are used to obtain the various system performance measures, such
as the expected number of failed machines, the expected number of idle and busy
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servers, machine availability, operative utilization, etc. The second is to develop a
cost model for these three policies to determine the joint optimum number of spares
and servers in order to minimize the steady-state expected cost per unit time,
while maintaining a specified level of system availability. The third is to perform a
sensitivity analysis to investigate the effect on the joint optimum number of spares
and servers if the system parameters take on some specific values. A numerical
comparison of the different vacation policies based on the minimum expected cost
also is provided.

2. Model description

We consider a machine repair model with L identical and independent machines
that are subject to breakdowns, and R servers who are responsible for maintain-
ing these machines. As many as M machines can be operated simultaneously in
parallel; the rest of the S = L − M machines are available as spares. Spares are
considered to be either cold-standby, warm-standby or hot-standby. A standby
unit is called “cold standby” if its failure rate is zero. The standby unit is referred
to as “warm standby” when the failure rate is not zero and is less than the failure
rate of an operating unit, and the standby is referred to as “hot standby” when
the failure rate is the same as an operating unit. If all spares are being used and
a breakdown occurs, we say that the system becomes short. In this case there are
less than M operating machines.

2.1. Assumptions

When each server finds at the repair facility no failed machines queuing up
for repair, he leaves the repair facility for a vacation of random length. Upon
returning from the first vacation in an idle period, each server inspects the repair
facility and decides whether to take another vacation, to remain idle at the repair
facility, or to resume repairing the waiting failed machines. One of the following
three vacation policies are considered;

Policy 1 – single vacation: If there is an empty queue in the repair facility, he waits
idly for the first failed machine to arrive, upon which he starts repairing
the failed machines. On the other hand, if there is not an empty queue,
he immediately starts to repair the waiting failed machines.

Policy 2 – multiple vacations: If there is not an empty queue in the repair facility,
the server starts to repair the waiting failed machines. Otherwise, if
there is an empty queue in the repair facility, the server leaves imme-
diately for another vacation.

Policy 3 – hybrid single/multiple vacations: If there is an empty queue in the
repair facility, he waits for a random duration and then takes another
vacation (see [18]).
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Furthermore, our analysis is based on the following assumptions.
1. Operating machines are subject to breakdowns according to an independent

Poisson distribution with rate λ. When an operating machine breaks down, it
will immediately be backed up by an available spare.

2. Each of the available spare machines fails independently of the state of all the
others with Poisson rate α, where 0 ≤ α ≤ λ. When a spare machine moves
into an operating state, its characteristics will be that of an operating machine.

3. Whenever a machine fails, it is immediately sent to the repair facility where
repair work is provided in the order of breakdowns, with an identical repair
rate μ. The repair time distribution is assumed to be exponentially distributed.

4. Each server can repair only one failed machine at a time. The failed machine
which on arriving at the repair facility finds it busy or on a vacation must wait
in the queue until a server is available.

5. When a failed operating machine or a failed spare machine is repaired, it is as
good as a new one and goes into standby state unless the system is short and
the repaired machine is immediately sent back to an operating state.

6. All vacations of servers are independent and identically distributed as an ex-
ponential distribution with rate θ (γ). Parameter θ (γ) represents the rate at
which the server returns from vacation and finds the number of failed machines
is more (less) than the number of the available servers in the facility.

7. Under the hybrid single/multiple vacation policy, the server waits for an ex-
ponential random duration with parameter ε if still no machine breaks down,
and then takes another vacation.

8. The various stochastic processes involved in the system are independent of each
other.

It should be noted that the machine repair model with vacations can have single
vacation (γ = θ, ε = 0), multiple vacations (γ = ε = 0) or hybrid single/multiple
vacations (γ = θ, ε �= 0). Parameters ε and γ are introduced in order to analyze
a generalized model to accommodate single vacation, multiple vacation or hybrid
single/multiple vacation models.

2.2. Practical justification of our model

A number of practical problems arise which may be formulated as one in which
the performance measures of a system are often improved by the provision of spare
machines or parallel redundant machines with facilities to repair the failed one.
One particular problem where this model is applied is in the study of a produc-
tion line system. Consider a manufacturing plant has a pool of L homogeneous
machines, up to M of which produce certain items in the production mode. The
good quality items are marketed and sold while the defective ones are kept in
the storage and are reworked by the rest S (S = L − M) machines in the repair
mode. These L machines are unreliable. When those machines are broken un-
predictably, they will be repaired by R mechanics in the repair division. To keep
the production capacity, the remaining S machines may convert from repair mode
to production mode in case the M machines in production line are out of order.
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After the broken machines are repaired, those machines are converted to repair
mode to rework the defective items. When a broken machine is repaired, it is
switched to repair mode unless the system is shut down and the repaired machine
is immediately sent back to production mode. When there is no machine needed
to be repaired, the R repairmen may conduct other secondary tasks, for example,
attending a training course, or inspecting machines or products. The secondary
tasks would correspond to the vacation of mechanics.

Another practical problem based on the work of Chelst et al. [19], we assume
an unloader system where trains arrive which bring coal from various mines. In
this system, there are (M +S) identical trains involved in the coal transportation,
where M trains must be arranged to bring coal from various mines, S trains are
in prearrangement (spare trains), and there are R coal unloaders. An unloaded
train goes to the coal fields and return with a trainload of coal. A train that is
arranged to bring coal from the mines to the unloader system to dump the coal
is backed up by a spare train, if any is available. One coal unloader can handle
only one train at a time. When no unloaded train is unloaded, the coal unloader
may be utilized for other purposes, for example, the task of maintenance or clean.
These coal unloaders correspond to servers and the unloaded times are as service
times.

2.3. Special cases

Case 1. The M/M/R machine repair problem with warm spares considered by
Sivazlian and Wang [3] is a special case of our model with ε = 0, γ = 0
and θ = 0.

Case 2. If R = 1, our model becomes the M/M/1 machine repair problem with
spares and server vacations considered by Gupta [15].

Case 3. The corresponding result for the ordinary M/M/R/L queueing system
(see Gross and Harris [20]) can be found by setting ε = 0, γ = 0, θ = 0,
α = 0 and S = L − 1.

Case 4. The new result for the ordinary M/M/R/L queueing system with server
single vacation (multiple vacation) can only be obtained by setting ε = 0,
γ = θ (γ = 0), α = 0 and S = L − 1.

Case 5. The new result for the ordinary M/M/R/L queueing system with server
hybrid single/multiple vacation can only be obtained by setting γ = θ,
α = 0 and S = L − 1.

Case 6. The new result for the ordinary M/M/R/∞ queueing system with server
single vacation (multiple vacation) can only be obtained by setting ε = 0,
γ = θ (γ = 0), α = 0, S = L − 1 and L → ∞.

Case 7. The new result for the ordinary M/M/R/∞ queueing system with server
hybrid single/multiple vacation can only be obtained by setting γ = θ,
α = 0, S = L − 1 and L → ∞.
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3. Steady-state results

For the M/M/R machine repair model with spares and server vacations we
describe the state of the system by the pairs {(i, n) : i = 0, 1, . . . , R, and 0 ≤ n ≤
M + S = L}, where i and n are denoting the number of available (idle or busy)
servers and the number of failed machines in the system, respectively.

The mean failure rate λn and mean repair rate μn for this system are given by

λn =

⎧⎪⎨
⎪⎩

Mλ + (S − n)α, n = 0, 1, 2, . . . , S;
(L − n)λ, n = S+1, S+2, S+3, . . . , M+S = L;

0, otherwise,

and

μn =

{
iμ, n = i, i+1, i+2, . . . , M+S = L;
0, otherwise.

In steady-state, the following notations are used.

P0,n ≡ probability that there are n failed machines in the system when all the
servers take vacations;

Pi,n ≡ probability that there are n failed machines in the system when there are
i servers working;

where i = 1, 2, . . . , R, and 0 ≤ n ≤ L.
Referring to the state-transition-rate diagram for the M/M/R machine repair

problem with spares and server multiple vacations shown in Figure 1, we easily
obtain the governing system steady-state equations. Following the concepts by
Neuts [21] while studying the embedded Markov chains of many practical queues,
a matrix-geometric approach is used to analyze the the M/M/R machine repair
system and the closed-form expressions for the steady-state probabilities Pi,n (0 ≤
i ≤ R and 0 ≤ n ≤ L) are further developed. One finds that the transition rate
matrix Q of this Markov chain has the block-tridiagonal form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 B0

C1 A1 B1

C2 A2 B2

C3 A3 B3

. . . . . . . . .

CR−2 AR−2 BR−2

CR−1 AR−1 BR−1

CR AR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Figure 1. State-transition rate diagram for the M/M/R
machine-repair problem with spares and vacations (for R = 3
and L = 5).

Note that the rate matrix Q of this state process is similar to the quasi birth and
death type, and this class of Markov process has been extensively investigated by
Neuts [21]. The matrix Q is a square matrix of order (L + 1)(R + 1) and each
entry of the matrix Q is listed in the following:

Ci =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0,i 0 0 · · · 0 0 0
w1,i u1,i 0 · · · 0 0 0
0 w2,i u2,i · · · 0 0 0
0 0 w3,i · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · uL−2,i 0 0
0 0 0 · · · wL−1,i uL−1,i 0
0 0 0 · · · 0 wL,i uL,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 1 ≤ i ≤ R (1)

Bi = diag(b0,i, b1,i, ·, bL,i), (2)
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Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0,i y0,i 0 0 0 · · · 0 0 0 0
x1,i z1,i y1,i 0 0 · · · 0 0 0 0
0 x2,i z2,i y2,i 0 · · · 0 0 0 0
0 0 x3,i z3,i y3,i · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0
... zL−3,i yL−3,i 0 0

0 0 0 0 0 · · · xL−2,i zL−2,i yL−2,i 0
0 0 0 0 0 · · · 0 xL−1,i zL−1,i yL−1,i

0 0 0 0 0 · · · 0 0 xL,i zL,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

0 ≤ i ≤ R (3)
where all Ai, Bi and Ci are square matrices of order L + 1, and

uj,i =

{
(j − i)ε, 0 ≤ j ≤ i − 1;
0, i ≤ j ≤ L.

wj,i =

{
−jμ, 1 ≤ j ≤ i;
0, i + 1 ≤ j ≤ L.

bj,i =

{
−(R − j)γ, 0 ≤ j ≤ i − 1;
−(R − j)θ, i ≤ j ≤ L.

xj,i =

{
0, 1 ≤ j ≤ i;
−iμ, i + 1 ≤ j ≤ L.

yj,i =

{
−λj , 0 ≤ j ≤ L − 1;
0, j = L.

zj,i =

⎧⎪⎨
⎪⎩

λj + (R − i)γ + jμ + (i − j)ε, if 0 ≤ j ≤ i;
λj + (R − i)θ + iμ, if i + 1 ≤ j ≤ L − 1;
(R − i)θ + iμ, if j = L.

Let P denote steady-state probability vector of Q. By partitioning the vector P as
P = {P0, P1, P2, . . . , PR} where Pi = {Pi,0, Pi,1, Pi,2, . . . , Pi,L}, for 0 ≤ i ≤ R is a
1× (L + 1) vector, one finds that the steady-state equations PQ = 0 are given by

P0A0 + P1C1 = 0,

Pi−1Bi−1 + PiAi + Pi+1Ci+1 = 0, 1 ≤ i ≤ R − 1
and

PR−1BR−1 + PRAR = 0.

After substitutions, we obtain

PR = −PR−1BR−1A
−1
R , (4)
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Pi = Pi−1Xi, 1 ≤ i ≤ R − 1 (5)

P0(A0 + X1C1) = 0, (6)
where

Xi = −Bi−1(Ai + Xi+1Ci+1)−1,

is a (L+1)×(L+1) matrix with Ci, Bi and Ai given in (1), (2) and (3). Furthermore
XR = −BR−1A

−1
R .

Equation (6) determines P0 up to a multiplicative constant. The other equa-
tions (4) and (5) determine PR, PR−1, PR−2, . . . , P1, up to the same constant,
which is uniquely determined using the following normalizing equation

R∑
i=0

Pie = 1, (7)

where e represents a column vector with each component equal to one. A computer
program was developed to solve Pi and Pi,n for 0 ≤ i ≤ R, and 0 ≤ n ≤ L.

System performances
Our analysis is based on the following system performance measures of the

M/M/R machine repair problem with spares and server vacations. Let

E[F ] ≡ the expected number of failed machines in the system,
E[Fq] ≡ the expected number of failed machines in the queue,
E[O] ≡ the expected number of operating machines in the system,
E[S] ≡ the expected number of spare machines in the system acting as standbys,
E[B] ≡ the expected number of busy servers in the system,
E[V ] ≡ the expected number of vacation servers in the system,
E[I] ≡ the expected number of idle servers in the system,

M.A. ≡ machine availability (the fraction of the total time that the machines are
working),

O.U. ≡ operative utilization (the fraction of busy servers).

The expressions for E[F ], E[Fq ], E[O], E[S], E[B], E[V ] and E[I] are obtained
as follows:

E[F ] =
R∑

i=0

L∑
n=0

nPi,n, (8)

E[Fq ] =
L∑

n=0

nP0,n +
R∑

i=1

i−1∑
n=0

nPi,n +
R∑

i=1

L∑
n=i

(n − i)Pi,n, (9)

E[O ] = M −
R∑

i=0

L∑
n=S+1

(n − S)Pi,n, (10)

E[S ] =
R∑

i=0

S∑
n=0

(S − n)Pi,n, (11)
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E[B ] =
R∑

i=1

L∑
n=i

iPi,n, (12)

E[V ] =
R∑

i=0

L∑
n=0

(R − i)Pi,n, (13)

E[I] = R − E[B] − E[V ]. (14)
Following Benson and Cox [22], the machine availability and the operative utiliza-
tion are defined by

M.A. = 1 − E[F ]
L

, (15)

O.U. =
E[B ]

R
· (16)

Let E[W ] and E[Wq] denote the expected waiting time in the system and the
expected waiting in the queue, respectively. Using the Little’s formula we obtain

E[W ] = E[F ]/λe, E[Wq ] = E[Fq ]/λe,

where the effective arrival rate into the system λe =
∑R

i=0

∑L
n=i λnPi,n.

Suppose we let γ = θ and ε = 0, the above results can be reduced to those of
machine-repair problem M/M/R models with spares and single vacation. If we
take γ = 0 and ε = 0, the above results can be simplified into those of machine-
repair problem M/M/R models with spares and multiple vacations. If γ = θ
and ε �= 0, the above results can be reduced to those of machine-repair problem
M/M/R model with spares and hybrid single/multiple vacation.

4. Cost analysis for the vacation models

We construct a total expected cost function per unit time for the M/M/R
machine repair problem with spares and server vacations under three vacation
policies, and impose a constraint on the system availability in which S and R are
decision variables. Our objective is to determine the optimum number of spares
S, say S∗, and the optimum number of servers R, say R∗, simultaneously so that
the cost is minimized and the system availability is maintained at a certain level.
First let
Ch ≡ cost per unit time when one failed machine joins the system,
Ce ≡ cost per unit time of a failed machine after all spares are exhausted (down-

time cost),
Cs ≡ cost per unit time when one machine is functioning as a spare (inventory

cost),
Cb ≡ cost per unit time when one server is busy,
Ci ≡ cost per unit time when one server is idle,
Cf ≡ cost per unit time of each server,
r ≡ reward per unit time when one server is on vacation.
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We assume the total expected cost function to be linear with respect to the indi-
cated quantities. Accordingly,

Tcost(S, R) = ChE[F ]+Ce(M−E[O])+CsE[S ]+CbE[B ]+CiE[I]+RCf −rE[V ].
(17)

The production system always requires minimum of M machines in operation.
The cost minimization problem can be illustrated mathematically as:

Minimize Tcost(S, R).
S, R

(18)

Subject to:

A.V. =
R∑

i=0

S∑
n=0

Pi,n ≥ A, (19)

where A.V. is the steady-state probability that at least M machines are in oper-
ation and function properly (system availability), and A is the minimum fraction
of time all M machines are in operation and function properly.

The decision variables S and R are required to be integer values and to be
determined by (18) and (19). However, it is extremely difficult to develop analyt-
ical results for the optimum values S∗ and R∗ because the expected cost function
Tcost(S, R) is highly non-linear and complex. We will perform some numerical
experiments to show that the minimum expected cost function indeed exists and
therefore the optimum solution (S∗,R∗) is obtained, which minimizes the cost
function under the availability constraint (19).

5. Sensitivity analysis

We perform a sensitivity analysis for changes in the joint optimum values S∗

and R∗ along with changes in specific values of the system parameters λ, α, μ and
θ. A numerical illustration is provided by considering M = 10 and the following
cost parameters:

A = 0.8, Ch = $10/day, Ce = $100/day, Cs = $50/day,

Cb = $55/day, Ci = $40/day, Cf = $75/day, r = $60/day.

The upper bounds used on the decision variables S and R are 2M . For the machine
repair problem M/M/R model with Policy 3 the expected cost Tcost(S, R) is shown
in Figure 2 for different values of (S, R). We note that a minimum expected cost
per day of $518.539 is achieved at S∗ = 3 and R∗ = 5. It should be to note that
the optimum solution (S∗, R∗) is unique while the constraint (19) is satisfied (i.e.
A.V. ≥ 0.8).

The minimum expected cost Tcost(S, R) and the values of various system per-
formance measures A.V., E[F ], E[Fq], E[O ], E[S ], E[V ], E[I ], M.A., and O.U. at
the optimum values S∗ and R∗ are shown in Tables 1–6 for different policies and
different values of (λ, α) and (θ, μ).
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Figure 2. The expected cost Tcost (S, R) for the machine-repair
problem with spares and vacations (ε = 1.0, γ = θ = 5.0, λ =
1.2, α = 0.01, μ = 5).

From Tables 1–6, one sees that (i) Tcost(S∗, R∗) increases as λ or α increases;
(ii) the optimum values of S and R, S∗ and R∗ increase as λ increases. From the
last three columns of Tables 1, 3 and 5, S∗ and R∗ are not affected at all when
α varies from 0.05 to 0.1 for all policies. But S∗ increases as α increases and
R∗ decreases as α increases for Policies 2–3. One also observes (i) Tcost(S∗, R∗)
increases as μ decreases; (ii) S∗ and R∗ decrease as θ or μ increases.

As shown in Tables 1–6, it appears that for three policies (i) parameter α rarely
affects S∗ when α gets smaller; and (ii) parameters λ, θ and μ affect the optimal
values S∗ and R∗ significantly.

The expected cost Tcost(S, R) of the various values S and R is shown in Fig-
ures 3–6 for three different policies and various values of (λ, α, θ, μ). We find
from Figures 3–6 that Policy 2 is better than Policy 3, which in turn is better
than Policy 1. As the availability reaches 0.8 under other parameters being given,
it can be seen that (i) the expected cost increases as S increases; and (ii) the
expected cost increases as R increases for smaller θ.

6. Conclusions

This paper we developed the analytical steady-state results for the M/M/R
machine repair problem with spares and server vacations. The results are easily
computed using a computer program. We show that the results are more general
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Table 1. System performance measures of the machine-repair
problem with spares and single vacation under optimal operating
conditions (ε = 0, γ = θ = 1.0, μ = 5).

(Policy 1)
(λ, α) (1.2, 0.05) (1.0, 0.05) (0.8, 0.05) (0.6, 0.05) (0.6, 0.1) (0.6, 0.6)

(S∗, R∗) (5, 8) (5, 6) (4, 6) (4, 4) (4, 4) (4, 4)
Tcost(S∗, R∗) 583.1176 505.9676 453.2292 374.7753 374.7921 377.8721

A.V. 0.8183 0.8239 0.8487 0.8502 0.8459 0.8097
E[F ] 3.5050 3.3792 2.5167 2.4205 2.4676 2.8473
E[Fq] 1.5152 1.6230 1.2104 1.3441 1.3703 1.5805
E[O] 9.6271 9.6240 9.7069 9.6754 9.6662 9.5901
E[S] 1.8678 1.9967 1.7764 1.9041 1.8662 1.5625
E[B] 1.9898 1.7562 1.3063 1.0764 1.0972 1.2668
E[V ] 5.3246 3.8160 3.9966 2.5324 2.5303 2.4872
E[I] 0.6856 0.4277 0.6970 0.3912 0.3725 0.2460
M.A. 0.7663 0.7747 0.8202 0.8271 0.8237 0.7966
O.U. 0.2487 0.2927 0.2177 0.2691 0.2743 0.3167

Table 2. System performance measures of the machine-repair
problem with spares and single vacation under optimal operating
conditions (ε = 0, γ = θ, λ = 1.0, α = 0.02).

(Policy 1)
(θ, μ) (0.5, 4.0) (1.0, 4.0) (10, 4.0) (5.0, 2.0) (5.0, 4.0) (5.0, 10)

(S∗, R∗) (6, 9) (5, 7) (4, 5) (7, 9) (4, 6) (2, 3)
Tcost(S∗, R∗) 621.2288 575.9027 695.8968 1098.0438 670.6022 327.2217

A.V. 0.8034 0.8051 0.8159 0.8448 0.8679 0.8147
E[F ] 4.2778 3.6051 3.1829 5.2329 2.6414 1.4687
E[Fq] 2.0628 1.5210 1.8713 3.4306 1.6208 0.7096
E[O] 9.5466 9.5964 9.3010 9.5924 9.7516 9.6134
E[S] 2.1756 1.7985 1.5161 2.1746 1.6070 0.9179
E[B] 2.2150 2.0841 1.3116 1.8023 1.0206 0.7592
E[V ] 6.4389 4.2670 0.7631 1.6581 1.6631 1.2841
E[I] 0.3461 0.6489 2.9253 5.5396 3.3163 0.9567
M.A. 0.7326 0.7597 0.7727 0.6922 0.8113 0.8776
O.U. 0.2461 0.2977 0.2623 0.2003 0.1701 0.2531

than existing results in the literature (see Sivazlian and Wang [3], Gupta [15], and
Gross and Harris [20]). For the vacation model, a total expected cost function sub-
jected to a minimum specified level of system availability is developed to determine
the optimal number of spares and the number of servers simultaneously, so as to
minimize the total expected cost function. From the numerical investigations, we
show that Policy 2 is superior to Policy 1 or Policy 3. It is to be noted that the
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Table 3. System performance measures of the machine-repair
problem with spares and multiple vacations under optimal oper-
ating conditions (ε = 0, γ = 0, θ = 1.0, μ = 5).

(Policy 2)
(λ, α) (1.2, 0.05) (1.0, 0.05) (0.8, 0.05) (0.6, 0.05) (0.6, 0.1) (0.6, 0.6)

(S∗, R∗) (6, 7) (5, 7) (4, 7) (3, 7) (3, 7) (4, 5)
Tcost(S∗, R∗) 563.1205 494.3306 424.5886 353.5250 354.6533 367.1929

A.V. 0.8085 0.8130 0.8165 0.8198 0.8175 0.8232
E[F ] 4.3090 3.5505 2.8123 2.0908 2.1104 2.8196
E[Fq] 1.9882 1.6095 1.2532 0.9162 0.9244 1.4769
E[O] 9.5761 9.6124 9.6481 9.6861 9.6821 9.6629
E[S] 2.1149 1.8371 1.5396 1.2231 1.2074 1.5175
E[B] 2.3208 1.9410 1.5591 1.1746 1.1860 1.3428
E[V ] 4.6792 5.0590 5.4409 5.8254 5.8140 3.6572
E[I] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M.A. 0.7307 0.7633 0.7991 0.8392 0.8377 0.7986
O.U. 0.3315 0.2773 0.2227 0.1678 0.1694 0.2686

Table 4. System performance measures of the machine-repair
problem with spares and multiple vacations under optimal oper-
ating conditions (ε = 0, γ = 0, λ = 1.0, α = 0.02).

(Policy 2)
(θ, μ) (0.5, 4.0) (1.0, 4.0) (10, 4.0) (5.0, 2.0) (5.0, 4.0) (5.0, 10)

(S∗, R∗) (8, 7) (6, 7) (4, 6) (7, 9) (4, 6) (2, 5)
Tcost(S∗, R∗) 631.2566 571.2465 506.6808 904.5074 506.0319 271.0742

A.V. 0.8165 0.8298 0.8455 0.8066 0.8087 0.8171
E[F ] 5.5030 4.1655 2.8126 5.5502 3.0107 1.4307
E[Fq] 3.1041 1.7419 0.3383 0.6132 0.5623 0.4563
E[O] 9.5300 9.6390 9.7024 9.5083 9.6340 9.7250
E[S] 2.9671 2.1956 1.4850 1.9415 1.3552 0.8443
E[B] 2.3989 2.4236 2.4743 4.9370 2.4484 0.9743
E[V ] 4.6011 4.5764 3.5257 4.0630 3.5516 4.0257
E[I] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M.A. 0.6943 0.7397 0.7991 0.6735 0.7849 0.8808
O.U. 0.3427 0.3462 0.4124 0.5486 0.4081 0.1949

conclusion is only valid for the parameter settings considered in this paper. We
may reach other conclusion for other parameter settings examined. Incorporat-
ing the optimal scheduling of repairmen vacation into a complex machine-repair
problem is worthy of further investigation.
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Table 5. System performance measures of the machine-repair
problem with spares and hybrid/single vacation under optimal
operating conditions (ε = 1.0, γ = θ = 1.0, μ = 5).

(Policy 3)
(λ, α) (1.2, 0.05) (1.0, 0.05) (0.8, 0.05) (0.6, 0.05) (0.6, 0.1) (0.6, 0.6)

(S∗, R∗) (5, 8) (5, 6) (4, 6) (3, 5) (3, 5) (4, 4)
Tcost(S∗, R∗) 576.8157 501.5608 443.1683 364.2409 364.3949 374.9067

A.V. 0.8113 0.8176 0.8386 0.8195 0.8161 0.8037
E[F ] 3.5600 3.4334 2.5916 2.0234 2.0496 2.8916
E[Fq] 1.5289 1.6534 1.2399 1.0267 1.0394 1.6156
E[O] 9.6106 9.6088 9.6847 9.6610 9.6548 9.5761
E[S] 1.8293 1.9578 1.7237 1.3156 1.2956 1.5323
E[B] 2.0311 1.7800 1.3517 0.9967 1.0102 1.2759
E[V ] 5.3965 3.8649 4.1074 3.4562 3.4556 2.5215
E[I] 0.5723 0.3552 0.5409 0.5471 0.5342 0.2026
M.A. 0.7627 0.7711 0.8149 0.8444 0.8423 0.7935
O.U. 0.2539 0.2967 0.2253 0.1993 0.2020 0.3190

Table 6. System performance measures of the machine-repair
problem with spares and hybrid/single vacation under optimal
operating conditions (ε = 1.0, γ = θ, λ = 1.0, α = 0.02).

(Policy 3)
(θ, μ) (0.5, 4.0) (1.0, 4.0) (10, 4.0) (5.0, 2.0) (5.0, 4.0) (5.0, 10)

(S∗, R∗) (7, 8) (6, 6) (4, 5) (7, 9) (4, 6) (2, 3)
Tcost(S∗, R∗) 628.2023 581.4739 682.9640 1064.0267 644.8549 319.8404

A.V. 0.8247 0.8197 0.8141 0.8425 0.8639 0.8071
E[F ] 4.7378 4.1699 3.1918 5.2466 2.6621 1.5011
E[Fq] 2.4416 1.8979 1.8206 3.2505 1.5248 0.7157
E[O] 9.5786 9.5695 9.2975 9.5887 9.7438 9.5974
E[S] 2.6835 2.2606 1.5107 2.1647 1.5941 0.9015
E[B] 2.2963 2.2721 1.3712 1.9961 1.1373 0.7854
E[V ] 5.4994 3.4038 0.9031 2.0275 1.9415 1.3729
E[I] 0.2044 0.3241 2.7257 4.9764 2.9212 0.8417
M.A. 0.7213 0.7394 0.7720 0.6914 0.8099 0.8749
O.U. 0.2870 0.3787 0.2742 0.2218 0.1895 0.2618
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Figure 3. The expected cost Tcost(S, R) for three different poli-
cies based on various values of S and R (θ = 1.0, λ = 0.8, α =
0.02, μ = 2.5).
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Figure 4. The expected cost Tcost(S, R) for three different poli-
cies based on various values of S and R (θ = 10.0, λ = 0.8, α =
0.02, μ = 2.5).
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Figure 6. The expected cost Tcost(S, R) for three different poli-
cies based on various values of S and R (θ = 1.0, λ = 0.8, α =
0.02, μ = 5.0).
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