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Abstract. In this work, we study an optimal control problem deal-
ing with differential inclusion. Without requiring Lipschitz condition
of the set valued map, it is very hard to look for a solution of the
control problem. Our aim is to find estimations of the minimal value,
(), of the cost function of the control problem. For this, we construct
an intermediary dual problem leading to a weak duality result, and
then, thanks to additional assumptions of monotonicity of proximal
subdifferential, we give a more precise estimation of («). On the other
hand, when the set valued map fulfills the Lipshitz condition, we prove
that the lower semicontinuous (l.s.c.) proximal supersolutions of the
Hamilton-Jacobi-Bellman (HJB) equation combined with the estima-
tion of (), lead to a sufficient condition of optimality for a suspected
trajectory. Furthermore, we establish a strong duality between this op-
timal control problem and a dual problem involving upper hull of Ls.c.
proximal supersolutions of the HJB equation (respectively with contin-
gent supersolutions). Finally this strong duality gives rise to necessary
and sufficient conditions of optimality.
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INTRODUCTION

In this work, we study a Mayer optimal control problem dealing with differential
inclusion. Many works are interested by the same problem, giving rise to charac-
terization of optimal solutions on terms of solutions of Hamilton-Jacobi-Bellman
Equation (HJB). These results are obtained under a Lipschitz condition of the
set valued map (or the single valued map if we deal with differential equation),
see for instance [12,15,21-23,33]. But it is well known that there are several sit-
uations where Lipschitz condition is not fulfilled. One of them is the differential
inclusion theory. In this framework, the Lipschitz condition not appear to be a
standing assumption under which we look for solution, equilibrium, stability and
asymptotic behavior of trajectories. The standing assumptions are the so called
Peano assumptions , that is, the set valued map of differential inclusion is upper
semicontinuous with nonempty, compact, convex values and satisfies the linear
growth condition (see [4], Chap. 10, and [1,2]). On the other hand, for many prob-
lems arising from different areas and formulating in terms of the following optimal
control problem:

(Pe) infJ(z) := g(x(T))

z(t) = f(t,x(t),u(t)) a.e. t €[0,T] (0.1)

u(t) e U ae. t€[0,T], x(0)= wxo.
Equation (0.1) may take several sophisticated forms as closed loop control z (t) =
ft,z(t),ult,z(t)) or z (t) = A(:L'(t))%(B(:L’(t)) + C(x(t)) where the velocity de-
pends not only upon the state 2 but also on variation of observations B(z) or
potential z (t) = —VV(x(t)),... In such situations, often the control wu(t,z) is
not Lipschitz, this is the case of bioeconomic models where we deal with capital
and investment (control) with infinite value (this means that the control is discon-
tinuous and hence the Lipschitz condition is not fullfieled, such phenomenas are
economically viewed as instantaneous jump of capacity, see [11]). Similarly the
observation or potential are often not continuous and instead VV (z(t)) we invoke
the subdifferential OV (x(t)) (see [2], introduction). Finally, when we reduce the
problem P. to a differential inclusion problem, by choosing the parameterized set
valued map F' associated with f and defined by F(¢,z) := {f(¢t,z,u) : w € U}. The
continuity of f (the most smoothness property does generally found) is not enough
to guarantee that F is Lipschitz. Indeed, from the celebrate Filippov lemma, F
is only upper semicontinuous (see Prop. 15, Chap. 3, [3], [2,4] and [15], Ex. 1.3,
Chap. 4). However, without requiring Lipschitz condition of the set valued map
it is very hard to look for solutions of control problem, since in this case, the
value function is not necessary lower semicontinuous (l.s.c.) and hence we can’t
neither characterize it as a l.s.c. solution of Hamilton-Jacobi-Bellman equation
(HJB), nor use this last equation to provide sufficient conditions of optimality.
To overcome this situation, another approach by means of duality can be used to
study control problem (see [29-31]). Unfortunately, without Lipschitz and convex
assumptions, duality gaps may occur. Our attention in this paper is focused upon
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duality. The duality combined with HJB equation as it presented here, contains
two features: first we establish a weak duality between control problem (primal
problem) and a dual problem (called intermediary dual problem) without Lipschitz
assumption, and then, thanks to additional assumptions involving the relationship
between monotonicity properties and the proximal subdifferential, we give a more
precise estimation of the cost function of control problem. Another feature is the
fact that under additional Lipshitz assumption, we show that proximal HJB equa-
tion combined with the estimation of the cost function confirm the optimality of
a suspected candidate. Furthermore, in this case, we establish a strong duality
between this optimal control problem and a dual problem involving upper hull of
L.s.c. proximal supersolutions of the HJB equation (also with contingents superso-
lutions), which extend partially the duality established in [29] between an optimal
control problem and a dual problem involving the continuous viscosity solutions
of HJB equation. This strong duality provides necessary and sufficient conditions
of optimality. We arrange the paper as follows: in Section 2, we state the control
problem formulation and assumptions under which we work. In Section 3, we in-
troduce the intermediary dual problem and prove weak duality and estimations.
In Section 4, we prove sufficient conditions of optimality by combining estima-
tion and the proximal HJB equation supersolutions. Thereafter, we introduce the
proximal dual problem and prove strong duality. Finally, in Section 5, we provide
necessary and sufficient conditions of optimality.

1. PRIMAL PROBLEM

In this work, we are interested by the following Mayer optimal control problem
dealing with differential inclusion:

o= inf J(x) = g(«(T)),

(P) i (t) € F(t,z(t)), pp.t€[0,T),
x(0) = xo.

The infimum is taken over x : [0,7] — R™ absolutely continuous (x € AC), a class
of functions we call arcs.

The function g: R™ — R, the set valued map F : [0,7] x R"~R"™ and g are
the datas of the problem. We recall that the function € AC is a trajectory of F’
if z (t) € F(t,z(t)) a.e. t € [0,T).

Consider the following set

Sie,11(§) := {z trajectory of I on [t, T such that x(t) = £}.
Then an arc x is admissible for (P) iff x € Sy, (o).

The value function V' : [0, 1] xR ™ — R U{£o0} associated with the problem (P)

is given as follows:

V(t,§) = inf{g(z(T)) : & € S, 71 () }- (1.1)
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Remark 1.1.
e Sometimes we deal with constraints as z(T") € K (see [21] and [22]), these
type of constrains may be penalized by taking

G(.):=g()+¥k(.),
where W (.) is the indicator function

0if z € K,
+00 otherwise.

Upe(z) = {

e It is easy to show that V satisfy the following assertions:
(1)
V(T,§) =9(§), VEeR™ (1.2)
(2) For all x € S, 77(§) the function

s = V(s,2(s)),

is nondecreasing.
(3) If Z is an optimal solution of (P) then, for all ¢ € [0,T],

V(t,2(t) = g(z(T))- (1.3)

Basic hypotheses

H,— g is lower semicontinuous (l.s.c.).

Hy— V (t,x) € [0,T] x R™, the set F(t,z) is nonempty, compact, convex and
there exist a constants v > 0 and ¢ > 0 such that, for all (¢, x)

veEF(t,x) = |v|| <vlz||+¢ (1.4)

where ||.|| denotes the Euclidean norm.
Hs— F is upper semicontinuous, that is, for all ¢ > 0, there exist § > 0 such
that, A4 (tl —to, 1 — IQ) S Ba(O),

F(t1,$1) CF(tQ,I2)+€Bl(O), (15)

where Bjs(0) denotes the open ball in R™"1, of center 0 and radius § and Bi(0)
denotes the open ball in R", of center 0 and radius 1.

For some results, we require the local Lipschitz property of F":

H,— F is locally Lipschitz, that is, for all ¢ > 0, there exist ¢. > 0 such that,
V (t1 —ta, 1 — x2) € B(0),

F(tl, Il) C F(t2,$2) + C<H(t1 —to, 21 — IQ)HBl(O) (16)

The assumptions Hi-H3 guarantee the existence of a solution of optimal control
problem (P) (see [30] and also [12]).
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Proposition 1.2. Under the required assumptions H,-Hs, the infimum of prob-
lem (P) is achieved.

Furthermore, if the hypothesis Hy is satisfied then the value function V' is lower
semicontinuous.

2. ESTIMATION OF THE MINIMAL VALUE « OF (P)

2.1. INTERMEDIARY DUAL PROBLEM

Under the hypotheses Hy — H3 and without Lipschitz assumption of the set
value map F', the value function V' is not necessary l.s.c. and we can’t then use
HJB equation to characterize optimality. In this case, it will be interesting to
look for an estimation of the minimal value, «, of the problem (P). The idea we
follows is to establish a weak duality between the problem (P) and an appropriate
dual problem (called Intermediary dual problem) involving l.s.c. functions, and
hence, thanks an adequate admissible function of the dual problem fulfilling some
monotonicity properties, we provide a ‘more precise’ estimation of a.

Let us first define the intermediary dual problem formulating as follows:

. @(tv g) - 90(0; IO)

= T. f Tl xR"™

(Dy) Pr Sl;p{ (t,€) el]r(l),T]an t +¢(0,20) 010, TIXRT,
o(T,.) <g(.) on R"

where ¢ : [0,T] x R™ — RU {+0o0} is a l.s.c. function.
We now study the relationship between the primal problem (P) and (Dy). With-
out Lipschitz assumption of the multifunction F', we prove a weak duality result.

Proposition 2.1 (weak duality). Under the assumptions Hy — Hs, we have the
following weak duality

a > fr.
Proof. The assumptions H; — Hs guarantee that there exist a solution of the
differential inclusion & = F(t,x(t)), z(to) = £ for all (¢9,&) € [0,T] x R™. This
means that there exist an admissible arc of the problem (P). On the other hand,
we have

9(x(T)) = (T, x(T)),
for each admissible arc z of (P) and for each admissible function ¢ of (Dy).
By adding and substituting the term (0, xo), we obtain

9(x(T)) = (T, 2(T)) = (0, 20) + (0, o)

which implies that
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So,

. (p(ta I) - @(O,xo)
) >T. f
g(x( )) - (t,z) El]%,T]x]R" t

+ ()0(05 IQ)-

This occur for all  and ¢ admissible for (P) and (D) respectively.
It follows that

. . p(t, ) — (0, z0)
T)) > T. f 0
I%ng@())_sgp{ (1, ) €]0,7]xR t +¢(0,20) ¢,
and hence
a > fr. U

The weak duality proved in Proposition 2.1 may be shown as a first estimation
of a.

2.2. ESTIMATION OF THE MINIMAL VALUE, «, OF (P)

We have established a weak duality, but in the framework of hypotheses H; — Hg,
the duality gaps may occur and strong duality may fails to exist. Our aim here is
to invoke the concept of proximal subdifferential, since it present a suitable prop-
erties of monotonicity, to provide a more precise estimation of the minimal value,
a, of (P). As it is well known in literature, we define a proximal subdifferential as
follows (for more details, see [12,15,17]).

Definition 2.1. Let ¢ : [0,7] x R" — (—00,+0o0] be an extended-valued lower
semicontinuous function. The proximal subdifferential of ¢ at (¢,z) € [0,T] x R"
is given by:

yi={& e R"™ 1 30 >0, § >0 st os,y) > ot,z)—o|t,z) —
+ (& (t,z) — (s,9)) V(s,y) € (t,x) + B},

where (a,b) denotes the inner product of the vectors a and b and B denotes the
open unit ball.

Theorem 2.2. Under the assumptions Hy — Hs.
Let & € Sjo, 11(x0), ¢ admissible for (D) and consider the following function
W:tel0,T] — o(t,Z(t)) such that
(1) For each t € [0,T) fized, if & € O,W(t) then & < 0;

(2) @(T,2(T)) = g(Z(T)).
Then we have the following estimation of o:

L @ltr) — 3(0,m)
(t,z) €]0,T] xR" t

9(x(T) +T < a<g(@(T)). (2.1)
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Proof. Condition (2) implies that g(z(T")) = @(T,Z(T)) and condition (1) imply
that the function W is decreasing.
In particular,

W(T) < W(0).
Which means that
G(T,z(T)) < (0, z0).
Hence,
9(z(T)) < (0, o).
On the other hand, for all x admissible for (P), we have

9(x(T)) = o(T, x(T)) = 0.

So, by combining the last two inequalities, we obtain for all z admissible of (P),
that

9(@(T)) < @(0,20) + g(=(1)) — &(T', 2(T)).
It follows that

_ BTa(T) ~ B0, 20)

g(Z(T)) < g(x(T)) T 7

and hence for all z admissible for (P)

i inf (,/O\(t,l‘) - 82(07330)
(t,x) €]0,T]xR" t

9(&(T)) < g(x(T)) =T

By taking the infimum of g(z(T")) over all admissible arcs z, we obtain that

e Bla) = 3(0,w0)

(T T.
g(:v( ))+ (t,z)el]O,T]x]R" t

< a < g(z(T)),

as required. O

Remark 2.3. By introducing the Dini subderivative (also called contingents sub-
derivative) of a l.s.c. function ¢ : [0,7] x R” — R U {+o0} defined by

Dé(t,x)(s,v) = lim inf plthshot ) =9lba) 5y

s’ — 5w — v, h— 0t h

We can substitute the condition (1) of Theorem 2.2 by the following condition:

1=V (t,x) € Dom(p) : t<T inf D@t z)(1,v) <0,
v € F(t,x)

where $ is the Ls.c. function of Theorem 2.2 and Dom(p) := {(t,z) € [0,T] x
R™ / @(t,z) < +o0}.
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In fact, under assumptions Hs and Hs, this condition is equivalent, (see [22]),
to following:
For all (t,x) € [0,T] x R", there exist T € Sy, 77(), such that Vs € [t,T7,

P(s,7(s)) < @(t, ).

In other words, the function, ¢(.,Z(.)) : t € [0,T] — $(¢,Z(¢)), is decreasing.
So, the estimation (2.1) is true for arc 7.

3. PROXIMAL DUAL PROBLEM

This section is devoted to study the Mayer problem (P) in the case where the
additional assumption Hy is fulfilled. Let us first recall the concept of proximal
supersolution of the HJB equation.

Consider the lower Hamiltonian given by

h:(t,z,§) € [0,T]xR" xR" — min (v,£),

veF (t,x)

where F is the set valued map of problem (P) and (a, b) denotes the inner product
of the vectors a and b and define the augmented Hamiltonian

h:(t,x,0,6) €0, T] x R" x R x R™ — 6 + h(t, z,£).

Definition 3.1. Let ¢ : [0,7] x R — RU {+00} a ls.c. function. We say that
the function ¢ is a l.s.c. proximal supersolution of HJB equation iff

h(t,x, Opp(t,z)) >0, V(t,z) € [0,T] x R". (3.1)

Remark 3.1. Equation (3.1) should be understood in the following sense:

h(t,x,0,€) >0, V(t,z) €[0,T] x R"™ and ¥V (0,&) € Ope(t, ).

Our purpose is to give solutions to a two following situations: first, can the estima-
tion (2.1) provides sufficient conditions of optimality, when the functions involved
in Problem (Dy) are required to be proximal supersolutions of the HIB equation?
On the other hand, the much of hamilton-Jacobi theory has revolved around the
formulation of the appropriate final (initial or boundary) conditions under which
we can characterize the value function as a unique solution of the HJB equation. It
was shown that under final condition of the form tl%jlpylgg o(t,y) = g(z) = o(T, x),

for all x € R™, the value function is the unique solution of the proximal (or con-
tingent) HJB equation, see [14,22,23]. However, with a more general condition of
the form

o(T,.) < g(.) on R, (3.2)
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the unicity of solution of the HIB equation fail to hold. Indeed, if ¢ : [0,T] x
R" — R U {+o0} is a l.s.c. supersolution of the HIJB equation with the final
condition (3.2), then each Ls.c. function ¢ : [0,7] x R" — R U {400} given by

o) = o(T,.) for t =T,

where c is an arbitrary constant, is another supersolution of the this equation. So,
our second object is to characterize in such situations, by means of duality, the
value function as a upper hull of proximal supersolutions of the HJB equation.

{ o(t,.) +cforall t € [0,T],

1st claim. Sufficient conditions

Proposition 3.2. Under the assumptions of Theorem 2.2. If, furthermore the
assumption Hy is fulfilled and @ is a proximal supersolution of HIB equation (3.1),
then T is optimal.

Proof. Tt is well known that @ is proximal supersolution of HJB equation (3.1),
iff (¢, F) is strongly nondecreasing, (see [15] or Prop. 4.7, Chap. 1 in [30]), this
means that, the function

Plox() = te[0,T]— @[t x(t)),

is nondecreasing for each trajectory z of F.
In the other words,

Q/O\(ta :C) > @(Oa :CO) v (ta 1') E]Oa T] x R™.
This implies that

@(tv l‘) - @(Oa 1'0)
t

>0V (tz) €0,T] x R",

and hence N N
t —
in 50( 733) @(Oa 1'0) > 0.
(t,z) €]0,TTxR™ t
This fact combined with the estimation (2.1) imply that

p(t, ) — (0, z0)

z(T)) < g(x(T T. inf
9@ (D) < g(FT) 4T ik t

< a < g(x(T)).

Hence, Z is an optimal solution of (P). O

Remark 3.3. In Proposition 3.2 we invoke hypotheses of Theorem 2.2, which
imply that the function ¢ — W (t) = @(¢t,Z(t)) is decreasing on [0,7]. On the
other hand, the fact that @ is also required to be a proximal supersolution of
the HJB equation, implies that the function ¢ — @(t,x(¢)) is nondecreasing on
[0, T, for all admissible arcs of (P). We deduce that ¢ — @(¢,Z(t)) is constant on
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[0,T1], i.e., the function test $ is constant along an optimal trajectory. This result
keeping with the property (1.3) in Remark 1.1 saying that the value function V is
constant along an optimal trajectory.

2nd Claim. Strong duality
Consider the following dual problem (D):

ﬁ = sup (10(07 x0)7
@
(D) Ihe supremum is taken overy satisfying,
h(t,z,0pp(t,z)) >0V (t,z) € [0,T] x R™,
¢(T,.) < g(.) on R™

Theorem 3.4. Under the assumptions Hy, Ha and Hy, we have

a=[.
Proof. Theorem 2.1 asserts that o > (B, which implies that

in cp(t, 1') — 50(07 l‘o)
(t,z) €]0,T]xR" t
This inequality is fulfilled for each admissible arc z for (P) and ¢ satisfying
o(T,.) < g(.) on R™, in particular for ¢ which is proximal supersolution of the
HJB equation.
On the other hand, as shown in the previous proposition, the fact that ¢ is
proximal solution of HJB equation implies that ¢ satisfies the following inequality

g(x(T)) > T. + (0, z0). (3.3)

ga(t,x) ;90(0;1'0) >0,

Y (t,x) €]0,T] x R™.
So, taking into account of the inequality (3.3), we obtain that

9(x(T)) = ¢(0,z0),

for all z and ¢ satisfying h(t, , 0pp(t,2)) > 0 and ¢(7T),.) < g(.) on R™.
Hence
a > .
Conversely, we know from a result of Clarke, et al. [14], that the Ls.c. value
function fulfills proximal HJB equation.
Hence, since our value function V', under the additional assumption Hy, is L.s.c.,
then it satisfies proximal HJB equation. So, we obtain

V(0,20) =a > 0> V(0,x0).

It follows that
a=p=V(0,x). O
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Remark 3.5. In the same context of Remark 2.3, By invoking the concept of
Dini subderivative, Theorem 3.4 remains true when we substitute the fact that
the functions involved in the dual problem (D) are a proximal supersolutions of
the HJB equation by the following condition:

The function ¢ satisfies

V (t,x) € Dom(y) with ¢t > 0 sup Do(t,z)(—1,—v) <0. (3.4)
veF(t,x)

Under the hypotheses Hy and Hy this condition is equivalent to say, (see [22]),
that for all (t,z) € [0,7] x R, for all z € Sy 71(x), for all s € [t,T7,

p(tx) < p(s, 2(s))-

This implies that the function

p(2() 2 €0, T] = p(t, 2(1)),

is nondecreasing.

This fact permit us to establish, by using the same arguments of the proof of
Theorem 3.4, that

a>pg,

where ' is the supremum of the problem (D) involving the functions ¢ satisfying
the inequality (3.4).

Conversely, in [22], the author prove that the l.s.c. value function satisfies the
condition (3.4). It follows that

V(OaZO) =a> ﬂ/ > V(O,Io)

Which implies that
a=0.

4. NECESSARY AND SUFFICIENT CONDITIONS

We now show that when the uniqueness result of the solution of the HJB equa-
tion not arise. We can use the strong duality between control problem and a
dual problem involving upper hull of proximal supersolutions of HJB equation to
provide necessary and sufficient conditions of optimality.

Theorem 4.1. Under assumptions of Theorem 3.4.

Let & be an admissible arc for (P), then & is an optimal solution of (P) iff there
exist a sequence of l.s.c. functions (on)n proximal supersolutions of HJB equation
on [0,T] x R™ and satisfying

on(T,.) < g(.) on R" (4.1)



212 M. SERHANI AND N. RAiSSI

and
lim ¢,(0,20) = J(Z). (4.2)

n—-+o0o

Where J is the cost function of the Mayer optimal control problem (P).

Proof. Necessary conditions: assume that Z is optimal for (P).
Let (¢n)n be a maximizing sequence for (D), it follows that

on(T,.) <g(.) on R"

and that
lim ¢, (0,20) = sup (0, o).

n—-+o00
The supremum is taken over all ¢ admissible for (D).
The equality (4.2) combined with duality Theorem 3.4 and the fact that a =
J(&) imply that
lim ¢,(0,20) = J(&).

n—-+4oo
Sufficient conditions: assume now that there exist a sequence of l.s.c. functions
(¢n)n proximal supersolutions of HJB equation on [0, 7] x R™ and satisfying con-
ditions (4.1) and (4.2).
Then for all n, ¢, is admissible for (D) and hence

cpn(oa 1'0) < sup 50(07 l‘o).

The supremum is taken over all ¢ admissible for (D).
On the other hand, according to Theorem 3.4 and the fact that o < J(x) for
each z admissible for (P), we conclude that

©n(0,20) < J(2).
By letting n tend towards 0, we obtain that
J(&) < J(x) for all arcs  admissible for (P)

which implies that & is optimal for (P) as required. a

5. CONCLUSION

In this work, we have studied a differential inclusion optimal control problem in
two cases. First, without requiring Lipschitz property of the set valued map, we
have obtained estimations of minimal value of control problem by using duality and
invoking monotonicity properties of proximal subdifferential. On the other hand,
in the context of Lipschitz property, we have proved that proximal HJB equation
combined with estimation of « confirm the optimality of a suspected candidate.
Furthemore, we have established a strong duality between this optimal control
problem and a dual problem involving l.s.c. proximal supersolutions of the HJB
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equation (respectively with contingent supersolutions). This strong duality pro-
vided necessary and sufficient conditions of optimality. This result, extend (and is
in keeping with) the duality established in [29] between an optimal control problem
and a dual problem involving the continuous viscosity solutions of HJB equation.
Indeed, Clarke and Ledyeav [16] (see also [14]), proved that the three concepts of
generalized solutions of HJB equation, namely, viscosity solution [5,6,9,10,18,19],
proximal solution [15] and Subbotin minmax solution are equivalents.

In our future work, we hope apply this proximal duality to optimal control
problems with viability constraint on state (z(t) € K Vte€ [0, T]).
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