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HAMILTONICITY IN PARTLY CLAW-FREE GRAPHS
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Abstract. Matthews and Sumner have proved in [10] that if G is a
2-connected claw-free graph of order n such that δ(G) ≥ (n − 2)/3,
then G is Hamiltonian. We say that a graph is almost claw-free if for
every vertex v of G, 〈N(v)〉 is 2-dominated and the set A of centers
of claws of G is an independent set. Broersma et al. [5] have proved
that if G is a 2-connected almost claw-free graph of order n such that
δ(G) ≥ (n − 2)/3, then G is Hamiltonian. We generalize these results
by considering the graphs satisfying the following property: for every
vertex v ∈ A, there exist exactly two vertices x and y of V \A such that
N(v) ⊆ N [x]∪N [y]. We extend some other known results on claw-free
graphs to this new class of graphs.

Keywords. Graph theory, claw-free graphs, almost claw-free graphs,
Hamiltonicity, matching.

Mathematics Subject Classification. 05C45.

1. Introduction

In this paper, we will consider only finite undirected graphs without loops and
multiple edges. We use the terminology and notations in [3]. In addition we’ll
consider only finite simple graphs G = (V, E). If S ⊂ V , then 〈S〉 denotes the
subgraph of G induced by S, and G − S stands for 〈V \S〉. If H is an induced
subgraph of G, V (H) and E(H) are respectively the set of vertices and the set of
edges of the graph H . The cardinality of a maximum independent set of G will be
denoted α(G). N(v) is the set of the neighbors of a vertex v, and N [v] = N(v)∪{v}.
The cardinality of N(v) is the degree d(v) of the vertex v, and δ(G) denotes the
minimum degree of G. We denote by σk(G) the minimum value of the degree-sum
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Figure 1.

of any k pairwise non adjacent vertices. The connectivity of G is k(G). If H is a
subgraph of G and S is a subset of V or a subgraph of G, then NH(S) denotes
the set of all vertices of H having a neighbor in S. A dominating set of G is a
subset S of V such that every vertex of G belongs to S or is adjacent to a vertex
in S. The graph G is k-dominated if G has a dominating set of cardinality k. If
G has Hamiltonian cycle (a cycle containing once every vertex of G), then G is
called Hamiltonian and if G has an even number of vertices then G is called an
even graph.

A graph G is H-free if it contains no induced subgraph isomorphic to H .
The r-edge graph K1,r is called the star, and the unique vertex of degree r is

called the center of the star. When r is equal to 3, then K1,3 is the claw.
Excluding this configuration, we obtain the well known class of claw-free graphs.
The class of claw-free graphs has been the topic of study of several authors.

Indeed, matching properties of claw-free graphs were observed, interesting results
on Hamiltonian properties were proved, and a lot of NP-complete problems were
solved in polynomial time. For more details on this class of graphs see [7].

It is interesting to investigate classes of graphs containing claw-free graphs, and
to generalize results on claw-free graphs to these superclasses. These last years,
there have been a lot of results in this way and authors were interested in classes
of graphs that do not contain “too” many claws. The work we propose deals with
the same subject.

Our main goal is to extend some results obtained for claw-free graphs to a new
larger class that admits some induced claws. This class will be called the class of
partly claw-free graphs.

Definition 1.1. Let G = (V, E) be a graph and let A be the set of centers of
claws of G. The graph G is partly claw-free if it satisfies the following property:
for every vertex v ∈ A, there exist exactly two vertices x and y of V \A such that
N(v) ⊆ N [x] ∪ N [y], we say that N(v) is 2-dominated in V \A.

Example 1.2. The graph of Figure 1 is partly claw-free, but is not claw-free,
since it admits 2 claws 〈{x; 1, 2, 3}〉 and 〈{y; 1, 2, 3}〉.
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For this new class of graphs, we can do the following remarks:

(R1) A partly claw-free graph is K1,5-free.

Proof. Suppose (R1) false. Let H = 〈{v; a, b, c, d, e}〉 be an induced sub-
graph of G, isomorphic to K1,5 and suppose that v is the unique vertex of
H of degree 5. So, every 2-dominating set of NH(v) has a vertex which
is adjacent to at least three vertices among {a, b, c, d, e}. Then every 2-
dominating set of NH(v) contains a center of a claw, that contradicts the
definition of a partly claw-free. �

(R2) A graph G is locally claw-free if for every vertex v of G, 〈N(v)〉 is claw-free.
A partly claw-free graph is not necessarily locally claw-free. (see Fig. 1)

(R3) A graph G is almost claw-free if for every vertex v of G, 〈N(v)〉 is 2-
dominated and the set A of centers of claws of G is an independent set.
The class of partly claw-free graphs contains the class of almost claw-free
graphs introduced by Ryjacek [13], and is different of the class of graphs
whose centers claws are independent [9].

2. Toughness

Definition 2.1. The graph G is t-tough (t ≥ 0) if |S| ≥ t.w(G − S) for every
subset S of V with w(G−S) > 1, where w(G−S) denotes the number of connected
components of G − S. The toughness of G, denoted τ(G), is the maximum value
of t for which G is t-tough. (τ(Kn) = ∞ for all n ≥ 1).

Let G be a noncomplete graph and let k(G) be the connectivity of G, then
τ(G) ≤ k(G)/2 [6]. If G is claw-free, then the equality holds, as was shown by
Matthews and Sumner [10]:

Theorem 2.2. If G is a noncomplete claw-free graph, then τ(G) = k(G)/2.

In the same paper, they have given their well known conjecture that every 4-
connected claw-free graph is Hamiltonian. Another conjecture by Thomassen [17]
states that all 4-connected line graphs are Hamiltonian. As all line graphs are
claw-free graphs, the second conjecture appears much weaker than the first, but
Ryjacek [14] proved that the two conjectures are actually equivalent.

In this section, we prove the following result which generalizes Theorem 2.2 in
case k(G) ≤ 2.

Theorem 2.3. If G is a noncomplete partly claw-free graph, then τ(G) ≥
min{1, k(G)/2}.
Proof. Only minor changes are needed to adapt the proof given for almost claw-
free graphs in [5].

In any noncomplete graph G, τ(G) ≤ k(G)/2. If G is not connected, then
τ(G) = k(G)/2 = 0. Suppose G �= Kn is a connected partly claw-free graph and S
is a cutset of G such that τ(G) = |S|/w(G−S) < min{1, k(G)/2}. Let H1....Hp be
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Figure 2.

the components of G−S. There exist at least k(G) disjoint paths from u ∈ V (Hi)
to v ∈ V (Hj) for any i, j ∈ {l, ...., p} with i �= j. Each of these paths contains
a vertex of S. Hence for each i ∈ {l, ....., p} there are at least k(G) edges joining
vertices of Hi to distinct vertices of S. Thus there are at least p.k(G) edges from
G − S to S, counting at most one from any component of G − S to a particular
vertex of S. Suppose every vertex v ∈S has neighbors in at most two components
of G − S. Then there are at most 2 |S| edges from G − S to S counting at most
one from any component of G−S to a particular vertex of S. Then p.k(G) ≤ 2|S|
or, k(G)/2 ≤ |S|/p = τ(G), and that leads to a contradiction.

Hence, S contains a center v of a claw with neighbors in at least three compo-
nents of G − S.

Since G is partly claw-free, there exist exactly two vertices x and y of V \A
such that N(v) ⊆ N [x] ∪ N [y]. This implies that there exists a vertex y of V \A,
and, moreover, that v has neighbors in at least three components of G − S, and
y is adjacent to vertices in precisely two of these components. Thus y ∈ S. But
then T = S − {y} is a cutset of G with w(G − T ) = w(G − S) − 1, so that
τ(G) ≤ |T |/w(G − T ) = (|S| − 1)/(w(G − S) − 1) < |S|/w(G − S) = τ(G), a
contradiction. Hence τ(G) ≥ min{1, k(G)/2)}. �

For partly claw-free graphs with connectivity exceeding two, a similar result
to that of Theorem 2.2 cannot be obtained. For instance, the graph of Figure 2,
depicted in [5], is a 3-connected partly claw-free. The set of centers of claws is
A = {s2, s3}. But for S = {s1, s2, s3, s4}, |S| = 4, w(G − S) = 3 and hence:

τ(G) ≤ |S|
w(G − S)

=
3
4

<
3
2

=
k(G)

2
·

3. Perfect matching

The following result appears in [15]:

Theorem 3.1. If G is an even connected claw-free graph, then G has a perfect
matching.
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Further, the same author, extend Theorem 3.1, showing the following:

Theorem 3.2. If G is an even connected graph that does not have a perfect
matching, then there is a set S ⊆ V , such that w0(G − S ) > |S |, where ω0(G−S)
is the number of odd components of G − S, and every vertex of S is adjacent to
vertices in at least three odd components of G − S.

Theorem 3.1 has been extended to the class of almost claw-free graphs:

Theorem 3.3 [13]. If G is an even connected almost claw-free graph, then G has
a perfect matching.

The aim of this section is to generalize Theorem 3.1 to the class of partly claw-
free graphs. We prove:

Theorem 3.4. Every even connected partly claw-free graph has a perfect matching.

Proof. To prove Theorem 3.4, consider an even connected partly claw-free graph
G without any perfect matching.

Let S ⊂ V , and suppose that S has the properties given in Theorem 3.2, and let
x ∈ S. The vertex x is adjacent to at least three vertices v1, v2 and v3 belonging to
three odd components of G−S, hence 〈{x; v1, v2, v3}〉 is an induced claw. Since G
is partly claw-free, then two among the three vertices v1, v2 and v3 are dominated
by a same vertex y in S, and then by Theorem 3.2, y is a center of a claw, which
contradicts the definition of a partly claw-free graph, and then G has a perfect
matching. �

4. Hamiltonian cycles

Matthews and Sumner have proved in [11]:

Theorem 4.1. If G is a 2-connected claw-free graph with δ(G) ≥ (n−2)
3 , then G

is Hamiltonian.

The following generalization of Theorem 4.1 was independently obtained by
Broersma [4] and Zhang [18]:

Theorem 4.2. If G is a 2-connected claw-free graph with σ3(G) ≥ n − 2, then G
is Hamiltonian.

More generally, Zhang [18] proved:

Theorem 4.3. if G is a k-connected claw-free graph with σk+1(G) ≥ n−k (k ≥ 2)
then G is Hamiltonian.

Theorem 4.1 was extended to classes of graphs containing a restricted number
of claws by Flandrin and Li [8], to almost claw-free graphs by Broersma et al. [5],
and for graphs whose centers claws are independant by Li et al. [9].

An analogous theorem to Theorem 4.2 has been obtained for almost claw-free
graphs by Broersma et al. [5].
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We have proved the following two results. The first generalizes Theorem 4.1,
and the second is analogous to Theorem 4.2. These results are independent of the
aforementioned result of Flandrin and Li and generalize the results of Broersma
et al.

Theorem 4.4. If G is a 2-connected partly claw-free graph with δ(G) ≥ (n−2)
3 ,

then G is Hamiltonian.

Theorem 4.5. If G is a 2-connected partly claw-free graph with σ3(G) ≥ n, then
G is Hamiltonian.

5. Proofs of Theorems 4.4 and 4.5

We first introduce some additional notations and prove two auxiliary results.
Let C be a cycle of G with a given orientation. By C, we denote the same cycle

with the reversed orientation. If u, v ∈ V (C) then uCv; denotes the consecutive
vertices on C from u to v in the direction specified. The same vertices in the
reverse order, are given by uCv. We will consider uCv and uCv both as paths
and as vertex sets. We use u+ to denote the successor of a vertex u on C and u−

to denote its predecessor.

Lemma 5.1. Let C be a longest cycle with a given orientation in a partly claw-free
graph G. Let y ∈ V \V (C) and let x be a neighbor of y on C such that x ∈ A and
x−x+ /∈ E(G). Then there exists a vertex d ∈ N(x−) ∩ N(x+) ∩ (V \A), and if
d ∈ V (C) then: either d+ = x− or d− = x+, or there is a path Q1 between d−

and d+ and a path Q2 between x−(x+) and x such that V (Q1) ∩ V (Q2)=∅ and
V (Q1) ∪ V (Q2) = {x−, x, x+, d−, d, d+}.
Proof. Suppose first that y and x− have a common neighbor v ∈ V \A. It is clear
that the choice of C implies that v ∈ V (C), and yv−, yv+ /∈ E(G). Since v is not a
center of a claw, then v−v+ ∈ E(G), and we can extend C by replacing v−vv+ by
v−v+, and x−x by x−vyx, and get a cycle C′ longer than C, which contradicts the
fact that C is the longest cycle of G. Hence y and x− have no common neighbor
v ∈ V \A. By symmetry, y and x+ have no common neighbor in V \A. Since N(x)
is 2-dominated in V \A, there is a vertex d ∈ V \A dominating both x+ and x−.

If d ∈ V (C) then If d+ = x− or d− = x+, we are done. Suppose now that
d+ �= x− and d− �= x+ and consider the subgraph of G induced by {d−, d, d+, x+},
since d is not a center of a claw, at least one of the edges d−d+, d−x+ and d+x+

belongs to G. If d−d+ ∈ E(G), then put Q1 = d−d+ and Q2 = x−dx+x. If
d−x+ ∈ E(G), then put Q1 = d−x+dd+ and Q2 = x−x. If d+x+ ∈ E(G), then
put Q1 = d−dx+d+ and Q2 = x−x. The similar statement for x+ follows by
symmetry. �

In the sequel, let G be a non Hamiltonian 2-connected partly claw-free graph,
let C be a longest cycle in G, and let H be a component of G−V (C). As in [5], we
shall use the following notations. We denote by x1, ..., xk the vertices of NC(H)
occurring on C in the order of their indices, and let Si = x+

i Cx−
i+1 and si = |Si|.
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Clearly, k ≥ 2. Let li denote the length of a longest path between xi and xi+1

with all internal vertices in H(i = 1, ..., k; indices mod k).

Lemma 5.2.
∑k

1 si ≥
∑k

1 li + k

Proof. Let i∈{1,2,...,k} and let Li = y1y2y3...yt be a path of length li between xi

and xi+1 and with all internal vertices in H .
We distinguish several cases.
Case 1. x−

i+1x
+
i+1 ∈ E

Case 1.A. x−
i x+

i ∈ E then si ≥ 1 + li, since otherwise the cycle
C′ = x−

i x+
i xiLixi+1x

−
i+1x

+
i+1Cx−

i will be longer than C.
Case 1.B. x−

i x+
i /∈ E then by Lemma 5.1, there is a vertex

d ∈ N(x−
i ) ∩ N(x+

i ) ∩ (V \A). Suppose first that d /∈ V (C). If
d ∈ Li, ∃j, 1 ≤ j ≤ t, d = yj , then the cycle C′ = x+

i Cxiy1....yjx
+
i

will be longer than C. So d /∈ Li and then si ≥ 1 + li, since
replacing x−

i xiSixi+1x
+
i+1 by x−

i dx+
i xiLixi+1x

−
i+1x

+
i+1 in C, we

get a cycle C′ longer than C. Hence d ∈ V (C). If d− = x+
i ,

then si ≥ 2 + li since otherwise replacing x−
i xiSixi+1x

+
i+1 by

x−
i dx+

i xiLixi+1x
−
i+1x

+
i+1 in C, we obtain a cycle C′ longer than

C. If d+ = x+
i , then si ≥ li. If d = xi+1, then the cycle

xi+1x
+
i Cx−

i+1x
+
i+1CxiLixi+1 is longer than C. If d ∈ Si, then si ≥

2 + li since otherwise replacing in C, d−dd+ and x−
i xiSixi+1x

−
i+1

by Q1, Q2, Li and x−
i+1x

+
i+1 we obtain a cycle C′ longer than C.

Case 2. x−
i+1x

+
i+1 /∈ E.

By Lemma 5.1, there is a vertex d2 ∈ N(x−
i+1) ∩ N(x+

i+1) ∩ (V \A)

Case 2.A. x−
i x+

i ∈ E. This case is symmetric to the case 1.B.
Case 2.B. x−

i x+
i /∈ E. By Lemma 5.1, there is a vertex d1 ∈

N(x−
i )∩N(x+

i )∩(V \A). Using similar arguments as the case 1.B,
we obtain that d1, d2 ∈ V (C).
Clearly d1, d2 /∈ {x−

i , x+
i , xi, xi+1, x

−
i+1, x

+
i+1}. Suppose d1 = d2

and assume without loss of generality d1 ∈ x+
i+1Cx−

i . Consider
the subgraph 〈{d1, x

−
i , x+

i , d−1 }〉, since d1 is not a center of a claw,
then, at least one of d−1 x−

i or d−1 x+
i is an edge of G, and, then the

cycles d1Cx−
i d−1 Cxi+1LixiCx−

i+1d1 or d1CxiLix
−
i+1Cx+

i d−1 Cx+
i+1d1

respectively contradict the choice of C. Hence d1 �= d2. Suppose
d1d2 ∈ E(C) and assume without loss of generality d1 ∈ x+

i+1Cx−
i .

If d2 = d−1 , then the cycle xiCd1x
+
i Cx−

i+1d2Cxi+1Lixi is longer
than C. If d2 = d+

1 , then the cycle xiCd2x
−
i+1Cx+

i d1Cxi+1Lixi

is longer than C. Hence d1d2 /∈ E(C). Using similar arguments
as above, we obtain the following lower bounds on si in the nine
possible cases:

(i) d−1 = x+
i

(i.1) d+
2 = x−

i+1 then si ≥ 3 + li
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(i.2) d−2 = x+
i+1 then si ≥ 1 + li

(i.3) d+
2 �= x−

i+1, d−2 �= x+
i+1 then si ≥ 3 + li if d2 ∈ Si

si ≥ 3 + li if d2 /∈ Si;
(ii) d+

1 = x−
i

(ii.1) d+
2 = x−

i+1 symmetric to the case (i.2)
(ii.2) d−2 = x+

i+1 then si ≥ −1 + li

(ii.3) d+
2 �= x−

i+1, d−2 �= x+
i+1 then si ≥ 1 + li if d2 ∈ Si

si ≥ li if d2 /∈ Si;
(iii) d−1 x+

i and d+
1 �=x−

i

(iii.1) d+
2 = x−

i+1 symmetric to the case (i.3)
(iii.2) d−2 = x+

i+1 symmetric to the case (ii.3)
(iii.3) d+

2 �= x−
i+1, d−2 �= x+

i+1 then si ≥ 1 + li.

We obtain the result by summing up all si (i = 1, .., k). �

5.1. Proof of Theorem 4.4

Using Lemmas 5.1 and Lemma 5.2, only minor changes are needed to adapt the
proof given in [5] for almost claw-free graphs.

Assume δ(G) ≥ n−2
3 . Using Lemma 5.2, we obtain:

n ≥ ∑k
1 si + k + 1 ≥ ∑k

1 li + 2k + 1 ≥ 4k + 1 ≥ 9.
Suppose V (H) = {v}, then:

n − 2
3

≤ δ(G) ≤ d(v) ≤ k ≤ n − 1
4

,

and that leads to a contradiction.
Hence no component of G − V (C) is an isolated vertex. We may assume

|V (H)| ≥ 2. Among the pairs v1, v2 ∈ V (H) for which

|Nc(v1)| + |Nc(v2)|is as large as possible (5.1)

choose a pair {u, v} such that

|NC(u) ∪ NC(v)|is as large as possible. (5.2)

If |NC(u) ∪ NC(v)| ≤ 1, then (1) and (2) imply |NC(H)| ≤ 1, a contradiction.
Hence |NC(u) ∪ NC(v)| ≥ 2. Moreover, by the 2-connectedness of G, we may
assume u and v are chosen in such a way that uy1, vy2 ∈ E(G) for two distinct
vertices y1, y2 ∈ V (C). Let p = |NC(u)|, q = |NC(v)| and r = |NC(u) ∩ NC(v)|.
Assume, without loss of generality that p ≥ q, and let 1(u, v) denote the length of
a longest path between u and v in H . Denote NC(u)∪NC(v) by {x1, ..., xt}, where
the vertices occur on C in the order of their indices. Then, using Lemma 5.2 for
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this subset {x1, ..., xt} of NC(H), we obtain:

n ≥ |V (H)| + |V (C)|

≥ |V (H)| +
t∑

1

si + t

≥ |V (H)| +
t∑

1

li + 2t ≥ |V (H)| + 4t + max{2, r}.l(u, v). (5.3)

We distinguish two cases.

Case 1. p + q ≤ δ(G) − 1.
By the choice of u and v, dH(v1)+dH(v2) ≥ 2δ(G)−(p+q) ≥ δ(G)+1 ≥ (n+1)/3

for all v1, v2 ∈ V (H). By Theorem 2.3, G is 1-tough. Using the result of Bauer and
Schmeichel [2], |V (C)| ≥ 2δ(G) + 2, hence |V (H)| ≤ n− (2δ(G) + 2) ≤ (n − 2)/3.
Thus dH(v1) + dH(v2) ≥ |V (H)| + 1 for all v1, v2 ∈ V (H), implying, by using
the result of Ore [12], that H is Hamiltonian-connected. In particular, l(u, v) =
|V (H)| − 1. Using (3), we have:

n ≥ |V (H)| + 4t + 2l(u, v) ≥ 3|V (H)| + 4t − 2.

Clearly,

δ(G) + 1 − q ≤ |V (H)|. (5.4)

Hence

n ≥ 3δ(G) + 4t − 3q + 1 = 3δ(G) + t + 3(t − q) + 1
≥ 3δ(G) + 3 ≥ n + 1

which leads to a contradiction.

Case 2. p + q ≥ δ(G).
Using (3) and (4), we have:

n ≥ |V (H)| + 4t + max{2, r}.l(u, v)
≥ δ(G) + 1 − q + 4(p + q − r) + max{2, r}.l(u, v)
= δ(G) + 1 + 2(p + q) + (p + q − r) + p − 3r + max{2, r}.l(u, v)
≥ 3δ(G) + 3 + p − 3r + max{2, r}.l(u, v)
≥ n + 1 − 2r + max{2, r}.l(u, v).

This clearly yields a contradiction in case l(u, v) ≥ min{2, r}. For the remaining
cases assume l(u, v) = 1 and r ≥ l(u, v) + 1.

Then NH(u) ∩ NH(v) = ∅ and hence |V (H)| ≥ 2δ(G) − (p + q).
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By (3),

n ≥ |V (H)| + 4t + r

≥ 2δ(G) − (p + q) + 4(p + q − r) + r

= 2δ(G) + (p + q) + (p + q − r) + (p + q − 2r)
≥ 3δ(G) + 2 ≥ n.

This implies p = q = r = 2, δ(G) = 4, n = 14 and |V (H)| = 4. Now, u and v have
neighbors w1 and w2 in H , respectively, such that w1w2, uw1, vw2 /∈ E(G) (since
l(u, v) = 1). Furthermore, dH(w1) + dH(w2) = 2 since |V (H)| = 4, while on the
other hand the choice of u and v, implies dH(w1) + dH(w2) ≥ 2δ(G) − (p + q) =
8 − 4 = 4, it is a contradiction. �

5.2. Proof of Theorem 4.5

Assume σ3(G) ≥ n. By Theorem 2.3, G is 1-tough. We use Lemma b [1].

Lemma b. Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥ n. Then
every longest cycle of G is a dominating cycle (a cycle such that every edge of G
has at least one end point in this cycle). Moreover, if G is non Hamiltonian, then
G contains a longest cycle C such that max{d(v)/v ∈ V (G) − V (C)} ≥ σ3(G)/3.

Let C be a dominating cycle such that there is a vertex v ∈ V (G)− V (C) with
d(v) ≥ σ3(G)/3 ≥ n/3. By Lemma 5.2 (with d(v) = k),

n ≥
k∑

1

si + k + 1 ≥
k∑

1

li + 2k + 1 ≥ 4
3
n + 1

a contradiction. �

6. Concluding remarks

In this article we have defined a new class of graphs generalizing the class of
claw-free graphs. For this larger class of graphs, two new results on Hamiltonicity
have been given. The first one generalizes a result proved for claw-free graphs and
the second is an analogue of one given for the claw-free graphs.

The graph of Figure 3 depicted in [11] shows that Theorem 4.4 is the best
possible, but we do not know whether Theorem 4.5 is.

As every almost claw-free graph is partly claw-free graph, the results proved for
almost claw-free in [5] will be corollaries of Theorems 4.4 and 4.5.
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Figure 3.
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