
RAIRO-Oper. Res. 43 (2009) 55–85 RAIRO Operations Research

DOI: 10.1051/ro/2009005 www.rairo-ro.org

REFORMULATIONS IN MATHEMATICAL
PROGRAMMING: DEFINITIONS AND SYSTEMATICS

Leo Liberti
1

Abstract. A reformulation of a mathematical program is a formu-
lation which shares some properties with, but is in some sense better
than, the original program. Reformulations are important with respect
to the choice and efficiency of the solution algorithms; furthermore, it is
desirable that reformulations can be carried out automatically. Refor-
mulation techniques are widespread in mathematical programming but
interestingly they have never been studied under a unified framework.
This paper attempts to move some steps in this direction. We define
a framework for storing and manipulating mathematical programming
formulations and give several fundamental definitions categorizing use-
ful reformulations in essentially four types (opt-reformulations, narrow-
ings, relaxations and approximations). We establish some theoretical
results and give reformulation examples for each type.

Keywords. Reformulation, formulation, model, linearization, math-
ematical program.

Mathematics Subject Classification. 90C11, 90C26, 90C27,
90C30, 90C99.

1. Introduction

Mathematical programming is a descriptive language used to formalize opti-
mization problems by means of parameters, decision variables, objective func-
tions and constraints. Such diverse settings as combinatorial, integer, continu-
ous, linear and nonlinear optimization problems can be defined precisely by their

Received March 5, 2008. Accepted July 17, 2008.

1 LIX École Polytechnique, 91128 Palaiseau, France; liberti@lix.polytechnique.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2009

http://dx.doi.org/10.1051/ro/2009005
http://www.rairo-ro.org
http://www.edpsciences.org

56 LEO LIBERTI

corresponding mathematical programming formulations. Its power is not lim-
ited to its expressiveness; it also often allows hassle-free solution of the problem.
Most general-purpose solution algorithms solve optimization problems cast in their
mathematical programming formulation, and the corresponding implementations
are typically hooked into modelling environments which allow the user to input
and solve complex optimization problems easily. It is well known that several
different formulations may share the same numerical properties (feasible region,
optima) though some of them are easier to solve than others with respect to the
most efficient available algorithms. Being able to cast the problem in the best
possible formulation is therefore a crucial aspect of any solution process.

When a problem with a given formulation P is cast into a different formulation
Q, we say that Q is a reformulation of P . Curiously, the term “reformulations”
appears in conjunction with “mathematical programming” over 400 000 times on
Google; and yet there are surprisingly few attempts to formally define what a re-
formulation in mathematical programming actually is [9,74]. Further motivations
in support of a unified study of reformulations in mathematical programming are
that there is a remarkable lack of literature reviews on the topic of reformula-
tions [47] and that modelling languages such as AMPL [26] or GAMS [18] offer
very limited automatic reformulation capabilities.

The importance that reformulations have in mathematical programming (spe-
cially automatic reformulations) cannot be understated. Solution algorithms usu-
ally target problems belonging to different classes, such as Linear Programming
(LP), Mixed-Integer Linear Programming (MILP), convex Nonlinear Program-
ming (cNLP), Nonlinear Programming (NLP), convex Mixed-Integer Nonlinear
Programming (cMINLP), Mixed-Integer Nonlinear Programming (MINLP). Typ-
ically, solution algorithms require their input problems to be cast in a particular
form, called the standard form with respect to the algorithm. For example, the
simplex algorithm [19] requires problems cast in LP standard form (that is, subject
to linear equality and nonnegativity constraints only). Being able to cast a prob-
lem to a standard form for which there is an efficient algorithm is a pre-processing
step and a fundamental part of the solution process.

Furthermore, there often exist different formulations of a given problem that
can all be cast to the same standard form, whilst the corresponding solution al-
gorithm yields remarkably different solution performances depending on which
formulation is used. One example of this is provided by the reduced RLT con-
straints reformulation [49,55], which reformulates a possibly nonconvex quadratic
nonlinear programming (NLP) problem with linear equality constraints to a dif-
ferent quadratic NLP with more linear equality constraints and fewer quadratic
terms than in the original problem. Since the reformulated problem has fewer
quadratic terms, its convex relaxation is tighter: hence, any spatial Branch-and-
Bound (sBB) algorithm for nonconvex quadratic programming based on finding
bounds at each node through the convex relaxation of the problem [50,78] will
improve its performance when acting on the reformulation. Yet, both the problem
and the reformulation belong to the same class of problems and have the same
standard form.

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 57

Reformulation is also useful within commercial-grade optimization software
from the end user’s point of view: if the software is capable of automatically
reformulating a given problem to a more convenient form, the modeller need not
be aware of all the solution algorithm details (and relative standard forms) em-
bedded in the software. Limited to linear and convex quadratic problems, this
is evident both in CPLEX [42] and XPress-MP [32] at the solver level; more in
general, it occurs in AMPL [26], GAMS [18] and other mathematical programming
language environments at the modelling level.

Finally, some algorithms do not only employ reformulations as a pre-processing
phase needed to simplify the problem or cast it in a particular standard form, but
actually use reformulation in an iterative way. In the MILP world, the extremely
successful Branch-and-Cut algorithm can be seen as an iterative reformulation
algorithm insofar as cutting planes and tightened formulations are considered as
reformulations [99]. An effective and novel NLP solution algorithm based on blend-
ing two completely different formulations for the same problem is described in [67].

The mathematical programming glossary [87] defines “reformulation” as “ob-
taining a new formulation of a problem that is in some sense better, but equivalent
to a given formulation.” The main purpose of this paper is to give a precise mean-
ing to this definition. We propose a data structure for storing and manipulating
mathematical programming formulations, give several definitions linked to the
concept of reformulation (with some associated theoretical results), and describe
some of the commonly known reformulations and relaxations within the proposed
framework by means of symbolic algorithms. The theory is validated by some
examples.

The original contribution of this paper is a unified “theory of reformulations”
that attempts to provide tools for the systematic study of reformulations and their
algorithmic implementation. This paper also serves as the basis for a forthcoming
reformulation software that will be able to automatically apply reformulations to
given mathematical programming problems. Aside from the few reformulation
examples given in this paper, an extended reformulation library described within
the proposed framework can be found in [51] (http://www.lix.polytechnique.
fr/~liberti/hdr.pdf).

The rest of this paper is organized as follows. In Section 2 we briefly review the
formal definitions of reformulations found in the literature. Section 3 describes
the theoretical framework for handling formulations and reformulations. Section 4
contains examples of reformulations within the given framework.

2. Existing work

2.1. Definitions

The consensus on the term “reformulation” in the field of mathematical pro-
gramming seems to be that given a formulation of an optimization problem, a
reformulation is a different formulation having the same set of optima. Various
authors make use of this (informal) definition without actually making it explicit,

http://www.lix.polytechnique.fr/~liberti/hdr.pdf
http://www.lix.polytechnique.fr/~liberti/hdr.pdf

58 LEO LIBERTI

among which [16,31,43,55,70,75,86,95]. Many of the proposed reformulations, how-
ever, stretch this implicit definition somewhat. Liftings, for example (which con-
sist in adding variables to the problem formulation), usually yield reformulations
where an optimum in the original problem is mapped to a set of optima in the
reformulated problem. Furthermore, it is sometimes noted how a reformulation
in this sense is overkill because the reformulation only needs to hold at global
optimality [3]. Furthermore, reformulations sometimes really refer to a change of
variables, as is the case in [67].

Sherali [74] proposes the following definition.

Definition 2.1. A reformulation in the sense of Sherali of an optimization prob-
lem P (with objective function fP) is a problem Q (with objective function fQ)
such that there is a pair (σ, τ) where σ is a bijection between the feasible region
of Q and that of P , and τ is a monotonic univariate function with fQ = τ(fP).

This definition imposes very strict conditions by requiring the existence of the
bijection σ, resulting in many useful problem transformations, which should oth-
erwise be described as reformulations, not to satisfy the definition. Under some
regularity conditions on σ, however, this definition does present some added ben-
efits, such as e.g. allowing easy correspondences between partitioned subspaces of
the feasible regions and mapping sensitivity analysis results from reformulated to
original problems.

Hansen and co-workers [9] borrow some tools from complexity theory to propose
the following definition.

Definition 2.2. Let PA and PB be two optimization problems. A reformulation
in the sense of Hansen B(·) of PA as PB is a mapping from PA to PB such that,
given any instance A of PA and an optimal solution of B(A), an optimal solution
of A can be obtained within a polynomial amount of time.

In [9], this definition is used to establish a complexity comparison between
different problem classes (specifically, BiLevel Programming (BLP) and Mixed-
Integer Programming (MIP)) based on solution via a Branch-and-Bound (BB)
algorithm. It turns out that a BB algorithm applied to MIP can be mapped
precisely into one applied to BLP, thus allowing the authors to conclude that BLP
is practically at least as difficult as MIP, and not just from a worst-case complexity
viewpoint. On the other hand, requiring a polynomial time reformulation can be
just too slow practically, or might prevent non-polynomial time reformulations
to belong to this class even when they might be carried out within practically
reasonable amounts of time. Furthermore, a reformulation in the sense of Hansen
does not necessarily preserve local optimality or the number of global optima,
which might in some cases be a desirable reformulation feature.

2.2. Reformulations

The term “reformulation” in MILPs mostly refers to preprocessing simpli-
fications (of the type implemented in most good level MILP solvers, such as

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 59

e.g. CPLEX [42]) and cutting planes [95], although a considerable number of stan-
dard forms can be transformed to MILPs [9,28,43,72]. Binary Quadratic Programs
(BQP) have attracted a considerable amount of attention, mostly because of the
fact that there is an easy exact linearization [24] that presents some practical draw-
backs. Extensive work was carried out by research teams led by Billionnet [14],
Glover [3], Hammer [36], Hansen [37] (see Sect. 4.1), Michelon [34], Sherali [1] (see
Sect. 4.4). We refer the reader to three recent papers [15,33,38] and the refer-
ences contained therein for a more complete picture of reformulations for BQPs.
Reformulations of polynomial [35,59,82,96] and posynomial [73,98] programs also
attracted considerable attention. Most works in geometric programming rest on a
convex reformulation [41]; a symbolic method to model problems so that the cor-
responding mathematical program is convex is described in [31]. Reformulations
are used within algorithms [67], specially in decomposition-based ones [11]. An
interesting reformulation of a robust LP to a simple LP, involving the LP dual,
is given in [13]. Reformulations are very common within applications, to treat
problems with certain determined structures [8,10,12,20,57,58].

3. Reformulation theory

In this section we give a formal definition of a mathematical programming
formulation in such terms that can be easily implemented on a computer. We
refer to a mathematical programming problem in the most general form:

min f(x)
g(x) � b
x ∈ X,

⎫⎬
⎭ (1)

where f, g are function sequences of various sizes, b is an appropriately-sized real
vector, and X is a cartesian product of continuous and discrete intervals.

Formulation (1) above is actually a formulation schema, i.e. it represents dif-
ferent formulations according to the form of f, g, x,X . We remark that (1) may
represent a structured formulation (i.e. one where f, g involve quantifiers ∀,

∑
,
∏

)
or a flat formulation (i.e. one where no such quantifier appears). Formulations
are usually given by researchers and practitioners in structured form, and later
automatically translated by modelling software such as AMPL [26] or GAMS [18]
in flat form. This translation is necessary as almost all solution algorithm imple-
mentations take their input in some flat form variant.

The rest of this section is organized as follows. In Section 3.1 we formally de-
scribe a data structure for storing mathematical programming formulations and
give some examples. Section 3.2 is an account of several common standard forms.
In Section 3.3 we define the fundamental notion on which our reformulation sys-
tematics is based, i.e. that of auxiliary problems. Auxiliary problems of various
categories and their properties are defined in Sections 3.4–3.8.

60 LEO LIBERTI

3.1. A data structure for formulations

Having a well-defined, unified data structure for formulations is important for
two reasons: firstly, it allows us to unambiguously state symbolic reformulation
algorithms acting on the formulation. Secondly, it provides a bridge between struc-
tured formulations and flat formulations. Having said that, the precise form of the
data structure is not of crucial importance: there are many available alternatives,
some of which are openly documented (e.g. the Optimization Services project [27]
in COIN-OR [60]) and some others which are not (e.g. the internal memory rep-
resentation used by AMPL [25,26,29]). The data structure we propose is the basis
for the Rose optimization software framework (currently being developed from
several ideas given in [50]) and is semantically equivalent to the InstanceData
class within Optimization Services (see [27], p. 30).

Our definition lists the following primary formulation elements: parameters
and variables (with types and bounds); expressions that depend on parameters
and variables; objective functions and constraints depending on the expressions.
We let P be the set of all mathematical programming formulations and M be the
set of all matrices. This is used in Definition 3.1 to define leaf nodes in mathemat-
ical expression trees, so that the concept of a formulation can also accommodate
multilevel and semidefinite programming problems. Notationwise, in a digraph
(V,A) for all v ∈ V we indicate by δ+(v) the set of vertices u for which (v, u) ∈ A
and by δ−(v) the set of vertices u for which (u, v) ∈ A.

Definition 3.1. Given an alphabet L consisting of countably many alphanumeric
names NL and operator symbols OL, a mathematical programming formulation P
is a 7-tuple (P ,V , E ,O, C,B, T), where:

• P ⊆ NL is the sequence of parameter symbols: each element p ∈ P is a
parameter name;

• V ⊆ NL is the sequence of variable symbols: each element v ∈ V is a
variable name;

• E is the set of expressions: each element e ∈ E is a Directed Acyclic Graph
(DAG) e = (Ve, Ae) such that:
(a) Ve ⊆ L is a finite set
(b) there is a unique vertex re ∈ Ve such that δ−(re) = ∅ (such a vertex

is called the root vertex)
(c) all vertices v ∈ Ve such that δ+(v) = ∅ (called leaf vertices – their set

is denoted by λ(e)) are such that v ∈ P ∪ V ∪ R ∪ P ∪ M

(d) for all v ∈ Ve such that δ+(v) �= ∅, v ∈ OL
(e) two weight functions χ, ξ : Ve → R are defined on Ve: χ(v) is the

node coefficient and ξ(v) is the node exponent of the node v; for any
vertex v ∈ Ve, we let τ(v) be the symbolic term of v: namely, v =
χ(v)τ(v)ξ(v).

Elements of E are sometimes called expression trees; nodes v ∈ OL repre-
sent an operation on the nodes in δ+(v), denoted by v(δ+(v)), with output
in R;

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 61

• O ⊆ {−1, 1} × E is the sequence of objective functions; each objective
function o ∈ O has the form (do, fo) where do ∈ {−1, 1} is the optimization
direction (−1 stands for minimization, +1 for maximization) and fo ∈ E ;

• C ⊆ E × S × R (where S = {−1, 0, 1}) is the sequence of constraints c of
the form (ec, sc, bc) with ec ∈ E , sc ∈ S, bc ∈ R:

c ≡

⎧⎨
⎩

ec ≤ bc if sc = −1
ec = bc if sc = 0
ec ≥ bc if sc = 1;

• B ⊆ R|V| × R|V| is the sequence of variable bounds: for all v ∈ V let
B(v) = [Lv, Uv] with Lv, Uv ∈ R;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types: for all v ∈ V , v is called
a continuous variable if T (v) = 0, an integer variable if T (v) = 1 and a
binary variable if T (v) = 2.

We remark that for a sequence of variables z ⊆ V we write T (z) and respectively
B(z) to mean the corresponding sequences of types and respectively bound in-
tervals of the variables in z. Given a formulation P = (P ,V , E ,O, C,B, T), the
cardinality of P is |P | = |V|. We sometimes refer to a formulation by calling it an
optimization problem or simply a problem.

Consider a mathematical programming formulation P = (P ,V , E ,O, C,B, T)
and a function x : V → R|V| (called point) which assigns values to the variables.
A point x is type feasible if: x(v) ∈ R when T (v) = 0, x(v) ∈ Z when T (v) = 1,
x(v) ∈ {Lv, Uv} when T (v) = 2, for all v ∈ V ; x is bound feasible if x(v) ∈ B(v)
for all v ∈ V ; x is constraint feasible if for all c ∈ C we have: ec(x) ≤ bc if sc = −1,
ec(x) = bc if sc = 0, and ec(x) ≥ bc if sc = 1. A point x is feasible in P if it is
type, bound and constraint feasible. A point x feasible in P is also called a feasible
solution of P . A point which is not feasible is called infeasible. Denote by F(P)
the feasible points of P . A feasible point x is a local optimum of P with respect
to the objective o ∈ O if there is a non-empty neighbourhood N of x such that
for all feasible points y �= x in N we have dofo(x) ≥ dofo(y). A local optimum
is strict if dofo(x) > dofo(y). A feasible point x is a global optimum of P with
respect to the objective o ∈ O if dofo(x) ≥ dofo(y) for all feasible points y �= x.
A global optimum is strict if dofo(x) > dofo(y). Denote the set of local optima
of P by L(P) and the set of global optima of P by G(P). If O(P) = ∅, we define
L(P) = G(P) = F(P).

Example 3.2. (a quadratic optimization problem). This example illustrates how
flat form formulations can be embedded in the proposed data structure. Consider
the problem of minimizing the quadratic form 3x2

1 +2x2
2 +2x2

3 +3x2
4 +2x2

5 +2x2
6−

2x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x4x5 − 2x4x6 − 2x5x6 subject to x1 + x2 + x3 +
x4 + x5 + x6 = 0 and x1, . . . , x6 ∈ {−1, 1}. For this problem,

• P = ∅;
• V = (x1, x2, x3, x4, x5, x6);
• E = (e1, e2) where e1, e2 are the graphs shown in Figure 1;

62 LEO LIBERTI

^ ^ ^ ^ ^ ^

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

33 2222

222222

−2−2−2−2−2−2−2

x1

x1x1x1 x2x2

x2

x3x3

x3

x4x4x4

x4

x5x5

x5

x6x6

x6

+

x1 x2 x3 x4 x5 x6

Figure 1. The graphs e1 (top) and e2 (bottom) from Example 3.2.

• O = (−1, e1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

Example 3.3. (balanced graph bisection problem). In this example we consider
a structured formulation. Example 3.2 is the (scaled) mathematical programming
formulation of a balanced graph bisection problem instance. This problem is
defined as follows.

Balanced Graph Bisection Problem (BGBP). Given an un-
directed graph G = (V,E) without loops or parallel edges such
that |V | is even, find a subset U ⊂ V such that |U | = |V |

2 and
the set of edges C = {{u, v} ∈ E | u ∈ U, v �∈ U} is as small as
possible.

The problem instance considered in Example 3.2 is shown in Figure 2. To all
vertices i ∈ V we associate variables xi =

{
1 i ∈ U

−1 i �∈ U
. The number of edges in C

is counted by 1
4

∑
{i,j}∈E

(xi −xj)2. The fact that |U | = |V |
2 is expressed by requiring

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 63

1

2

3

4

5

6

Figure 2. The BGBP instance in Example 3.2.

an equal number of variables at 1 and −1, i.e.
∑6

i=1 xi = 0. We can also express
the problem in Example 3.2 as a particular case of the more general optimization
problem:

minx x�Lx
s.t. x1 = 0

x ∈ {−1, 1}6,

⎫⎬
⎭

where

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

and 1 = (1, 1, 1, 1, 1, 1)�. We represent this class of problems by the following
mathematical programming formulation:

• P = (Lij | 1 ≤ i, j ≤ 6);
• V = (x1, x2, x3, x4, x5, x6);
• E = (e′1, e2) where e′1 is shown in Figure 3 and e2 is shown in Figure 1

(below);
• O = (−1, e′1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

3.2. Standard forms

Solution algorithms for mathematical programming problems read a formula-
tion as input and attempt to compute an optimal feasible solution as output. Nat-
urally, algorithms that exploit problem structure are usually more efficient than
those that do not. In order to be able to exploit the structure of the problem,
solution algorithms solve problems that are cast in a standard form that empha-
sizes the useful structure. A good reformulation framework should be aware of

64 LEO LIBERTI

^

2

^

2

^

2

^

2

^

2

^

2

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

L11 L22 L33 L44 L55 L66

L′
12 L′

13 L′
14 L′

23 L′
45 L′

46 L′
56

x1

x1x1x1 x2x2

x2

x3x3

x3

x4x4x4

x4

x5x5

x5

x6x6

x6

Figure 3. The graph e′1 from Example 3.3. L′
ij = Lij + Lji for all i, j.

the available solution algorithms and attempt to reformulate given problems into
the most appropriate standard form. In this section we review the most common
standard forms.

3.2.1. Linear Programming

A mathematical programming problem P is a Linear Programming (LP) prob-
lem if (a) |O| = 1 (i.e. the problem only has a single objective function); (b) e is
a linear form for all e ∈ E ; and (c) T (v) = 0 (i.e. v is a continuous variable) for
all v ∈ V .

3.2.2. Mixed Integer Linear Programming

A mathematical programming problem P is a Mixed Integer Linear Program-
ming (MILP) problem if (a) |O| = 1; and (b) e is a linear form for all e ∈ E .

3.2.3. Nonlinear Programming

A mathematical programming problem P is a Nonlinear Programming (NLP)
problem if (a) |O| = 1 and (b) T (v) = 0 for all v ∈ V . Many fundamentally
different solution algorithms are available for solving NLPs, and most of them
require different standard forms. One of the most widely used is Sequential Qua-
dratic Programming (SQP) [23,30], which requires problem constraints c ∈ C to
be expressed in the form lc ≤ c ≤ uc with lc, uc ∈ R ∪ {−∞,+∞}.

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 65

3.2.4. Mixed Integer Nonlinear Programming

A mathematical programming problem P is a Mixed Integer Nonlinear Pro-
gramming (MINLP) problem if |O| = 1. The situation as regards MINLP standard
forms is generally the same as for NLPs, save that a few more works have appeared
in the literature about standard forms for MINLPs [50,69,85,86]. In particular,
the Smith standard form [86] is purposefully constructed so as to make symbolic
manipulation algorithms easy to carry out on the formulation. A MINLP is in
Smith standard form if:

• O = {do, eo} where eo is a linear form;
• C can be partitioned into two sets of constraints C1, C2 such that c is a

linear form for all c ∈ C1 and c = (ec, 0, 0) for c ∈ C2 where ec is as follows:
(1) r(ec) is the sum operator;
(2) δ+(r(ec)) = {⊗, v} where (a) ⊗ is a nonlinear operator where all

subnodes are leaf nodes, (b) χ(v) = −1 and (c) τ(v) ∈ V .

Essentially, the Smith standard form consists of a linear part comprising objec-
tive functions and a set of constraints; the rest of the constraints have a special
form ⊗(x1, . . . , xp) − v = 0 for some p ∈ N, with v, x1, . . . , xp ∈ V(P) and ⊗ a
nonlinear operator in OL. By grouping all nonlinearities in a set of equality con-
straints of the form “variable = operator(variables)” (called defining constraints)
the Smith standard form makes it easy to construct auxiliary problems. The Smith
standard form can be constructed by recursing on the expression trees of a given
MINLP [84]. Solution algorithms for solving MINLPs are usually extensions of
BB type algorithms [48,50,68,86,92].

3.2.5. Separable problems

A problem P is in separable form if (a) O(P) = {(do, eo)}, (b) C(P) = ∅ and
(c) eo is such that:

• r(eo) is the sum operator
• for all distinct u, v ∈ δ+(r(eo)), λ(u) ∩ λ(v) ∩ V(P) = ∅.

The separable form is useful because it allows a very easy problem decomposition:
for all u ∈ δ+(r(eo)) it suffices to solve the smaller problems Qu with V(Qu) =
λ(u) ∩ V(P), O(Qu) = {(do, u)} and B(Qu) = {B(P)(v) | v ∈ V(Qu)}. Then⋃
u∈δ+(r(eo))

x(V(Qu)) is a solution for P .

3.2.6. Factorable problems

A problem P is in factorable form [65,83,92,97] if:

(1) O = {(do, eo)}
(2) for all e ∈ {eo} ∪ {ec | c ∈ C}

• r(e) is the sum operator
• for all t ∈ δ+(r(e)), either (a) t is a unary operator and δ+(t) ⊆ λ(e)

(i.e. the only subnode of t is a leaf node) or (b) t is a product operator

66 LEO LIBERTI

such that for all v ∈ δ+(t), v is a unary operator with only one leaf
subnode.

In other words, e ≡
∑

t αt

∏
v ftv(xj) where α are constants, f are unary functions,

and xj ∈ V . The factorable form is useful because it is easy to construct many
auxiliary problems (including convex relaxations, [4,65,83]) from problems cast in
this form. In particular, factorable problems can be reformulated to separable
problems [65,68,92].

3.2.7. D.C. problems

The acronym “d.c.” stands for “difference of convex”. Given a set Ω ⊆ Rn,
a function f : Ω → R is a d.c. function if it is a difference of convex functions,
i.e. there exist convex functions g, h : Ω → R such that, for all x ∈ Ω, we have
f(x) = g(x) − h(x). Let C,D be convex sets; then the set C\D is a d.c. set. An
optimization problem is d.c. if the objective function is d.c. and Ω is a d.c. set.
In most of the d.c. literature, however [40,88,94], a mathematical programming
problem is d.c. if:

• O = {(do, eo)};
• eo is a d.c. function;
• c is a linear form for all c ∈ C.

D.C. programming problems have two fundamental properties. The first is that
the space of all d.c. functions is dense in the space of all continuous functions.
This implies that any continuous optimization problem can be approximated as
closely as desired, in the uniform convergence topology, by a d.c. optimization
problem [40,94]. The second property is that it is possible to give explicit necessary
and sufficient global optimality conditions for certain types of d.c. problems [88,
94]. Some formulations of these global optimality conditions [89] also exhibit a
very useful algorithmic property: if at a feasible point x the optimality conditions
do not hold, then the optimality conditions themselves can be used to construct
an improved feasible point x′.

3.2.8. Linear complementarity problems

Linear complementarity problems (LCP) are nonlinear feasibility problems with
only one nonlinear constraint. An LCP is defined as follows [21], page 50:

• O = ∅;
• there is a constraint c′ = (e, 0, 0) ∈ C such that (a) t = r(e) is a sum

operator; (b) for all u ∈ δ+(t), u is a product of two terms v, f such that
v ∈ V and (f, 1, 0) ∈ C;

• for all c ∈ C � {c′}, ec is a linear form.

Essentially, an LCP is a feasibility problem of the form:

Ax ≥ b
x ≥ 0

x�(Ax − b) = 0,

⎫⎬
⎭

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 67

where x ∈ Rn, A is an m × n matrix and b ∈ Rm. Many types of mathematical
programming problems (including MILPs with binary variables [21,43]) can be
recast as LCPs or extensions of LCP problems [43]. Furthermore, some types of
LCPs can be reformulated to LPs [61] and as separable bilinear programs [62].
Certain types of LCPs can be solved by an interior point method [21,44].

3.2.9. Bilevel programming problems

The bilevel programming (BLP) problem consists of two nested mathematical
programming problems named the leader and the follower problem. Formally, a
BLP is a pair of formulations (L,F) (leader and follower) and a subset 	 �= ∅ of
the set of all leaf nodes of the expressions in E(L) such that any leaf node v ∈ 	
has the form (x, F) where x ∈ V(F).

The usual mathematical notation is as follows [9,22]:

miny F (x(y), y)
minx f(x, y)

s.t. x ∈ X, y ∈ Y,

⎫⎬
⎭ (2)

where X,Y are arbitrary sets. This type of problem arises in economic applica-
tions. The leader knows the cost function of the follower, who may or may not
know that of the leader; but the follower knows the optimal strategy selected by
the leader (i.e. the optimal values of the decision variables of L) and takes this
into account to compute his/her own optimal strategy.

BLPs can be reformulated exactly to MILPs with binary variables and vice-
versa [9], where the reformulation is as in Definition 2.2. Furthermore, two typical
Branch-and-Bound (BB) algorithms for the considered MILPs and BLPs have the
property that the the MILP BB can be “embedded” in the BLP BB (this roughly
means that the BB tree of the MILP is a subtree of the BB tree of the BLP);
however, the contrary does not hold. This seems to hint at a practical solution
difficulty ranking in problems with the same degree of worst-case complexity (both
MILPs and BLPs are NP-hard).

3.2.10. Semidefinite programming problems

Consider known symmetric n × n matrices C,Ak for k ≤ m, a vector b ∈ Rm

and a symmetric n × n matrix X = (xij) where xij is a problem variable for all
i, j ≤ n. The following is a semidefinite programming problem (SDP) in primal
form:

minX C •X
∀k ≤ m Ak •X = bk

X � 0,

⎫⎬
⎭ (3)

where X � 0 is a constraint that indicates that X should be symmetric and
positive semidefinite, and A • B = tr(A�B) . We also consider the SDP in dual

68 LEO LIBERTI

form:
maxy,S b�y∑

k≤m ykAk + S = C

S � 0,

⎫⎬
⎭ (4)

where S is a symmetric n × n matrix and y ∈ Rm. Both forms of the SDP
problem are convex NLPs, so the duality gap is zero. Both forms can be solved
by a particular type of polynomial-time interior point method (IPM), which im-
plies that solving SDPs is practically efficient [7,93]. SDPs are important because
they provide tight relaxations to (nonconvex) quadratically constrained quadratic
programming problems (QCQP), i.e. problems with a quadratic objective and
quadratic constraints.

SDPs can be easily modelled with the data structure described in Definition 3.1,
for their expression trees are linear forms where each leaf node contains a sym-
metric matrix. There is no need to explicitly write the semidefinite constraints
X � 0, S � 0 because the IPM solution algorithms will automatically find optimal
X,S matrices that are semidefinite.

3.3. Auxiliary problems

If two problems are related, we say that one is an auxiliary problem of the other.
We sometimes refer to auxiliary problems with the term “problem transformation”
or the generic term of “reformulation”.

Definition 3.4. Any problem Q that is related to a given problem P by a com-
putable formula f(Q,P) = 0 is called an auxiliary problem with respect to P .

Among the several possible auxiliary problem types, four are specially interest-
ing and used quite commonly: transformations preserving all optimality proper-
ties (opt-reformulations); transformations preserving at least one global optimum
(narrowings); transformations based on dropping constraints, variable bounds or
types (relaxations); transformations that are one of the above types “in the limit”
(approximations).

3.4. Opt-reformulations

Opt-reformulations are auxiliary problems that preserve all optimality informa-
tion. We define them by considering local and global optima.

Definition 3.5. Q is a local reformulation of P if there is a function ϕ : F(Q) →
F(P) such that (a) ϕ(y) ∈ L(P) for all y ∈ L(Q), (b) ϕ restricted to L(Q) is
surjective. This relation is denoted by P ≺ϕ Q.

A local reformulation transforms all local optima of the original problem into
local optima of the reformulated problem, although more than one reformulated
optimum may correspond to the same original optimum. A local reformulation
does not lose any local optimality information and makes it possible to map refor-
mulated optima back to the original ones; on the other hand, a local reformulation

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 69

does not keep track of globality: some global optima in the original problem may
be mapped to local optima in the reformulated problem, or vice-versa.

Example 3.6. Consider the problem P,Q as follows:

P ≡ min
x∈[−2π,2π]

x+ sin(x)

Q ≡ min
x∈[−2π,2π]

sin(x).

It is easy to verify that there is a bijection between the local optima of P and those
of Q. However, although P has a unique global optimum, every local optimum in
Q is global.

Definition 3.7. Q is a global reformulation of P if there is a function ϕ : F(Q) →
F(P) such that (a) ϕ(y) ∈ G(P) for all y ∈ G(Q), (b) ϕ restricted to G(Q) is
surjective. This relation is denoted by P �ϕ Q.

A global reformulation transforms all global optima of the original problem into
global optima of the reformulated problem, although more than one reformulated
global optimum may correspond to the same original global optimum. Global
reformulations are desirable, in the sense that they make it possible to retain the
useful information about the global optima whilst ignoring local optimality. At
best, given a difficult problem P with many local minima, we would like to find a
global reformulation Q where L(Q) = G(Q).

Example 3.8. Consider a problem P with O(P) = {f}. Let Q be a problem
such that O(Q) = {f̆} and F(Q) = conv(F(P)), where conv(F(P)) is the convex
hull of the points of F(P) and f̆ is the convex envelope of f over the convex hull
of F(P) (in other words, f is the greatest convex function underestimating f on
F(P)). Since the set of global optima of P is contained in the set of global optima
of Q [39], the convex envelope is a global reformulation.

Unfortunately, finding convex envelopes in explicit form is not easy. A consid-
erable amount of work exists in this area: e.g. for bilinear terms [6,65], trilinear
terms [66], fractional terms [91], monomials of odd degree [45,54] the envelope is
known in explicit form (this list is not exhaustive). See [90] for recent theoretical
results and further references.

We write P ≺ Q (resp. P �Q) if there is a ϕ such that P ≺ϕ Q (resp. P �ϕQ).

Definition 3.9. Q is an opt-reformulation, or exact reformulation, of P (denoted
by P < Q) if P ≺ Q and P �Q.

This type of reformulation preserves both local and global optimality informa-
tion. It turns out that several well-known reformulations in the literature are
opt-reformulations.

Definition 3.10. An exact linearization of a problem P is an opt-reformulation
Q of P where all expressions e ∈ E(P) are linear forms.

70 LEO LIBERTI

Lemma 3.11. The relations ≺,�, < are reflexive and transitive, but in general
not symmetric.

Proof. For reflexivity, simply take ϕ as the identity. For transitivity, let P ≺ Q ≺
R with functions ϕ : F(Q) → F(P) and ψ : F(R) → F(Q). Then ϑ = ϕ ◦ ψ
has the desired properties. In order to show that ≺ is not symmetric, consider a
problem P with variables x and a unique minimum x∗ and a problem Q which
is exactly like P but has one added variable w ∈ [0, 1] not appearing in objective
functions or constraints. It is easy to show that P ≺ Q (take ϕ as the projection
of (x,w) on x). However, since for all w ∈ [0, 1] (x∗, w) is an optimum of Q, there
is no function of a singleton to a continuously infinite set that is surjective, so
Q �≺ P . �

Given a pair of problems P,Q where ≺,�, < are symmetric on the pair, we call
Q a symmetric reformulation of P .

The most important consequence of Lemma 3.11 is that we can compose ele-
mentary opt-reformulations together to create more complex opt-reformulations.

3.5. Change of variables

Continuous reformulations are based on a continuous map τ (invertible on the
variable domains) acting on the continuous relaxation of the feasible space of the
two problems.

Definition 3.12. For P,Q having the following properties:
(a) |P | = n, |Q| = m,
(b) V(P) = x,V(Q) = y,
(c) O(P) = (f, d),O(Q) = (f ′, d′) where f is a sequence of expressions in

E(P) and d is a vector with elements in {−1, 1} (and similarly for f ′, d′),
(d) C(P) = (g,−1,0), C(Q) = (g′,−1,0) where g is a sequence of expressions

in E(P), 0 (resp. 1) is a vector of 0s (resp. 1s) of appropriate size (and
similarly for g′),

(e) f, f ′ are continuous functions and g, g′ are sequences of continuous func-
tions,

Q is a continuous reformulation of P with respect to a reformulating bijection τ
(denoted by P ≈τ Q) if τ : Rn → Rm is a continuous map, invertible on the
variable domains

∏
xi∈x B(xi), such that f ′ ◦τ = f , g′ ◦τ = g and B(y) = τ(B(x)),

and such that τ−1 is also continuous.

It is easy to show that τ is an invertible map F(P) → F(Q). Changes of vari-
ables usually provide continuous reformulations [67]. Continuous reformulations
are similar to reformulations in the sense of Sherali: they are stronger, in that
they require the invertible mapping to be continuous; and they are weaker, in
that they impose no additional condition on the way the objective functions are
reformulated. We remark that ≈τ is an equivalence relation.

Lemma 3.13. If P ≈τ Q with |P | = n, |Q| = m, for all x ∈ Rn which is bound
and constraint feasible in P , τ(x) is bound and constraint feasible in Q.

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 71

Proof. Suppose without loss of generality that the constraints and bounds for P
can be expressed as g(x) ≤ 0 for x ∈ Rn and those for Q can be expressed as
g′(y) ≤ 0 for y ∈ Rm. Then g′(y) = g′(τ(x)) = (g′ ◦ τ)(x) = g(x) ≤ 0. �

Proposition 3.14. If P ≈τ Q with V(P) = x,V(Q) = y, |P | = n, |Q| = m,
|O(P)| = |O(Q)| = 1 such that (f, d) is the objective function of P and (f ′, d′) is
that of Q, d = d′, T (x) = 0, T (y) = 0, then τ is a bijection L(P) → L(Q) and
G(P) → G(Q).

Proof. Let x ∈ L(P). Then there is a neigbourhoodN(P) of x such that for all x′ ∈
N(P) with x′ ∈ F(P) we have df(x′) ≤ df(x). Since τ is a continuous invertible
map, N(Q) = τ(N(P)) is a neighbourhood of y = τ(x) (so τ−1(N(Q)) = N(P)).
For all y′ ∈ F(Q), by Lemma 3.13 and because all problem variable are continuous,
τ−1(y′) ∈ F(P). Hence for all y′ ∈ N(Q) ∩ F(Q), x′ = τ−1(y′) ∈ N(P) ∩ F(P).
Thus, d′f ′(y′) = df ′(τ(x′)) = d(f ′ ◦ τ)(x′) = df(x′) ≤ df(x) = d(f ◦ τ−1)(y) =
d′f ′(y). Thus for all x ∈ L(P), τ(x) ∈ L(Q). The same argument applied to τ−1

shows that for all y ∈ L(Q), τ−1(y) ∈ L(P); so τ restricted to L(P) is a bijection.
As concerns global optima, let x∗ ∈ G(P) and y∗ = τ(x∗); then for all y ∈ F(Q)
with y = τ(x), we have d′f ′(y) = d′f ′(τ(x)) = d(f ◦ τ)(x) = df(x) ≤ df(x∗) =
d′(f ◦ τ−1)(y∗) = d′f ′(y∗), which shows that y∗ ∈ G(Q). The same argument
applied to τ−1 shows that τ restricted to G(P) is a bijection. �

Theorem 3.15. If P ≈τ Q with V(P) = x,V(Q) = y, |P | = n, |Q| = m, |O(P)| =
|O(Q)| = 1 such that (f, d) is the objective function of P and (f ′, d′) is that of Q,
d = d′, T (x) = 0, T (y) = 0, then P < Q and Q < P .

Proof. The fact that P < Q follows from Proposition 3.14. The reverse follows by
considering τ−1. �

Proposition 3.16. Let P,Q be two problems with V(P) = x,V(Q) = y, |P | =
n, |Q| = m, |O(P)| = |O(Q)| = 1 such that (f, d) is the objective function of P
and (f ′, d′) is that of Q, d = d′, L(P) and L(Q) both consist of isolated points in
the respective Euclidean topologies, and assume P ≺ Q and Q ≺ P . Then there is
a continuous map τ : F(P) → F(Q).

Proof. Since P ≺ Q there is a surjective function ϕ : L(Q) → L(P), which implies
|L(Q)| ≥ |L(P)|. Likewise, since Q ≺ P there is a surjective function ψ : L(P) →
L(Q), which implies |L(P)| ≥ |L(Q)|. This yields |L(P)| = |L(Q)|, which means
that there is a bijection τ : L(P) → L(Q). Because L(P) ⊆ Rn and L(Q) ⊆ Rm

only contain isolated points, there is a way to extend τ to Rn so that it is continuous
on the x variable domains (by using e.g. surface splines). �

In summary, continuous reformulations of continuous problems are symmetric
reformulations, whereas symmetric reformulations may not necessarily be contin-
uous reformulations. We also remark that continuous reformulations applied to
discrete problems may fail to be opt-reformulations. This happens because inte-
grality constraints do not transform with the map τ along with the rest of the
problem constraints.

72 LEO LIBERTI

3.6. Narrowings

Narrowings are auxiliary problems that preserve at least one global optimum.

Definition 3.17. Q is a narrowing of P if (a) there is a function ϕ : F(Q) → F(P)
such that ϕ(y) ∈ G(P) for all y ∈ G(Q) and (b) F(Q) = ∅ only if F(P) = ∅.

Narrowings come in specially useful in presence of problems exhibiting many
symmetries: it may then be the huge amount of global optima that is preventing
a search from being successful. An example of narrowing is given by the local cuts
obtained from the symmetry group of the problem, presented in [63] (see Sect. 4.3);
other examples can be found in [53,80].

The fact that all opt-reformulations are a special case of narrowings follows di-
rectly from the definition. By a similar argument to Lemma 3.11, it is easy to show
that narrowings can be chained to obtain more complex narrowings. Likewise, the
chaining of an opt-reformulation and a narrowing is a narrowing.

3.7. Relaxations

A relaxation of a problem P is an auxiliary problem of P whose optimal ob-
jective function value is a bound (lower in the case of minimization, upper in the
case of maximization) for the optimum objective function value of the original
problem; often, relaxations are obtained by simply removing constraints from the
formulation or by replacing the objective function by an under- or over-estimator.
Such bounds are mainly used in Branch-and-Bound type algorithms, which are
the most common exact or ε-approximate (for a given ε > 0) solution algorithms
for MILPs, nonconvex NLPs and MINLPs. A further use of bounds provided by
mathematical programming formulations is to evaluate the performance of heuris-
tic algorithms without an approximation guarantee [20]. Bounds are sometimes
also used to guide heuristics [71].

Definition 3.18. Q is a relaxation of P if (a) F(P) ⊆ F(Q); (b) for all (f, d) ∈
O(P), (f̄ , d̄) ∈ O(Q) and x ∈ F(P), d̄f̄(x) ≥ df(x).

Definition 3.18 does not say anything on how to construct Q practically. The
following elementary relaxations are more useful.

Definition 3.19. Q is a:

• constraint relaxation of P if C(Q) � C(P);
• bound relaxation of P if B(P) � B(Q);
• a continuous relaxation of P if ∃v ∈ V(P) (T (v) > 0) and T (v) = 0 for all
v ∈ V(Q).

It is easy to show that opt-reformulations and narrowings are special types of relax-
ations, that relaxations can be chained to obtain other relaxations, and that chains
of relaxations with opt-reformulations and narrowings are themselves relaxations.

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 73

3.8. Approximations

Definition 3.20. Q is an approximation of P if there is a countable sequence
of problems Qk (for k ∈ N), a positive integer k′ and an auxiliary problem Q∗

of P such that: (a) Q = Qk′ ; (b) for all expression trees f∗ ∈ O(Q∗) there is
a sequence of expression trees fk ∈ O(Qk) that represent functions converging
uniformly to the function represented by f∗ (c) for all c∗ = (e∗, s∗, b∗) ∈ C(Q∗)
there is a sequence of constraints ck = (ek, sk, bk) ∈ C(Qk) such that: (i) the
functions represented by ek converge uniformly to the function represented by e∗;
(ii) sk = s∗ for all k; (iii) bk converges to b.

Since approximations can be defined for all types of auxiliary problems, we can
have approximations to opt-reformulations, narrowings, relaxations and approxi-
mations themselves. Approximations are very useful to reformulate MINLPs into
MILPs. In general, approximations have no guarantee of optimality, i.e. solving
an approximation may give results that are arbitrarily far from the optimum. In
practice, however, approximations manage to provide solutions of good quality.

Opt-reformulations, narrowings and relaxations are special types of approxima-
tions, since they are all auxiliary problems and one can take the trivial sequence
Qk = Q∗ for all k. Chaining approximations and other auxiliary problems yields
an approximation.

4. Reformulation examples

In this section we provide some examples for each type of reformulation (opt-
reformulation, narrowing, relaxation, approximation) proposed above. For a more
complete reformulation library, see [51].

4.1. Hansen’s Fixing Criterion as an opt-reformulation

This method applies to unconstrained quadratic 0-1 problems of the form

min
x∈{0,1}n

x�Qx

where Q is an n×n matrix [37], and relies on fixing some of the variables to values
guaranteed to provide a global optimum.

Let P be a problem with P = {n ∈ N, {qij ∈ R | 1 ≤ i, j ≤ n}}, V = {xi | 1 ≤
i ≤ n}, E = {f =

∑
i,j≤n qijxixj}, O = {(f,−1)}, C = ∅, B = [0, 1]n, T = 2. This

can be restricted as follows:
• initialize two sequences V = ∅, A = ∅;
• for all i ≤ n:

(1) if qii +
∑

j<i min(0, qij) +
∑

j>i min(0, qij) > 0 then append xi to V
and 0 to A;

(2) (else) if qii +
∑

j<i max(0, qij)+
∑

j>i max(0, qij) < 0 then append xi

to V and 1 to A;

74 LEO LIBERTI

• apply Restrict(P, V,A).

This opt-reformulation is denoted by HansenFix(P).
Essentially, any time a binary variable consistently decreases the objective func-

tion value when fixed, independently of the values of other variables, it is fixed.

4.2. The reduced RLT constraints opt-reformulation

This reformulation concerns a problem P with quadratic terms and linear equal-
ity constraints. More precisely, we require P to exhibit the following properties:

• there is a subset x ⊆ V with |x| = n and a set E = {(i, j) | 1 ≤ i ≤ j ≤ n}
in P such that the terms xixj appear as sub-expressions in the expressions
E for all (i, j) ∈ E;

• there is a number m ≤ n, an m× n matrix A = (aij) and an m-vector b
in P such that (

∑
j≤n aijxj , 0, bi) ∈ C for all i ≤ m.

Let F = {(i, j) | (i, j) ∈ E ∨ ∃k ≤ m(akj �= 0}. Under these conditions, P can be
reformulated as follows:

• for all (i, j) ∈ F add continuous variables wij with T (wij) = 0 and
B(wij) = [−∞,+∞];

• for all (i, j) ∈ E replace sub-expression xixj with wij in the expressions
E ;

• for all i ≤ n, k ≤ m add the constraints (
∑

j≤n akjwij −bkxi, 0, 0) to C: we
call this linear system the Reduced RLT Constraint System (RRCS) and
(
∑

j≤n akjwij , 0, 0) the companion system;
• let B = {(i, j) ∈ F | wij is basic in the companion};
• let N = {(i, j) ∈ F | wij is non-basic in the companion};
• add the constraints (wij − xixj , 0, 0) for all (i, j) ∈ N .

This opt-reformulation is denoted by RRLT(P), and its validity was shown in [49].
It is important because it effectively reduces the number of quadratic terms in the
problem (only those corresponding to the set N are added). This reformulation
can be extended to work with sparse sets E [55], namely sets E whose cardinality
is small with respect to 1

2n(n+ 1).
Essentially, the constraints wij = xixj for (i, j) ∈ B are replaced by the RRCS

∀i ≤ n (Awi = xi), where wi = (wi1, . . . , win).

4.3. The symmetry group narrowing

This section extends the material in [63,64] to 0-1 MINLPs. Consider a formu-
lation P in the form (1) where X = {0, 1}n and a constraint set C(P) which we
suppose in the form g(x) ≥ b ∈ Rm. Consider also the symmetric groups Sn and
Sm of permutations acting on sets of n and respectively m objects. For π ∈ Sn,
we denote by xπ the vector obtained by permuting the elements of x, and by
f(x)π the function f(xπ) where the variables x were permuted according to π.
For σ ∈ Sm, we denote by σg(x) the vector-valued function g where the elements

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 75

are permuted according to σ. The symmetry group of P is the group:

Ḡ = {π ∈ Sn|∃σ ∈ Sm(∀f ∈ O(P)f(x)π = f(x) ∧ σb = b ∧ σg(x)π = g(x))}. (5)

We remark that the equalities f(x)π = f(x) and σg(x)π = g(x) refer to a recursive
comparison procedure applied to the expression tree graphs of f, g, and this is why
the x variable is unquantified in (5). It is easy to show that Ḡ is indeed a group.

Assume f, g are linear forms, T (xi) = 2 for all i ≤ n (i.e. x is a vector of binary
variables) and |O(P)| = 1; then f(x) = cx for some parameter vector c ∈ Rn and
g(x) ≥ b can be written as Ax ≥ b. We recover Margot’s original definition:

G = {π ∈ Sn|∃σ ∈ Sm(cπ = c ∧ σb = b ∧ σAπ = A)}.

Assume P has a large symmetry group G. When solving P by means of a
BB-type algorithm, few nodes can ever be fathomed because of the large num-
ber of symmetric globally optimal solutions. The symmetry group G is used
in [63,64] to derive techniques that help the BB algorithm avoid taking sym-
metric optima into consideration. Let In = {1, . . . , n}; for a node a of the BB
tree, let F a

k = {i ≤ n | xi fixed at k} for k ∈ {0, 1}. For two nodes a, b of
the BB tree, a is isomorphic to b if there is π ∈ G such that F a

k π = F b
k for

k ∈ {0, 1}. For all S ⊆ In let GS = {π ∈ G | Sπ = S} be the stabilizer and
GS = {T ⊆ In | ∃π ∈ G (Sπ = T)} be the orbit of S in G. Margot suggests a
BB branching strategy based on grouping BB nodes by isomorphism equivalence
classes, considering only one representative per class (this is implemented by con-
sidering S ⊆ In a representative if S is the lexicographically smallest element of
GS). Using this branching strategy, linear inequalities are derived (locally to a
given BB node) that cut away some of the left-over symmetric optima. Let a be a
node of the BB tree and Ha = In � F a

0 . For all J ⊆ Ha having representative J∗

in GF a
1
J and lexicographically smaller than F a

1 , if some descendant BB node b of
a is such that F b

1 contains J it can be pruned immediately. This can be obtained
by adding a cut: ∑

j∈J

xj ≤ |J | − 1

local to the subproblem at node a. The above cuts provide a narrowing denoted
by SymmCutLin(P, a) valid at a and all its descendants. As the above ideas are
not based on the fact that f, g are linear but only on the symmetries of variables
and constraints with the respect to which the mathematical program is invariant,
they extend naturally to the group Ḡ of any MINLP involving binary variables.

4.4. Reformulation-Linearization Technique based relaxation

The Reformulation-Linearization Technique (RLT) is a relaxation method for
several different types of polynomial programming problems. In its most basic
form, the RLT targets mathematical programs involving quadratic terms by lin-
earizing them and generating additional valid linear constraints. These are ob-
tained by considering multiplications of bound factors (terms like xi−xL

i and xU
i −

76 LEO LIBERTI

xi) and constraint factors (the left hand side of a constraint such as
∑n

j=1 ajxj−b ≥
0 or

∑n
j=1 ajxj − b = 0). Since bound and constraint factors are always non-

negative, so are their products: this way one can generate sets of valid prob-
lem constraints. In a sequence of papers published from the 1980s onwards (see
e.g. [1,73,75,78,79,81,83]), RLT-based relaxations were derived for many different
classes of problems, including IPs, NLPs, MINLPs in general formulation, and
several real-life applications. It was shown that the RLT can be used in a lift-
and-project fashion to generate the convex envelope of binary and general discrete
problems [2,77].

4.4.1. Basic RLT

The RLT consists of two symbolic manipulation steps: reformulation and lin-
earization. The reformulation step is a reformulation in the sense of Definition 3.9.
Given a problem P , the reformulation step produces a reformulation Q′ where:

• P(Q′) = P(P);
• V(Q′) = V(P);
• E(Q′) ⊇ E(P);
• C(Q′) ⊇ C(P);
• O(Q′) = O(P);
• B(Q′) = B(P);
• T (Q′) = T (P);
• ∀x, y ∈ V(P), C(Q′) contains the following constraints:

(x− Lx)(y − Ly) ≥ 0 (6)
(x − Lx)(Uy − y) ≥ 0 (7)
(Ux − x)(y − Ly) ≥ 0 (8)
(Ux − x)(Uy − y) ≥ 0; (9)

(each factor in the LHS products is called a bound factor);
• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 1

and bc = 0 (we remark that all linear inequality constraints can be easily
reformulated to this form), C(Q′) contains the following constraints:

ec(x− Lx) ≥ 0 (10)
ec(Ux − x) ≥ 0 (11)

(the factor ec is called constraint factor);
• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 0

and bc = 0 (we remark that all linear equality constraints can be trivially
reformulated to this form), C(Q′) contains the following constraints:

ecx = 0. (12)

Having obtained Q′, we proceed to linearize all the quadratic products engendered
by (6–12). We derive the auxiliary problem Q from Q′ by reformulating Q′ to

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 77

Smith’s standard form (see Sect. 3.2.4) and then performing a constraint relaxation
with respect to all defining constraints; we denote the resulting relaxation by
RLT(P). Smith’s standard form is a reformulation of the lifting type, and the
obtained constraint relaxationQ is a MILP whose optimal objective function value
f̄ is a bound to the optimal objective function value f∗ of the original problem P .
The bound obtained in this way is shown to dominate, or be equivalent to, several
other bounds in the literature [2,76].

We remark in passing that (6–9), when linearized by replacing the bilinear
term xy with an added variable w, are also known in the literature as McCormick
relaxation, as they were first proposed as a convex relaxation of the nonconvex
constraint w = xy [65], shown to be the convex envelope [6], and widely used in
spatial Branch-and-Bound (sBB) algorithms for global optimization [4,5,50,86,92].
RLT constraints of type (12) have been the object of further research showing their
reformulating power [46,48,49,52,55] (also see Sect. 4.2).

4.4.2. RLT Hierarchy

The basic RLT method can be extended to provide a hierarchy of relaxations, by
noticing that we can form valid RLT constraints by multiplying sets of bound and
constraint factors of cardinality higher than 2, and then projecting the obtained
constraints back to the original variable space. In [2,76,77] it is shown that this fact
can be used to construct the convex hull of an arbitrary MILP P . For simplicity, we
only report the procedure for MILP in standard canonical form (see Sect. 3.2.2)
where all discrete variables are binary, i.e. T (v) = 2 for all v ∈ V(P). Let
|V(P)| = n. For all integer d ≤ n, let Pd be the relaxation of P obtained as
follows:

• for all linear constraint c = (ec, 1, 0) ∈ C(P), subset V ⊆ V(P) and finite
binary sequence B with |V | = |B| = d such that Bx is the xth term of the
sequence for x ∈ V , add the valid constraint:

ec

⎛
⎜⎝ ∏

x∈V
Bx=0

x

⎞
⎟⎠

⎛
⎜⎝ ∏

x∈V
Bx=1

(1 − x)

⎞
⎟⎠ ≥ 0; (13)

we remark that (13) is a multivariate polynomial inequality;
• for all monomials of the form

a
∏

x∈J⊆V(P)

x

with a ∈ R in a constraint (13), replace
∏

x∈J

x with an added variable wJ

(this is equivalent to relaxing a defining constraint wJ =
∏

x∈J

in the Smith’s

standard form restricted to (13).

78 LEO LIBERTI

Now consider the projection Xd of Pd in the V(P) variable space. It can be shown
that

conv(F(P)) ⊆ F(Xn) ⊆ F(Xn−1) . . . ⊆ F(X1) ⊆ F(P).

We recall that for a set Y ⊆ Rn, conv(Y) is defined as the smallest convex subset
of Rn containing Y .

A natural practical application of the RLT hierarchy is to generate relaxations
for polynomial programming problems [73], where the various multivariate mono-
mials generated by the RLT hierarchy might already be present in the problem
formulation. We denote the relaxation Pd by RLT(P, d).

4.5. Signomial programming based relaxation

A signomial programming problem is an optimization problem where every
objective function is a signomial function and every constraint is of the form
c = (g, s, 0) where g is a signomial function of the problem variables, and s �= 0
(so signomial equality constraints must be reformulated to pairs of inequality con-
straints). A signomial is a term of the form:

a

K∏
k=1

xrk

k , (14)

where a, rk ∈ R for all k ∈ K, and the rk exponents are assumed ordered so that
rk > 0 for all k ≤ m and rk < 0 for m ≤ k ≤ K. Because the exponents of the
variables are real constants, this is a generalization of a multivariate monomial
term. A signomial function is a sum of signomial terms. In [17], a set of trans-
formations of the form xk = fk(zk) are proposed, where xk is a problem variable,
zk is a variable in the reformulated problem and fk is suitable function that can
be either exponential or power. This yields an opt-reformulation where all the
inequality constraints are convex, and the variables z and the associated (inverse)
defining constraints xk = fk(zk) are added to the reformulation for all k ∈ K (over
each signomial term of each signomial constraint).

We distinguish the following cases:

• If a > 0, the transformation functions fk are exponential univariate,
i.e. xk = ezk . This reformulates (14) as follows:

a e
∑

k≤m rkzk∏
K
k=m+1 x

|rk|
k

∀k ≤ K xk = ezk .

}

• If a < 0, the transformation functions are power univariate, i.e. xk = z
1
R

k

for k ≤ m and xk = z
− 1

R

k for k > m, where R =
∑

k≤K |rk|. This is also

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 79

Figure 4. Piecewise linear underestimating approximations for
concave (left) and convex (right) univariate functions.

called a potential transformation. This reformulates (14) as follows:

a
∏

k≤K z
|rk|

R

k

∀k ≤ m xk = z
1
R

k

∀k > m xk = z
− 1

R

k

R =
∑

k≤K |rk|.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

This opt-reformulation isolates all nonconvexities in the inverse defining con-
straints. These are transformed as follows:

∀k ≤ K xk = ezk ⇒ ∀k ≤ K zk = log xk

∀k ≤ m zk = xR
k

∀k > m zk = x−R
k ,

and then relaxed using a piecewise linear approximation as per Figure 4. This
requires the introduction of binary variables (one per turning point).

The resulting signomial relaxation, denoted SigRelax(P), is a convex MINLP;
it can be further relaxed to a MILP by outer approximation of the convex terms,
or to a convex NLP by continuous relaxation of the discrete variables.

4.6. Approximation of bilinear products

Consider a problem P with two continuous variables x, y ∈ V such that T (x) =
T (y) = 0, B(x) = [xL, xU] and B(y) = [yL, yU] with xU − xL ≤ yU − yL. Assume
there is a bilinear product xy appearing in some expression tree (objective and/or
constraint). For any positive integer k, the following is an approximation of the
identity opt-reformulation of P :

80 LEO LIBERTI

• add a continuous variable w to V such that T (w) = 0 and B(w) = [wL, wU]
where wL = min(xLyL, xLyU , xUyL, xUyU) and
wU = max(xLyL, xLyU , xUyL, xUyU)];

• for all 1 ≤ i ≤ k add binary variables zi to V with T (zi) = 2;
• for all 0 ≤ i ≤ k add parameters qi to P with distinct values in [xL, xU]

such that q0 = xL, qk = xU and qi < qj for all i < j;
• replace all occurrences of the product xy by the variable w;
• add the assignment constraint (

∑k
i=1 zi, 0, 1) to C;

• for all i ∈ {1, . . . , k} add the (linear) constraints (xi −
∑k

j=1 qjzj ,−1, 0)

and (xi −
∑k

j=1 qj−1zj , 1, 0) to C;
• for all i ∈ {1, . . . , k} add the (linear) constraints (w − qi+qi−1

2 y − (wU −
wL)zi,−1, 0) and (w − qi+qi−1

2 y + (wU − wL)zi, 1, 0) to C.

This approximation is denoted by BilinApprox(P, x, y, q, k). Essentially, we dis-
cretize the range of x (the variable in the product having the smallest range) by
means of k+1 points q; for all values of x ranging in [qi−1, qi] we define w as being
the straight line qi+qi−1

2 y by means of the constraints:

k∑
j=1

qj−1zj ≤ xi ≤
k∑

j=1

qjzj

qi+qi−1
2 y − (wU − wL)(1 − zi) ≤ w ≤ qi+qi−1

2 y + (wU − wL)(1 − zi),

⎫⎬
⎭ (15)

for all i ∈ {1, . . . , k}. The fact that BilinApprox is an approximation follows
because by (15) we have that for k → ∞, if x = q ∈ [xL, xU] then w → qy.

Although different approximations of the term xy are possible, the one presented
in this section employs a reasonably small number of variables and is not likely to
restrict the feasible region of the problem. Geometrically, this approximation is
depicted in Figure 5.

5. Conclusion

This paper describes a theoretical framework for the analysis and classification
of reformulations for mathematical programs that can be carried out automati-
cally by means of a symbolic/numerical algorithm acting on the formulation. This
fundamental study will serve as the basis for a software that can carry out refor-
mulations of mathematical programs automatically (this software is part of one of
the projects acknowledged below, and is currently under way).

Acknowledgements. Financial support by ANR under grant 07-JCJC-0151 and by EU
NEST “Morphex” project grant is gratefully acknowledged.

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 81

Figure 5. Linearizing approximation of a bilinear term.

References

[1] W.P. Adams and H.D. Sherali, A tight linearization and an algorithm for 0-1 quadratic
programming problems. Manage. Sci. 32 (1986) 1274–1290.

[2] W.P. Adams and H.D. Sherali, A hierarchy of relaxations leading to the convex hull repre-
sentation for general discrete optimization problems. Ann. Oper. Res. 140 (2005) 21–47.

[3] W.P. Adams, R.J. Forrester and F.W. Glover, Comparisons and enhancement strategies for
linearizing mixed 0-1 quadratic programs. Discrete Optim. 1 (2004) 99–120.

[4] C.S. Adjiman, S. Dallwig, C.A. Floudas and A. Neumaier, A global optimization method,
αBB, for general twice-differentiable constrained NLPs: I. Theoretical advances. Comput.

Chem. Eng. 22 (1998) 1137–1158.
[5] C.S. Adjiman, I.P. Androulakis and C.A. Floudas, A global optimization method, αBB,

for general twice-differentiable constrained NLPs: II. Implementation and computational
results. Comput. Chem. Eng. 22 (1998) 1159–1179.

[6] F.A. Al-Khayyal and J.E. Falk, Jointly constrained biconvex programming. Math. Oper.
Res. 8 (1983) 273–286.

[7] F. Alizadeh, Interior point methods in semidefinite programming with applications to com-
binatorial optimization. SIAM J. Optim. 5 (1995) 13–51.

[8] K.M. Anstreicher, Recent advances in the solution of quadratic assignment problems. Math.
Program. B 97 (2003) 27–42.

[9] C. Audet, P. Hansen, B. Jaumard and G. Savard, Links between linear bilevel and mixed
0-1 programming problems. J. Optim. Theor. Appl. 93 (1997) 273–300.

[10] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel and N. Mladenović, Pooling problem:
Alternate formulations and solution methods. Manage. Sci. 50 (2004) 761–776.

[11] H.M.T. Ben Amor, J. Desrosiers and A. Frangioni, Stabilization in column generation.
Discrete Appl. Math. to appear.

[12] W. Ben-Ameur and H. Kerivin, Routing of uncertain demands. Optim. Eng. 3 (2005)
283–313.

[13] D. Bertsimas and M. Sym, The price of robustness. Oper. Res. 52 (2004) 35–53.

82 LEO LIBERTI

[14] A. Billionnet and S. Elloumi, Using a mixed-integer quadratic programming solver for the
unconstrained quadratic 0-1 problem. Math. Program. 109 (2007) 55–68.

[15] A. Billionnet, S. Elloumi and M.-C. Plateau, Improving the performance of standard solvers
via a tighter convex reformulation of constrained quadratic 0-1 programs: the QCR method.
Discrete Appl. Math., to appear.

[16] J. Bjorkqvist and T. Westerlund, Automated reformulation of disjunctive constraints in
MINLP optimization. Comput. Chem. Eng. 23 (1999) S11–S14.

[17] K.-M. Björk, P.O. Lindberg and T. Westerlund, Some convexifications in global optimization
of problems containing signomial terms. Comput. Chem. Eng. 27 (2003) 669–679.

[18] A. Brook, D. Kendrick and A. Meeraus, GAMS, a user’s guide. ACM SIGNUM Newsletter,
23 (1988) 10–11.

[19] G.B. Dantzig, Linear Programming and Extensions. Princeton University Press, Princeton,
NJ (1963).

[20] T. Davidović, L. Liberti, N. Maculan and N. Mladenović, Towards the optimal solution of
the multiprocessor scheduling problem with communication delays, in MISTA Proceedings
(2007).

[21] L. Di Giacomo, Mathematical programming methods in dynamical nonlinear stochastic Sup-
ply Chain management. Ph.D. thesis, DSPSA, Università di Roma “La Sapienza” (2007).

[22] J.E. Falk and J. Liu, On bilevel programming, part i: general nonlinear cases. Mathem.
Program. 70 (1995) 47–72.

[23] R. Fletcher and S. Leyffer, User manual for filter. Technical report, University of Dundee,
UK (1999).

[24] R. Fortet, Applications de l’algèbre de boole en recherche opérationelle. Revue Française de
Recherche Opérationelle 4 (1960) 17–26.

[25] R. Fourer, Personal communication (2004).
[26] R. Fourer and D. Gay, The AMPL Book. Duxbury Press, Pacific Grove (2002).
[27] R. Fourer, J. Ma, K. Martin and W. Sheng, Optimization services 1.0 user manual. Technical

report, COIN-OR (2007).
[28] A. Frangioni, On a new class of bilevel programming problems and its use for reformulating

mixed-integer problems. Eur. J. Oper. Res. 82 (1995) 615–646.
[29] S. Galli, Parsing AMPL internal format for linear and non-linear expressions. Didactical

project, DEI, Politecnico di Milano, Italy (2004).
[30] P.E. Gill, User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of

EESOR, Stanford University, California (1999).
[31] M. Grant, S. Boyd and Y. Ye, Disciplined convex programming, in Liberti and Maculan [56],

155–210.
[32] C. Guéret, C. Prins and M. Sevaux, Applications of optimization with Xpress-MP. Dash

optimization. Bilsworth (2000).
[33] S. Gueye and Ph. Michelon, A linearization framework for unconstrained quadratic (0-1)

problems. Discrete Appl. Math., to appear.
[34] S. Gueye and P. Michelon, “miniaturized” linearizations for quadratic 0/1 problems. Ann.

Oper. Res. 140 (2005) 235–261.
[35] K. Hägglöf, P.O. Lindberg and L. Svensson, Computing global minima to polynomial opti-

mization problems using Gröbner bases. J. Glob. Optim. 7 (1995) 115–125.
[36] P.L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related Areas.

Springer, Berlin (1968).
[37] P. Hansen, Method of non-linear 0-1 programming. Ann. Discrete Math. 5 (1979) 53–70.
[38] P. Hansen and C. Meyer, Improved compact linearizations for the unconstrained quadratic

0-1 minimization problem. Discrete Appl. Math., to appear.
[39] R. Horst, On the convexification of nonlinear programming problems: an applications-

oriented approach. Eur. J. Oper. Res. 15 (1984) 382–392.
[40] R. Horst and Hoang Tuy, Global Optimization: Deterministic Approaches. Springer-Verlag,

Berlin, 3rd ed. (1996).

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 83

[41] K.-L. Hsiung, S.-J. Kim and S. Boyd, Tractable approximate robust geometric programming.
Optim. Eng. to appear.

[42] ILOG, ILOG CPLEX 10.0 User’s Manual. ILOG S.A., Gentilly, France (2005).
[43] J. Judice and G. Mitra, Reformulation of mathematical programming problems as linear

complementarity problems and investigation of their solution methods. J. Optim. Theor.
Appl. 57 (1988) 123–149.

[44] M. Kojima, N. Megiddo and Y. Ye, An interior point potential reduction algorithm for the
linear complementarity problem. Math. Program. 54 (1992) 267–279.

[45] L. Liberti. Comparison of convex relaxations for monomials of odd degree, in Optimization
and Optimal Control, edited by I. Tseveendorj, P.M. Pardalos and R. Enkhbat. World
Scientific (2003).

[46] L. Liberti, Reduction constraints for the global optimization of NLPs. Int. Trans. Oper.
Res. 11 (2004) 34–41.

[47] L. Liberti, Reformulation and Convex Relaxation Techniques for Global Optimization. Ph.D.
thesis, Imperial College London, UK, (2004).

[48] L. Liberti, Reformulation and convex relaxation techniques for global optimization. 4OR 2
(2004) 255–258.

[49] L. Liberti, Linearity embedded in nonconvex programs. J. Glob. Optim.n 33 (2005) 157–196.
[50] L. Liberti, Writing global optimization software, in Global Optimization: from Theory to

Implementation, edited by Liberti and Maculan.Springer, berlin (2006) 211–262.
[51] L. Liberti, Reformulation techniques in mathematical programming, Thèse d’Habilitation à

Diriger des Recherches, Université de Paris-Dauphine (2007).
[52] L. Liberti, Compact linearization of binary quadratic problems. 4OR 5 231–245 (2007).
[53] L. Liberti, Automatic generation of symmetry-breaking constraints, in COCOA Proceedings,

Lecture Notes in Computer Science, edited by B. Yang, D.-Z. Du and C.A. Wang 5165.
Springer, Berlin (2008) 328–338.

[54] L. Liberti and C.C. Pantelides, Convex envelopes of monomials of odd degree. J. Glob.
Optim. 25 (2003) 157–168.

[55] L. Liberti and C.C. Pantelides, An exact reformulation algorithm for large nonconvex NLPs
involving bilinear terms. J. Glob. Optim. 36 (2006) 161–189.

[56] L. Liberti and N. Maculan, Eds., Global Optimization: from Theory to Implementation.
Springer, Berlin (2006).

[57] L. Liberti, E. Amaldi, N. Maculan and F. Maffioli, Mathematical models and a constructive
heuristic for finding minimum fundamental cycle bases. Yugosl. J. Oper. Res. 15 (2005)
15–24.

[58] L. Liberti, C. Lavor, M.A.C. Nascimento and N. Maculan, Reformulation in mathematical
programming: an application to quantum chemistry. Discrete Appl. Math. to appear.

[59] J.A. de Loera, J. Lee, S. Margulies and S. Onn, Expressing combinatorial optimization
problems by systems of polynomial equations and the nullstellensatz, Technical Report
RC24276(W0706-020), IBM Corporation (2007).

[60] R. Lougee-Heimer, The common optimization interface for operations research: Promoting
open-source software in the operations research community. IBM J. Res. Dev. 47 (2003)
57–66.

[61] O.L. Mangasarian, Linear complementarity problems solvable by a single linear program.
Math. Program. 10 (1976) 263–270.

[62] O.L. Mangasarian, The linear complementarity problem as a separable bilinear program. J.
Glob. Optim. 6 (1995) 153–161.

[63] F. Margot, Pruning by isomorphism in branch-and-cut. Math. Program. 94 (2002) 71–90.
[64] F. Margot, Exploiting orbits in symmetric ilp. Math. Program. B 98 (2003) 3–21.
[65] G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part

I – Convex underestimating problems. Math. Program. 10 (1976) 146–175.
[66] C.A. Meyer and C.A. Floudas, Convex hull of trilinear monomials with mixed sign domains.

J. Glob. Optim. 29 (2004) 125–155.

84 LEO LIBERTI

[67] N. Mladenović, F. Plastria and D. Urošević, Reformulation descent applied to circle packing
problems. Comput. Oper. Res. 32 (2005) 2419–2434.

[68] I. Nowak, Relaxation and Decomposition Methods for Mixed Integer Nonlinear Program-
ming. Birkhäuser, Basel (2005).

[69] C.C. Pantelides, L. Liberti, P. Tsiakis and T. Crombie, Mixed integer linear/nonlinear
programming interface specification, Global Cape-Open Deliverable WP2.3-04 (2002).

[70] M.-C. Plateau, Reformulations quadratiques convexes pour la programmation quadratique
en variables 0-1. Ph.D. thesis, Conservatoire National d’Arts et Métiers (2006).

[71] J. Puchinger and G.R. Raidl, Relaxation guided variable neighbourhood search, in Proc. of
Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain (2005).

[72] A. Saxena, V. Goyal and M. Lejeune, MIP reformulations of the probabilistic set covering
problem. Technical Report 2007-02-1579, Optimization Online (2007).

[73] H.D. Sherali, Global optimization of nonconvex polynomial programming problems having
rational exponents. J. Glob. Optim. 12 (1998) 267–283.

[74] H. Sherali, Personal communication (2007).
[75] H.D. Sherali and W.P. Adams, A Reformulation-Linearization Technique for Solving Dis-

crete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht (1999).
[76] H.D. Sherali and W.P. Adams, A hierarchy of relaxations and convex hull characterizations

for mixed-integer zero-one programming problems. Discrete Appl. Math. 52 (1994) 83–106.
[77] H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the continuous and convex

hull representations for zero-one programming problems. SIAM J. Discrete Math. 3 (1990)
411–430.

[78] H.D. Sherali and A. Alameddine, A new reformulation-linearization technique for bilinear
programming problems. J. Global Optimization 2 (1992) 379–410.

[79] H. Sherali and L. Liberti, Reformulation-linearization methods for global optimization, in
Encyclopedia of Optimization, edited by C. Floudas and P. Pardalos. Springer, New York,
to appear.

[80] H.D. Sherali and C. Smith, Improving discrete model representations via symmetry consid-
erations. Manag. Sci. 47 1396–1407.

[81] H. Sherali and C.H. Tuncbilek, New reformulation linearization/convexification relaxations
for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21
(1997) 1–9.

[82] H. Sherali and C.H. Tuncbilek, A global optimization algorithm for polynomial programming
problems using a reformulation-linearization technique. J. Glob. Optim. 2 (1991) 101–112.

[83] H.D. Sherali and H. Wang, Global optimization of nonconvex factorable programming prob-

lems. Math. Program. 89 (2001) 459–478.
[84] E.M.B. Smith, On the Optimal Design of Continuous Processes. Ph.D. thesis, Imperial

College of Science, Technology and Medicine, University of London (1996).
[85] E.M.B. Smith and C.C. Pantelides, Global optimisation of nonconvex MINLPs. Comput.

Chem. Eng. 21 (1997) S791–S796.
[86] E.M.B. Smith and C.C. Pantelides, A symbolic reformulation/spatial branch-and-bound

algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23 (1999)
457–478.

[87] INFORMS Computing Society. The mathematical programming glossary. http://glossary.
computing.society.informs.org/second.php?page=R.html.

[88] A.S. Strekalovsky, Extremal problems with d.c. constraints. Comput. Mathem. Math. Phys.
41 (2001) 1742–1751.

[89] A.S. Strekalovsky, On global optimality conditions for d.c. programming problems, Technical
Paper, Irkutsk State University (1997).

[90] F. Tardella, Existence and sum decomposition of vertex polyhedral convex envelopes. Optim.
Lett. 2 (2008) 363–375.

[91] M. Tawarmalani and N. Sahinidis, Convex extensions and envelopes of semi-continuous
functions. Math. Program. 93 (2002) 247–263.

http://glossary.computing.society.informs.org/second.php?page=R.html
http://glossary.computing.society.informs.org/second.php?page=R.html

REFORMULATIONS IN MATHEMATICAL PROGRAMMING 85

[92] M. Tawarmalani and N.V. Sahinidis, Global optimization of mixed integer nonlinear pro-
grams: A theoretical and computational study. Math. Program. 99 (2004) 563–591.

[93] M.J. Todd, Semidefinite optimization. Acta Numerica 10 (2001) 515–560.
[94] H. Tuy, D.C. optimization: Theory, methods and algorithms. in Handbook of Global Opti-

mization , 1, edited by R. Horst and P.M. Pardalos. Kluwer Academic Publishers, Dordrecht
(1995) 149–216.

[95] T.J. van Roy and L.A. Wolsey, Solving mixed integer programming problems using auto-
matic reformulation. Oper. Res. 35 (1987) 45–57.

[96] J.C. Vera, J.F. Pena and L.F. Zuluaga, Exploiting equalities in polynomial programming,
Technical Report 2006-05-1338, Optimization Online, 2006.

[97] X. Wang and T.S. Change, A multivariate global optimization using linear bounding func-
tions. J. Glob. Optim. 12 (1998) 383–404.

[98] T. Westerlund, Some transformation techniques in global optimization, in Global optimiza-
tion: from theory to implementation, edited by L. Liberti and N. Maculan. Springer, Berlin
(2006) 45–74.

[99] L.A. Wolsey, Integer Programming. Wiley, New York (1998).

	Introduction
	Existing work
	Definitions
	Reformulations

	Reformulation theory
	A data structure for formulations
	Standard forms
	Auxiliary problems
	Opt-reformulations
	Change of variables
	Narrowings
	Relaxations
	Approximations

	Reformulation examples
	Hansen's Fixing Criterion as an opt-reformulation
	The reduced RLT constraints opt-reformulation
	The symmetry group narrowing
	Reformulation-Linearization Technique based relaxation
	Signomial programming based relaxation
	Approximation of bilinear products

	Conclusion
	References

