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Abstract. In this paper, we examine the influence of approximate
first and/or second derivatives on the filter-trust-region algorithm de-
signed for solving unconstrained nonlinear optimization problems and
proposed by Gould, Sainvitu and Toint in [12]. Numerical experiments
carried out on small-scaled unconstrained problems from the CUTEr col-
lection describe the effect of the use of approximate derivatives on the
robustness and the efficiency of the filter-trust-region method.
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1. Introduction

As most algorithms for nonlinear optimization, the filter-trust-region algorithm
proposed by Gould et al. in [12] for solving unconstrained minimization problems
requires knowledge of first and second derivatives of the objective function f . In
the implementation used to perform numerical experiments of [12], the derivatives
need to be calculated analytically and supplied by the user. So the question we are
interested in here is: is the behaviour of the filter-trust-region algorithm directly
related to the use of exact derivatives?

In some situations, the first and a fortiori the second derivatives may be un-
available. This may be due to the fact that the evaluation of these derivatives is
very difficult, time-consuming or their calculation requires the solution of another
problem. Notwithstanding, the unavailability of the derivatives does not necessar-
ily imply that the objective function we consider is not differentiable. Actually,
in the remainder of this study, we assume that the objective function f is indeed
twice continuously differentiable. One way to fix the issue of unavailability of
derivatives is to use finite-difference approximations to the gradient and/or the
Hessian matrix. Another one, which is more widespread, is secant approximations
to the second derivative matrices, like BFGS or SR1 updates.

The purpose of this paper is to answer the following question: does the use
of approximate derivatives damage the efficiency and the robustness of methods
based on the filter mechanism? This question will be analyzed by studying the
performance of the algorithm over a set of test problems if we do not use exact
derivatives. The first step in our investigation is to see where the first and second
derivatives appear in the filter-trust-region algorithm. This will be done in the
next section after the presentation of the filter algorithm. We can guess that the
first derivative approximation is particularly tricky as the exact gradient is at the
root of the filter method for solving unconstrained problems.

To perform this experimental study will consider two kinds of derivatives es-
timations: finite-difference techniques and secant approximations. Note that our
aim here is only to see if the advantageous behaviour of filter methods described in
many references and, in particular in [12], is directly dependent on the use of exact
derivatives; this is why we will just consider problems of small size. The numerical
study presented in this paper is intended to demonstrate the importance or not
of the exact derivatives in the filter-based approach and not to provide a high
performance solver in the case where derivatives are unavailable, which is beyond
the scope of this work. Note that if one wants to treat large-scale optimization
problems, it is preferable to use limited memory BFGS update (see [1] and [14]),
this technique allows to considerably reduce the storage issue caused by the BFGS
update.

We briefly describe the algorithm and the filter technique in Section 2. Section 3
will be devoted to the description of the different ways chosen to approximate the
derivatives. We next present our numerical experiments in Section 4 and a brief
conclusion is finally given in Section 5.
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2. The problem and algorithm

We consider solving the nonlinear unconstrained optimization problem

min
x∈IRn

f(x), (1)

where f is a twice continuously differentiable function of the variables x ∈ IRn.
The idea of the algorithm is to combine a trust-region method (see [3]) with filter
techniques (see [6]). The aim of the filter in this algorithm is to encourage conver-
gence of iterates to first-order critical points by driving every component of the
objective’s gradient

∇xf(x) def= g(x) = (g1(x), . . . , gn(x))T (2)

to zero. As in [7], this algorithm uses a multidimensional filter where each entry
of it is a component of the gradient (see Fig. 1).

The philosophy of the method used to compute the trial point is to calculate a
quadratic model mk of the objective function in a trust-region centered at xk,

Bk = {xk + s | ‖s‖ ≤ Δk}, (3)

where ‖ · ‖ is the Euclidian norm on IRn and Δk > 0 is the trust-region radius. A
trial step is then computed by minimizing the model (possibly only approximately).
Traditional trust-region algorithms then evaluate the objective function at the trial
point x+

k = xk + sk and, if the reduction achieved in the objective function is at
least a fraction of that predicted by the model, the new trial point x+

k is accepted as
the new iterate xk+1 and the trust-region radius is possibly enlarged. Otherwise,
if the achieved reduction is too small, the trial point is rejected and the trust-
region radius is reduced. In [12], Gould et al. have used a filter mechanism to
potentially accept x+

k as the new iterate more often than in usual trust-region
algorithms. Indeed, contrary to these methods, they do not require that the trial
point is computed within the trust-region at every iteration. Some steps may not
be restricted to the trust region. Recalling that the notion of filter is based on
that of dominance, we decide that a trial point x+

k is acceptable for the filter F if
and only if

∀g� ∈ F ∃ j ∈ {1, . . . , n} : |gj(x+
k )| < |g�,j| − γg‖g�‖, (4)

where γg ∈ (0, 1/
√

n) is a small positive constant and where g�,j
def= gj(x�). So we

can say that x+
k is not dominated by x�. Filter methods propose to accept a new

iterate x+
k if it is not dominated by any other iterate in the filter. A filter with four

points and its margin (dashed line), defined by the last term in equation (4), are
represented in Figure 1 for a two dimensional setup, i.e., x ∈ IR2. All trial points
belonging to the region above the dashed line are not acceptable for the filter. The
margin is designed in order to avoid to accept a new point if it is arbitrarily close
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Figure 1. A filter for an unconstrained problem in IR2.

to being dominated by any other point already in the filter. So the filter and the
margin determine a forbidden region.

If an iterate xk is acceptable in the sense of (4) (i.e. if this point is below
the dashed line in Fig. 1), we may wish to add it to the multidimensional filter
F , which is a list of n-tuples of the form (gk,1, . . . , gk,n), such that none of the
corresponding iterates is dominated by any other. We also remove from the filter
all other points that are dominated by the new entry. We refer the reader to [12]
for further detail.

The above-described mechanism is adequate for convex problems, where a zero
gradient is both necessary and sufficient for second-order criticality. However, it
may be unsuitable for nonconvex ones. Indeed it might prevent progress away from
a saddle point, in which case an increase in the gradient components is acceptable.
Therefore, in [12], we have modified the filter mechanism to ensure that the filter is
reset to the empty set after each iteration giving sufficient descent on the objective
function at which the model mk was detected to be nonconvex, and set an upper
bound on the acceptable objective function values to ensure that the obtained
decrease is permanent (see Algorithm 2.1).

In short, the philosophy of the filter-trust-region algorithm is to let the filter
play the main role in ensuring global convergence within “convex basins”, falling
back on the usual trust-region method only if things do not go well or if negative
curvature is encountered. More formally, the algorithm is defined as follows:

Algorithm 2.1. Filter-Trust-Region Algorithm

Step 0. Initialization An initial point x0 and an initial trust-region radius
Δ0 > 0 are given. The constants γg ∈ (0, 1/

√
n), η1, η2, γ1, γ2 and γ3

are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3. (5)
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Compute f(x0) and g(x0), set k = 0. Initialize the filter F to the empty
set and choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX,
the former to be unset.

Step 1. Determine a trial step
Compute a finite step sk that “sufficiently reduces” the model mk and
that also satisfies ‖sk‖ ≤ Δk if RESTRICT is set or if mk is nonconvex.
In the latter case, set NONCONVEX; otherwise unset it. Compute the trial
point x+

k = xk + sk.

Step 2. Compute f(x+
k ) and define the following ratio

ρk =
f(xk) − f(x+

k )
mk(xk) − mk(x+

k )
· (6)

If f(x+
k ) > fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

Step 3. Test to accept the trial step

– Compute g+
k = g(x+

k ).
– If x+

k is acceptable for the filter F and NONCONVEX is unset:
Set xk+1 = x+

k , unset RESTRICT and add g+
k to the filter F if either

ρk < η1 or ‖sk‖ > Δk.
– If x+

k is not acceptable for the filter F or NONCONVEX is set:
If ρk ≥ η1 and ‖sk‖ ≤ Δk, then

set xk+1 = x+
k , unset RESTRICT and if NONCONVEX is set,

set fsup = f(xk+1) and reinitialize the filter F to the
empty set;

else set xk+1 = xk and set RESTRICT.

Step 4. Update the trust-region radius
If ‖sk‖ ≤ Δk, update the trust-region radius by choosing

Δk+1 ∈
⎧⎨
⎩

[γ1Δk, γ2Δk] if ρk < η1,
[γ2Δk, Δk] if ρk ∈ [η1, η2),
[Δk, γ3Δk] if ρk ≥ η2;

(7)

otherwise, set Δk+1 = Δk. Increment k by one and go to Step 1.

As said in the introduction, our purpose is to study the influence of using ap-
proximate derivatives on this filter algorithm. We start by identifying where these
derivatives appear in the above-described algorithm. They are present in different
positions of Algorithm 2.1. All derivatives are obviously taken into account in the
definition of the quadratic model of the objective function. We can guess that
the approximation to the gradient will be a critical issue because the gradient is
precisely the quantity we are trying to make zero. So, as in classical minimization
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algorithms, the gradient of the objective function must be known accurately both
for computing the next trial point and for the stopping criteria. The gradient has
also a major role because it determines the filter. Indeed, the first derivatives ap-
pear in particular in the definition of the filter and thus in the filter test acceptance
mechanism. The second derivatives notably influence the fact that the algorithm
chooses to use the filter technique or not. When negative curvature is detected, we
just fall back to a classical trust-region method and then the steps are restricted to
the trust-region. Therefore, if the second-order information is not exact and the
algorithm detects erroneous negative curvature, the convergence may be slowed
down by smaller steps.

3. Approximating the derivatives

In this section, we will describe some different ways to approximate the gradient
∇xf(x) and the Hessian ∇xxf(x) of the objective function.

3.1. finite differences

A common way to approximate first and second derivatives is to use finite-
difference approximations. The technique of finite differencing is inspired by
Taylor’s theorem. In fact, the derivatives are a measure of the sensitivity of the
function to infinitesimal changes in the values of the variables.

Finite-difference gradients. We have chosen two formulae for approximating
the first derivative ∇xf(x) by finite differences. We may define the forward finite-
difference approximation to the gradient componentwise by

(∇xf(x))j ≈ f(x + hjej) − f(x)
hj

, j = 1, . . . , n, (8)

where h ∈ IRn is a vector of stepsizes and ej is the jth unit vector. A more accurate
approximation to the gradient can be obtained by using the central finite-difference
approximation given by

(∇xf(x))j ≈ f(x + hjej) − f(x − hjej)
2hj

, j = 1, . . . , n. (9)

An important issue in the implementation of these formulae is the choice of the
stepsize h. We have tested different stepsizes that are discussed in the section
devoted to the numerical experiments. The forward approximation requires n ad-
ditional function evaluations while the central one requires 2n.

Finite-difference Hessians. Finite-difference approximations are also possible
for second derivative matrices. If the gradient of the objective function is ana-
lytically available, the Hessian matrix can be obtained by applying the forward
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finite-difference formula

(∇xxf(x)).j ≈ B.j =
∇xf(x + hjej) −∇xf(x)

hj
, j = 1, . . . , n, (10)

or the central finite-difference one

(∇xxf(x)).j ≈ B.j =
∇xf(x + hjej) −∇xf(x − hjej)

2hj
, j = 1, . . . , n. (11)

Remark that this column-at-a-time process does not necessarily lead to a symmet-
ric matrix; nevertheless, we can restore the symmetry by applying B = (B+BT )/2.
We have also tested different stepsizes that we will discuss later. The forward for-
mula requires n additional gradient calls while, for the central one, 2n additional
gradient evaluations are needed.

For the case in which even first derivatives are not available, we can use the
following finite-difference formula that uses only function values

(∇xxf(x))ij ≈ Bij

=
f(x + hiei + hjej) − f(x + hiei) − f(x + hjej) + f(x)

hihj
,

1 ≤ i ≤ j ≤ n. (12)

Taking symmetry into account, this approximation requires 1
2 (n2 + 3n) additional

function evaluations to that of f(x). Obviously, this is relatively expensive and
therefore, in practice, this strategy is used only if the cost of a function evaluation
is not too high. So, in the situation where the first and a fortiori the second
derivatives of the function involved in the problem (1) are not available or are
time-consuming, we often prefer to consider derivative-free optimization techniques
(see [4]).

3.2. Secant approximations

We now focus on two popular secant update formulae for second derivative ma-
trices, namely the BFGS and the SR1 updates. The basic idea of these techniques
is to update approximations to the Hessian matrices in some computational cheap
ways. A major advantage of these methods is, of course, that they do not require
computation of second derivatives, neither additional function or gradient evalua-
tions.

Broyden-Fletcher-Goldfarb-Shanno. The BFGS formula is the most wide-
spread secant approximation. The Hessian update can be calculated by

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

, (13)
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where sk = xk+1 −xk and yk = ∇xf(xk+1)−∇xf(xk). Note that if Bk is positive
definite then the update Bk+1 will be also positive definite (when yT

k sk > 0).
In some situations, the updating formula can produce bad results. For example,
when yT

k sk is negative or too close to zero, we can however simply skip the Hessian
update and set Bk+1 = Bk. We also skip the update if yk is sufficiently close to
Bksk.

We must also discuss the choice of the initial Hessian approximation B0. There
are no magic formulae to determine it. It is common to start secant update with
B0 set to the identity matrix. We have tested other choices :

• a multiple of the identity matrix, for example, B0 = |f(x0)| I ;
• B0 can be rescaled before B1 is computed as B0 = yT

0 s0

sT
0 B0s0

I (for more
detail see [15]);

• some finite-difference approximation at x0.

Symmetric rank-one. Contrary to the BFGS technique, which is a rank-two
updating formula, the SR1 is a symmetric-rank-one update; it does not guarantee
to produce a positive definite matrix. However, the SR1 updating formula com-
bined with a trust-region method has proved to be quite useful (see [2]). The SR1
update of the Hessian matrix is given by

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk
· (14)

One of the drawbacks of this method is that the denominator (yk − Bksk)T sk

can vanish or become very small; so, in this case, we skip the update and set
Bk+1 = Bk. The same choices for the initial Hessian approximation than for the
BFGS update can be considered.

4. Numerical results

In this section, we analyze the influence of substituting finite-difference approx-
imations or secant ones for the analytic derivatives on the robustness and the
efficiency of the filter-trust-region algorithm described in Section 2. We want to
see if the advantageous behaviour of filter methods is directly dependent on the use
of exact derivatives. The numerical results are examined by means of performance
profiles proposed by Dolan and Moré in [5]. Performance profiles give, for every
σ ≥ 1, the proportion p(σ) of test problems on which each considered algorithmic
variant has a performance within a factor σ of the best.

We now discuss the framework in which our numerical experiments are executed.
Obviously, several of our choices are not the only ones possible or even the only
ones used and therefore, our numerical investigation is not perfect. Our results are
obtained by running the algorithm on 66 unconstrained small-scaled problems from
the CUTEr collection (see [10]). The names of the problems with their dimensions
(i.e. the number of free variables) are detailed in Table 1.
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Table 1. The test problems and their dimension.

Problem n Problem n Problem n
AIRCRFTB 5 EXPFIT 2 MEYER3 3
ALLINITU 4 GROWTHLS 3 OSBORNEA 5
BARD 3 GULF 3 OSBORNEB 11
BEALE 2 HAIRY 2 PALMER1C 8
BIGGS3 3 HATFLDD 3 PALMER1D 7
BIGGS5 5 HATFLDE 3 PALMER2C 8
BIGGS6 6 HEART6LS 6 PALMER3C 8
BOX2 2 HEART8LS 8 PALMER4C 8
BOX3 3 HELIX 3 PALMER5C 6
BRKMCC 2 HIELOW 3 PALMER6C 8
BROWNBS 2 HILBERTA 2 PALMER7C 8
BROWNDEN 4 HILBERTB 10 PALMER8C 8
CLIFF 2 HIMMELBB 2 ROSENBR 2
CUBE 2 HIMMELBF 4 S308 2
DENSCHNA 2 HIMMELBG 2 SINEVAL 2
DENSCHNB 2 HIMMELBH 2 SISSER 2
DENSCHNC 2 HUMPS 2 SNAIL 2
DENSCHND 3 JENSMP 2 STRATEC 10
DENSCHNE 3 KOWOSB 4 VIBRBEAM 8
DENSCHNF 2 LOGHAIRY 2 WATSON 12
DJTL 2 MARATOSB 2 YFITU 3
ENGVAL2 2 MEXHAT 2 ZANGWIL2 2

In each case, the starting point supplied with the problem was used. All tests
were performed in double precision on a workstation with a 3.2 GHz Pentium IV
biprocessor and 2GB of memory under SUSE Professional 9.0 Linux and the Lahey
Fortran compiler (version L6.10a) with default options.

Note that the algorithm as described in Section 2 lacks a formal stopping cri-
terion. In practice, the algorithm stops if

‖gk‖ ≤ 10−6
√

n, (15)

where gk stands for ∇xf(xk) or an approximation to this gradient, and the flag
NONCONVEX is unset. All attempts to solve the test problems were also limited to a
maximum of 1000 iterations or 1 hour of CPU time. As in [12], the variability of
CPU times for small times is taken into account by repeatedly solving the same
problem until a threshold of ten seconds is exceeded and then taking the average
per run. We have used the values γ1 = 0.625, γ2 = 0.25, γ3 = 2,η1 = 0.01,
η2 = 0.9, Δ0 = 1 and

γg = min
[
0.001,

1
2
√

n

]
, (16)
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where the constant γg appears in (4). We have tested two particular variants.
The first, called filter, is the algorithm as described in Section 2, where, at each
iteration, the trial point is computed by approximately minimizing the model
mk(xk + s) using the Generalized Lanczos Trust-Region algorithm of [8] (without
preconditioning) as implemented in the GLTR module of the GALAHAD library
(see [11]). This procedure is terminated at the first step s for which

‖∇xmk(xk + s)‖ ≤ min
[
0.1,

√
max(εM , ‖∇xmk(xk)‖)

]
‖∇xmk(xk)‖, (17)

where εM is the machine precision. In addition, we choose

fsup = min(106|f(x0)|, f(x0) + 1000) (18)

at Step 0 of the algorithm. Based on practical experience [13], we also impose that
‖sk‖ ≤ 1000Δk at all iterations following the first one at which a restricted step
was taken.

The second algorithmic variant is the trust-region (TR) method, that is the
same algorithm except that no trial point is ever accepted in the filter; therefore
trial points are always restricted to the trust-region.

Two strategies are used for the approximation to the derivatives: finite-difference
techniques and secant approximations. We also include a comparison with a per-
turbation of the exact Hessian matrix. Incorporating our two algorithmic variants
in the different methods used to approximate the derivatives, we obtain more than
70 tested variants. For completeness, the behaviour of the two variants using the
exact first and second derivatives is also shown.

4.1. Finite-difference derivatives

Firstly, we consider the effect of substituting finite-difference approximations
for the analytic derivatives on the algorithm. We also analyze the practical choice
of stepsizes in computing these approximations.

We first discuss the case where the exact first derivatives are available. In
Section 3, we have seen two formulae to approximate the Hessian matrices, the
forward (10) and the central one (11). We now have to choose the finite-difference
stepsize in practice. For this selection, we have to make a compromise between
large rounding errors (small stepsize) and large approximation errors (large step-
size). We have tested different choices from the literature which are given in
Table 2.

We obtain the best result with the third stepsize for the forward formula and
with the first stepsize for the central one; therefore we present our results with these
choices. Figures 2 and 3 show the efficiency in terms of number of iterations and
CPU time for the filter variant and the trust-region one, both with exact second
derivatives and forward and central finite-difference approximations to them.
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Figure 2. Iteration performance profile for the two variants with
exact derivatives and approximate second derivatives by finite dif-
ferences when the gradient is available.
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Figure 3. CPU time performance profile for the two variants
with exact derivatives and approximate second derivatives by fi-
nite differences when the gradient is available.
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Table 2. The different stepsizes.

Forward Central
Stepsize 1

√
εM

3
√

εM

Stepsize 2 sign (xj)
√

εM max(|xj |, 1) 3
√

εM (1 + |xj |)
Stepsize 3

√
εM max(|xj |, 1) 3

√
εM max(|xj |, 1)

Stepsize 4
√

εM (1 + |xj |) sign (xj) 3
√

εM max(|xj |, 1)
Stepsize 5 - 10−4(1 + |xj |)

Table 3. The different stepsizes.

Stepsize for ∇xf Stepsize for ∇xxf
Forward Stepsize 1

√
εM

4
√

εM

Stepsize 2
√

εM sign (xj) 3
√

εM max(|xj |, 1)
Stepsize 3

√
εM sign (xj) 4

√
εM max(|xj |, 1)

Central Stepsize 1 3
√

εM
4
√

εM

Stepsize 2 3
√

εM sign (xj) 4
√

εM max(|xj |, 1)
Stepsize 3 sign (xj) 3

√
εM max(|xj |, 1) sign (xj) 3

√
εM max(|xj |, 1)

Stepsize 4 sign (xj) 3
√

εM max(|xj |, 1) sign (xj) 4
√

εM max(|xj |, 1)
Stepsize 5 10−4(1 + |xj |) 10−4(1 + |xj |)

Whereas the filter variants using approximate Hessian matrices are even better
in terms of number of iterations than the trust-region method with exact deriva-
tives, we obviously can observe in Figure 3 that the finite-difference versions are
much more computationally expensive than the exact derivatives variants. As
predicted in Section 3, the finite-difference techniques require additional gradient
evaluations and are thus more costly. Moreover, some small negative curvature
in the Hessian matrix may remain undetected when it is approximated by finite-
differences formulae. However, we can point out the fact that the filter algorithmic
variant with approximate second derivatives by finite-difference techniques is sig-
nificantly better as well in terms of iteration count as in terms of CPU time than
the corresponding trust-region variant. The use of approximate Hessians by finite
differences within a filter-trust-region framework does not seem to have more in-
fluence than such an approximation in the more classical trust-region scheme. The
two plots in Figure 4, showing the iteration and CPU time performance profiles
for the two variants with the Hessian approximated by central finite differences,
clearly illustrate this fact.

We now examine the case where even the gradient of the objective function
is not available; so both first and second derivatives are to be approximated by
finite-difference formulae. The Hessian matrices are approximated by (12) and the
gradient either by the forward formula (8) or by the central one (9). The tested
stepsizes are stated in Table 3.

The stepsizes that give the best performances on our test problem set are the
third one when the first derivatives are approximated by forward finite differences
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Figure 4. Iteration and CPU time performance profiles for the
two variants with approximate second derivatives by central finite
differences when the gradient is available.

and the second one when they are estimated by the central finite differences. We
can see these results in Figures 5 and 6.

As expected in Section 3, the variants with both derivatives approximated by
finite differences using only function values are computationally very expensive and
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Figure 5. Iteration performance profile for the two variants with
exact derivatives and approximate first and second derivatives by
finite differences.

are less efficient and robust than those where the gradient is available. This CPU
time penalty is, for a part, due to the fact that more iterations are now needed but
also to the fact that lots of function evaluations are required to approximate the
gradient and the Hessian. As the first derivative is exactly the criticality measure
we are trying to drive to zero, this proves its importance in the filter algorithm as
in other algorithms for unconstrained minimization. However, we can point out
the fact that, even with these approximations to both first and second derivatives,
each filter variant is significantly better than its corresponding trust-region variant.

4.2. Secant approximations

We now present our numerical experiments with the secant approximations
to the Hessian matrix: the BFGS and the SR1 update formulae. Note that in
these results the exact gradient is used. We have already discussed in Section 3
different choices for the initial matrix, B0. However, for the BFGS update, it is not
convenient to set B0 to a finite-difference approximation to ∇2

xxf(x0). The reason
being that secant methods based on this updating formula must be initialized with
and must maintain a positive definite Hessian approximation. But with an initial
approximation matrix computed by finite differences, there is no guarantee that
B0 will be positive definite. So, if one wants to use this initial approximation, the
approximate matrix must be perturbed into a positive definite one. However, it is
interesting to note that, in practice, the filter-trust-region algorithm using BFGS
updates behaves very well with an initial finite-difference approximation without



HOW MUCH DO APPROXIMATE DERIVATIVES HURT FILTER METHODS? 323

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

 

 

Filter exact
TR exact
Filter central
TR central
Filter forward
TR forward

Figure 6. CPU time performance profile for the two variants
with exact derivatives and approximate first and second deriva-
tives by finite differences.

correction. But applying BFGS techniques with an indefinite starting matrix is
not standard in the literature, although the use of a trust region allows for this.
Therefore the results presented below are obtained by setting B0 = I. The left
plot in Figure 7 shows the results in terms of number of iterations and the right
one displays the CPU time. We have excluded problems where variants do not
report the same final objective function value1.

Both BFGS versions are obviously less efficient and robust than the exact ones.
In terms of iteration count and CPU time, the BFGS filter and BFGS pure trust-
region variants are comparable, indicating that using a BFGS approximation to
the Hessian matrix in the filter-trust-region algorithm implies a larger increase in
the number of iterations (and thus in the computation time) than using the same
approximation within a classical trust-region scheme. However, it can be remarked
that the BFGS variants are more competitive in terms of CPU time efficiency
with the exact ones than the finite-difference variants were. It is important to
mention that, since the BFGS update only produces positive definite matrices,
the flag NONCONVEX in Algorithm 2.1 is never set because negative curvature is
never detected while solving the trust-region subproblem. This simplifies our test
acceptance mechanism in Step 3 of the algorithm, and, furthermore, the filter is
never reinitialized to the empty set. We think that, as the algorithm directly relies
on detecting negative curvature, it is more appropriate to use an updating formula

1Problems BIGGS6, GROWTHLS, GULF and JENSMP have been excluded.
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Figure 7. Iteration and CPU time performance profile for the
two variants with exact derivatives and BFGS approximate second
derivatives.

which allows to generate indefinite Hessian approximations, like the symmetric-
rank-one update. This should indicate that the ability of using nonconvex models
for the computation of the trial step might be important in the filter-trust-region
algorithm.
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We thus consider the SR1 update. Note that the SR1 Hessian approximation
is not restricted to be positive definite. Therefore we can now estimate the initial
approximation B0 by a finite-difference technique as this matrix does not need to
be positive definite. Our guess is that, in the filter-trust-region algorithm, the SR1
approximation may prove more accurate than BFGS since if negative curvature is
present, it may reflected in the model. The best results are obtained with a finite-
difference estimation of the Hessian matrix at x0 and these results are displayed
in Figure 8.

It can be seen in these plots that the filter variant with SR1 updating formula
is more efficient both in terms of iterations and CPU time than the corresponding
pure trust-region variant, but the latter is a little more reliable.

4.3. Comparison

We now present a brief comparison of the different algorithmic variants. As the
number of curves would be very high in a performance profile, we prefer to display
our comparison by using a combined performance plot (see [9]), where each point
consists of the average iteration count and the average CPU time of each tested
variant. Note that we only consider problems for which all variants were successful
(failure is declared if the maximum number of iterations has been reached or if
the step is too short to allow further progress). Therefore, Figure 9 does not give
indication about the robustness of the different variants. We only present results
for the filter variant.

We have also analyzed the effect of perturbing the exact Hessian matrices. We
consider two types of perturbation: either we perturb all elements of the matrix by
a small constant or we only perturb the diagonal elements by this same quantity.
We have tried with 10−4 and 10−6 as disturbance values. We can clearly see in
Figure 9 that the perturbed variants are very close to the exact variant. There are
two main “clusters”. The first one contains the finite-difference variants (either
with first derivatives available or not); these techniques are relatively close in terms
of number of iterations to the exact variant but are much more computationally
expensive. The second cluster includes the secant approximation variants; these
require more iterations but are more comparable in terms of CPU time to the
exact version. As we have excluded problems for which at least one variant has
failed, the plot in Figure 9 does not give overall information about performance of
the variants. For example, BFGS updates are not always better than SR1 ones in
terms of iteration count as one may think when observing Figure 9.

We now present more accurate results for the problems HIELOW and STRATEC,
which have respectively 3 and 10 variables. As previously, we only consider the
filter variant. As expected by the literature, the Quasi-Newton techniques work
well for these nested logit models. It can be noticed in plots of Figures 10 that using
a secant approximation to the second derivatives implies an important increase of
the number of iterations; indeed, this number is nearly doubled for the BFGS
and SR1 variants. However, computational time per iteration is reduced for these
variants, while this measure of time is much higher for the finite-difference versions.
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Figure 8. Iteration and CPU time performance profile for the
two variants with exact derivatives and SR1 approximate second
derivatives.

So we can guess that, for these problems, the evaluation of the gradient is very
expensive. For the problem STRATEC, the variant which requires the most iterations
is the finite-difference approximation in objective function values, this is when the
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Figure 9. Combined performance of all tested variants (only
with the filter).

gradient and the Hessian are approximated by using only function evaluations.
But this algorithmic variant is better in terms of CPU time than the two other
finite-difference estimations in gradient values, certainly because the evaluation of
the function is cheaper than the evaluation of the gradient. Globally, we obtain
a significant gain by using Hessian approximated by secant updates when the
evaluations of the gradient and/or the objective function are too expensive. Even
if they require more than 20 additional iterations for the problem STRATEC, the
variants using the secant update are still competitive from a computational time
point of view.

5. Conclusion

We have presented a practical study of the influence of approximate derivatives
on the filter-trust-region algorithm designed for unconstrained optimization. In
view of the numerical experiments, we can say that, generally, the filter-trust-
region algorithm does not suffer more than the classical trust-region method from
the use of approximate derivatives.
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