
RAIRO-Oper. Res. 43 (2009) 409–420 RAIRO Operations Research

DOI: 10.1051/ro/2009026 www.rairo-ro.org

INCORPORATING THE STRENGTH OF MIP MODELING
IN SCHEDULE CONSTRUCTION

Cor A.J. Hurkens
1

Abstract. Linear programming techniques can be used in construct-
ing schedules but their application is not trivial. This in particular
holds true if a trade-off has to be made between computation time
and solution quality. However, it turns out that – when handled with
care – mixed integer linear programs may provide effective tools. This is
demonstrated in the successful approach to the benchmark constructed
for the 2007 ROADEF computation challenge on scheduling problems
furnished by France Telecom.

Keywords. Scheduling, integer programming, lower bounds, hybrid

methods.

Résumé. L’application de techniques programmation linéaire pour
la résolution de problème d’ordonnancement n’est pas trivial, particu-
lièrement lorsque qu’un compromis entre qualité de la solution fournie
et temps de calcul est recherché. Dans ce cas des heuristiques peu-
vent être couplées pour améliorer les performances des modèles de pro-
grammation linéaire. La combinaison de telles méthodes a montré son
efficacité dans le cadre de la résolution du Challenge ROADEF 2007.

Mots Clés. Planification, programmation en nombres entiers, bornes

inférieures, hybridisation.

Mathematics Subject Classification. 90C11, 90B35.

Received December 1, 2008. Accepted June 17, 2009.

1 Eindhoven University of Technology, Department of Mathematics and Computer Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands; wscor@win.tue.nl

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2009

http://dx.doi.org/10.1051/ro/2009026
http://www.rairo-ro.org
http://www.edpsciences.org


410 C.A.J. HURKENS

Introduction

In this paper we present an approach based on polyhedral techniques for solving
a complex scheduling problem. The working example is the France Telecom techni-
cian assignment problem, posed as a challenge for the ROADEF 2007 competition.

Linear programming techniques are found in the literature concerning sequenc-
ing and scheduling but not in great abundance. For instance they show up for
tackling relatively simple problems such as minimizing maximum lateness for a
preemptive schedule of jobs with release times on unrelated machines [2]. Some
production application can also be found [3], as well as computational studies [1].
Also linear programming models with a combinatorial structure such as flows or
matchings can be fruitful in some scheduling contexts. It is very tempting to use
complete integer linear models for scheduling problems in practical applications.
However, it turns out that more than often, an integer linear programming model
will at best describe formally the underlying problem correctly, while it does not
provide any solution when passed onto a solver. We have taken this opportunity
to test how the strength of MIP modeling can be applied – in practice – to real-
life scheduling challenges. We developed a schedule constructing algorithm with
a lot of subroutines that make use of a CPLEX-library for solving LP and ILP
sub-problems.

The remainder of this paper discusses an analysis of the scheduling problem
that pinpoints the various sections for which a polyhedral approach maybe useful,
and proceeds by giving for the identified parts an appropriate MIP model.

1. Analyzing the France Telecom technician dispatching

problem

1.1. Brief description

The scheduling problems in the 2007 ROADEF challenge were furnished by
France Telecom and involved the daily formation of teams of skilled technicians
and the assignment of tasks to teams over a certain scheduling period. The input
for each problem is a list of tasks to be scheduled, and a list of technicians that –
in conjunction with other technicians – may carry out those tasks. The output is a
schedule which for each day describes a partition of the technicians into teams, an
assignment of some tasks to these teams, and for each scheduled task a processing
time interval. In the overall schedule, some tasks may not be scheduled at all, but
then the total cost of these abandoned tasks may not exceed the predefined budget.
If a task is being abandoned then all its successor tasks must be abandoned as
well. The schedule has to obey certain restrictions regarding the expertise of the
formed teams, and the order in which tasks are being carried out. Tasks have to
be carried out without interruption, in the course of one day. A team can handle
only one task at a time, and stays together for the duration of a day. A team can



MIP MODELS FOR SCHEDULE CONSTRUCTION 411

Table 1. Characteristics of France Telecom problems.

Inst Jobs Techs Reqs Prec LB Cost C1
max C2

max C3
max C4

max

A1 5 5 6 0 2265 2340 60 15 90 -
A2 5 5 6 2 2055 4755 135 - 195 -
A3 20 7 6 0 11310 11880 300 120 360 -
A4 20 7 12 7 10629 13620 210 360 540 -
A5 50 10 6 13 26910 29355 855 240 300 -
A6 50 10 20 11 17625 20280 525 120 780 -
A7 100 20 20 31 28442 32520 600 780 960 -
A8 100 20 20 21 16191 18960 480 180 600 -
A9 100 20 20 22 25553 28320 720 240 960 -
A10 100 15 20 31 36399 40650 1020 435 1200 -
B1 200 20 16 47 32085 35460 420 1005 1755 2610
B2 300 30 15 143 14296 18300 450 165 615 930
B3 400 40 16 57 14610 16965 195 480 870 1305
B4 400 30 120 112 16635 27015 645 240 1005 1575
B5 500 50 28 427 45060 94200 1620 2310 3060 4260
B6 500 30 24 457 24180 30510 750 285 1035 1380
B7 500 100 50 387 25290 33060 720 480 1080 1860
B8 800 150 40 440 31920 32160 480 840 1230 2040
B9 120 60 25 55 25681 28080 720 360 480 960
B10 120 40 25 55 32790 35040 960 360 480 1200
X1 600 60 60 195 87990 151980 2160 4500 5580 6180
X2 800 100 36 536 6075 9090 210 105 330 420
X3 300 50 60 224 37950 50400 720 1440 1920 2400
X4 800 70 105 321 61130 65640 1650 480 2460 2880
X5 600 60 60 201 86145 147000 1980 5340 2760 5760
X6 200 20 36 128 6180 10440 240 90 480 540
X7 300 50 60 235 26220 33120 510 720 1680 2040
X8 100 30 105 40 19050 23580 540 240 990 1140
X9 500 50 60 184 86520 136020 1980 3960 4920 5460
X10 500 40 60 184 97950 131700 1920 3780 4920 5340

handle a task only then, when the cumulative skills of the technicians in the team
dominate the skills required by the task. Tasks can be handled not earlier than at
the latest completion time of all its predecessors.

The quality of a schedule is determined by the weighted sum of completion
times of the various priority classes. Each task belongs to some priority class,
where higher priority classes evidently get a higher weight. A priority class is
considered completed once all of its unabandoned tasks have been completed.

The principal characteristics and results for the thirty Challenge problems are
given in Table 1. In the course of the challenge, three benchmarks were provided.
The first one, A, was a set of relatively small problems. In this set no tasks could



412 C.A.J. HURKENS

be abandoned. Set B contains real-life problems, or at least problems of real-
life size. These two sets were used to fine-tune the algorithms developed for the
challenge. Finally, there was a set X of problems that would be used for the final
ranking. They were not disclosed until after all algorithms had been submitted
and tested. Their complexity was to be comparable to those in set B.

In Table 1 we give for each of the test instances the number of jobs, the number
of technicians, the number of skill requirements, and the number of immediate
precedences between jobs. Moreover we present a lower bound on the objective
function, based on a relaxation described in a later section. In the right half of the
table we give the values of the best solution found. The value of each schedule is a
certain weighted combination of 3 or 4 priority-makespans. Here Cp

max denotes the
latest completion time of a job in the schedule belonging to priority class p. Most
of these were obtained by running the generic implementation of our algorithm for
a period of 40 min or less. For the X-instances a time limit of 20 min was used.

It can be seen from the table that the instances are varying a lot. The A-instances
are relatively small and do not allow to reject (or outsource) jobs. The B-instances
allow for outsourcing jobs (under restrictions) and some of them have a lot of
precedences between jobs. Furthermore, in some B-instances the number of re-
quirements may be rather high.

1.2. Notation and key observations

In the remainder tasks will be indexed by j. A task j has a duration of d(j) time
units where a working day consists of 120 time units. A task must be processed
without interruption by a team of technicians, within a working day. Task j has
a priority P (j) ∈ {1, 2, 3, 4}, where a low number denotes a high priority. In
case task j has to be finished before task k can be started we denote this by
j → k, and we say that j is a predecessor of k and k is a successor of j. In a
schedule let CT(j) denote the completion time of task j in time units. Then, for
p ∈ {1, 2, 3, 4}, the priority makespan of priority p, Cmax(p) or Cp

max is defined
as the maximum completion time CT(j) over all unabandoned jobs with P (j) =
p. Each priority is weighted by a number W (p). In all instances we used the
weights W (1) = 28, W (2) = 14, W (3) = 4, and W (4) = 0. Moreover the overall
makespan denoted by C0

max or Cmax(0) and defined by C0
max = maxp∈{1,2,3,4} Cp

max

was weighted by a factor W (0) = 1. Hence, the value of a schedule is given by∑
p∈{0,1,2,3,4} W (p)Cp

max.
Technicians are indexed by t and days are indexed by d ∈ {0, 1, . . .}. Day d is a

time interval starting at time 120d and ending at 120(d + 1). A technician t may
or may not be available on day d. By Amdd we denote the number of technicians
available on day d. By Cmdd we denote the cumulative number of man-days up
to and not including day d. These numbers will be useful when computing bounds
on priority makespan values.

Teams will be composed for each day in the schedule, where only technicians
that are available can be assigned. On each day a technician is assigned to at most



MIP MODELS FOR SCHEDULE CONSTRUCTION 413

one team. Teams will be indexed by τ . A team can carry out a task only if it
contains enough competent technicians.

In the France Telecom problems, competence was described in terms of skills,
domains and levels. Each instance was characterized by D skill domains, and
within each domain, we consider L levels of expertise. For each technician t we
are given his competence level Comp(t, s) ∈ {0, 1, . . . , L} in skill domain s. Here a
level 0 denotes no competence at all, and a level L refers to a real expert. For the
processing of a task j the necessary team competence is described by a number
Req(j, s, �) denoting the minimum number of technicians in the team that have a
competence level at least � in skill domain s. Note that this definition implies a
cumulative notion, hence we have Req(j, s, �) ≥ Req(j, s, �+1). In the following lin-
ear programming models it is much easier to account for competence requirements
by using a slightly different but equivalent way of bookkeeping competence levels
and requirements. We have D ∗L pairs, and we use an index i ∈ {1, . . . , D ∗L} to
refer to these pairs. For each pair i = (s, �) we denote by a 0/1 value St

i whether
or not a technician t contributes to skill domain s at level � or not. Here a value
St

i = 1 denotes that t has skill level � or higher, in domain s. For i = (s, �) we use
Rj

i = Req(j, s, �) to denote the required level of competence of a team handling
j. So team τ can handle task j if and only if

∑
t∈τ St

i ≥ Rj
i , for all i. In the

remainder one can view i as a skill that a technician has or has not. The numbers
of required skills as mentioned in Table 1 are the products DL.

As already indicated, it is not always the case that an optimal solution is reached
by processing all tasks in order of priority. In the following, both in the construct-
ing heuristics, as well as in the determination of lower bounds on the schedule
cost, we have to prefix the order by which priority classes will be completed. As
priority class 4 does not have a positive weight, it suffices to distinguish between
solutions in which priority classes are completed in order π1, π2, π3, π4, π5 where
(π1, π2, π3) is some permutation of 1, 2, 3, and where π4 = 4 and π5 = 0. For a
given ordering we say that task j contributes to the makespan of πm, if it belongs
to priority class π1, . . . , πm−1 or πm, or if it has a successor task that contributes
to πm. We should only count its contribution if the task is not abandoned.

2. Solution strategy

To have some idea how the solution will look like, and to have an a posteriori
solution quality guarantee, we first compute a lower bound on the value of the
schedule cost. The lower bound is based on a relaxation of the problem by allowing
preemption, and by estimating the minimum number of technicians needed for a
job. Next we construct a solution, partially based on the relaxed schedule. Since
we have four priority classes, three of which having a non-zero weight, we consider
schedules with a fixed order for the makespans C1

max, C2
max, and C3

max. Note that
it may be profitable to process first all jobs of say priority 2, and then the jobs of
priority 1. This is particularly true if there are only few jobs of priority class 2.
The table with solutions indeed shows very good solutions with makespans in



414 C.A.J. HURKENS

other orders than 1, 2, 3, 4. We therefore consider all 6 permutations of priority
classes 1, 2, 3.

2.1. Preprocessing

One of the ingredients in the heuristics developed is the estimation of the size
of teams handling some task j. For this we use the vector of required skills, and
compare it to the skills provided by the technicians. The skill requirement of a task
j is expressed by a vector (Rj

i )i∈S where Rj
i ∈ Z+ denotes the required number

of technicians in the team having skill i. Obviously, the value maxi Rj
i is a lower

bound on the size of a team handling task j. However, it may very well be the
case that no expert has both skill x and skill y. If a task requires a team with
one expert for x and one expert for y, such a team then consists of at least two
experts, even if we have maxi Rj

i = 1. To find the exact minimum of technicians
needed to handle task j we solve for each task j a Mixed Integer Programming
problem. Here, technician t offers skills St ∈ {0, 1}n, and task j requires skills
Rj ∈ {0, 1, 2, . . .}n.

Minimum number of technicians in team doing job j:

μ(j) =

min
∑

t xtj

s.t.
∑

t St
ixtj ≥ Rj

i ∀i = 1, . . . , n
xtj ∈ {0, 1} ∀t.

Evidently, μ(j) ≥ maxi Rj
i .

2.2. Lower bound

Consider a permutation π1, π2, π3 of 1, 2, 3, and define π4 = 4, π5 = 0. For a
given order of the makespans, Cmax(π1) ≤ Cmax(π2) ≤ Cmax(π3) ≤ Cmax(4) ≤
Cmax(0), and a given set of jobs to schedule, a lower bound on Cmax(πm) is found
by calculating the total amount of man-days (technician-units) MD needed to
process all jobs that should be finished by time Cπm

max, and computing the first
time T at which this number of man-days has been made available. If at each day
μ technicians are available T = MD

μ days. If the number of available technicians
varies per day (which is the case here) a simple adjustment is needed. See figure 1
for the more general case.

To estimate the number of technicians needed for a task j we use the lower
bound μ(j) obtained in Section 2.1. By multiplication with the duration, d(j),
and division by 120, it is converted in total required man-days. Lower bounds on
the makespans are computed simultaneously. In case it is considered to abandon
jobs it is really fruitful to formulate the lower bound problem as an integer linear
programming problem. The following Mixed Integer Program models the gen-
eral minimum cost of a preemptive schedule, providing enough man-days to carry



MIP MODELS FOR SCHEDULE CONSTRUCTION 415

day

techn.
nr.

Figure 1. Profile of man-days offered.

out the selected jobs. The variables C(πm) denotes the priority class makespan,
expressed in time-units. Considering the order of priority classes, let amj de-
note the amount of man-days that task j contributes to makespan C(πm). Let
Rmdm =

∑
j amj denote the total man-days of tasks j contributing to C(πm). The

variable Xj indicates whether a task j is abandoned (Xj = 1) or not (Xj = 0).
The cost of abandoning task j is given by Abcj , whereas Budget is an upper bound
on the cost spent on abandoning tasks. For a proper lower bound on the schedule
cost, we must take coefficients Fj = 0. This coefficient is only introduced to allow
for variations on preemptive schedules, as it turns out that there can be difficult
tasks that one may want to abandon with high preference.

Minimize
∑

m W (πm)Cmax(πm) +
∑

j FjXj

subject to:

Cmax(πm) ≤ Cmax(πm+1) ∀m < 5
Cmax(πm) ≥ 120 ∗ d ∗ Zmd + 120Ymd ∀m, d

∑
d Zmd = 1 ∀m

Ymd ≤ Zmd ∀m, d
∑

d(CmddZmd + AmddYmd) ≥ Rmdm − ∑
j amjXj ∀m

Zmd ∈ {0, 1}
Ymd ≥ 0

∑
AbcjXj ≤ Budget

Xk − Xj ≥ 0 ∀j → k

Xj ∈ {0, 1}.

In this formulation variable Zmd indicates whether or not the makespan of prior-
ity class πm is realized on day d, and variable Ymd says which fraction of day d
passes before the makespan is realized. The parameter Cmdd denotes the cumu-
lative man-days offered upto day d, whereas Amdd gives the man-days offered on
day d. The total of required man-days for priority class πm is given by parameter
Rmdm and the term −∑

j amjXj compensates for the not needed man-days for



416 C.A.J. HURKENS

all jobs that have been abandoned. The latter constraints stipulate that the total
abandonment cost should not exceed the available Budget, and that a task can be
abandoned only if all its successors are being abandoned as well.

Computation of this lower bound has several results. First it gives a proper
lower bound on the schedule cost. Second it provides a selection of tasks to be
abandoned. It therefore serves as a starting point in constructing good schedules.
After computing the lower bound, we only consider schedules for the tasks that
have not been abandoned in the lower bound computation.

Note that the lower bounds depend on the prefixed order of priority class com-
pletions. Therefore only the lowest of the six lower bounds (corresponding with 6
permutations) forms a true lower bound on the scheduling cost.

Further note that if we have found a schedule of cost C∗, and if permutation
(π̂1, π̂2, π̂3) yields a lower bound L̂ such that L̂ ≥ C∗, then we do not have to
consider schedules with priority makespans in this order because cheaper solutions
with this makespan order provably do not exist. In this way the lower bound helps
us in not wasting our precious computation time in unprofitable directions.

It turns out that in some cases the computed lower bound is much smaller than
the best solution found. This is usually caused by the fact that the real bottleneck
is formed by a subset of expert technicians. It is possible to obtain stronger lower
bounds than the one described above, by going through the same analysis, with
the exception that the minimum number of required technicians (as provided by
the first procedure) and the number of available technicians per day are restricted
to those technicians that contribute positively to some specific subset of skills. It
is not easy to detect which set of skills will lead to a better lower bound. This
approach might obtain better bounds for instances B5, X1 and X5, for instance.
In instance B5 the lower bound could be raised to nearly 79000, by considering
the demand for technicians that had a non-zero expertise in domain number 7.
There are only a few technicians that give a contribution and there were relatively
many tasks needing expertise in this particular domain. Taking this into account
requires computation of alternative μ′(j), Amd′(d), Cmd′(d), Rmd′(m) and a′

mj

values, restricting everything to technicians skilled in domain 7.

2.3. Constructing solutions

In short, the construction algorithm is based on a strategy of building a solution
from scratch, starting at day 0, assigning a number of jobs in parallel to teams of
technicians. These teams are being built on the fly. For each day, the technicians
that are clustered to a team stay together. The basic ingredient of the algorithm is
a model of matching a number of available jobs (those for which the predecessors
have been scheduled) to a number of teams. here, teams may also refer to a group
consisting of a single technician. Initially, at the beginning of each day, each team
consists of one available technician. The set of jobs is either the complete set of
available jobs, or the set of available jobs with a certain priority class. For the
larger instances the set of candidate jobs had to be reduced to a manageable size.



MIP MODELS FOR SCHEDULE CONSTRUCTION 417

This was done by sorting the candidate jobs according to a certain SortingRule, and
then splitting the sorted sequences into almost equal size parts of approximately
50 jobs. The default SortingRule was based on task-difficulty. One task can be
considered more difficult than another if it requires more expertise, if it requires
more technicians, if it is part of a longer chain of tasks etcetera. Different ways of
quantifying these features lead to different SortingRules.

The ILP formulation has the following form. Here team τ ’s skill Sτ is sum of
technician skills over all technicians assigned to this team; its load λ(τ) is current
work load, that is the total duration of all tasks already assigned to the team; the
team processes its assigned tasks in the order in which they have been assigned,
without any idle time. Task j cannot start earlier than e(j). This earliest starting
time (within the day) is based on the completion time of predecessors of task j
that have already been assigned to a team in the current day. More than one team
can be assigned to a task, but we do not allow two teams that have tasks with
potential successors to be combined. By this we are sure that precedence relations
are not violated. For this purpose, let T̂ denote the set of teams that process at
least one task j with a successor.

Maximize
∑

τ

∑
j CτjXτj +

∑
j GjYj

subject to:
∑

j Xτj ≤ 1 ∀τ
∑

τ Sτ
i Xτj ≥ Rj

iYj ∀i = 1, . . . , n
∑

τ λ(τ)Xτj ≤ (120 − d(j))Yj ∀j
∑

τ λ(τ)Xτj ≥ e(j)Yj ∀j

Xτj ≤ Yj ∀τ, j
∑

τ∈T̂ Xτj ≤ Yj ∀j

Xτj ∈ {0, 1} ∀τ, j

Yj ∈ {0, 1} ∀j.

In the resulting matching problem a number of teams can be assigned to a job
only if the combined expertise of the teams meets the requirements of the job.
A variable Xτj equals 1 if team τ is assigned to task j and zero otherwise. The
expertise of a team can be written as the sum of the expertises of the technicians
that are in the team. A team is assigned to at most one job (in each matching
iteration) and a job may or may not be selected. The variable Yj is 1 only if task
j is selected. It can only be selected, if it is simultaneously assigned a set of teams
the union of which is competent with respect to the requirements of task j. The
additional restrictions enforce that a selected task is processed immediately after a
team has finished its already assigned work, without the introduction of idle time,
and without breaking any precedence constraint. The assignment and selection
problem bears much resemblance with capacitated facility location problems.

The objective is to select a ‘nicest’ combination of jobs. For measuring the
quality of an assignment we consider several MatchingObjectives defined by setting
coefficients Cτj and Gj to appropriate values. These values are based on job length,
job load, job difficulty or job priority or a combination of these. A default setting



418 C.A.J. HURKENS

is choosing Cτj = 0, and Gj = d(j) ∗ μ(j). This reflects the desire to schedule
as much work as early as possible. The problem is formulated as a linear integer
programming problem and passed to the solver (CPLEX).

A further characteristic that influences the outcome is found in the way the
ILP-model of the matching problem is formulated and passed to the solver. One
reason is that the solver is given only a limited amount of time. It may therefore
have to break off its branch-and-bound search prematurely. A second reason is that
there may be more than one optimal solution. In case the coefficients Cτj = Cτ are
task-independent, the model has a sparse formulation which tends to solve more
quickly, and a dense formulation which seems to have a tendency of producing
slightly better solutions (in terms of complete day schedules and use of scarce
resources). By introduction of a slack variable στ , the first inequality of the model
can be converted into an equation:

∑
j Xτj + στ = 1 ∀τ , and then the variables

Xτj may be (partially) deleted from the objective function. In the algorithm we
may use different values for the SparsityFactor (between 0.0 and 1.0). This refers
to the fraction of inequalities for which the above conversion is implemented.

Obviously, for the instances in which part of the jobs can be abandoned, it makes
quite a difference for the resulting schedule value, which set of jobs is abandoned.
We consider different objectives for selecting jobs to be abandoned. Restrictions
are that the cost of abandoning jobs must be within the budget, and secondly that
if a job is being abandoned, then also its successors should be abandoned. The
selection of abandoned jobs further influences the lower bound on the schedule cost
(for the remaining jobs). Therefore we consider several LowerBoundObjectives.
They reflect the bonus obtained by skipping certain jobs. Again this depends on
length, load, priority, difficulty of jobs, or of combinations of these.

Finally, one can try to obtain a solution as close as possible to the computed
lower bound. To this purpose it may be necessary to temporarily ‘upgrade’ some
jobs: if J1 → . . . → Jk is a chain of jobs all of priority 4, and the total length
is higher than the difference of the relaxed makespans C4

max − C1
max, we should

complete job J1 earlier than C1
max. We may therefore change its priority class to

1, before we call the schedule construction algorithm. We consider two levels of
UpdatingPriorities (yes/no).

2.4. Creating multiple solutions

In principle there are two ways to generate many solutions greedily according to
the above scheme. One is to introduce randomness in the ordering and randomness
in the matching objective coefficients. We have chosen not to do this but only
vary the SortingRules, the LowerBoundObjectives, the MatchingObjectives, the
UpdatingPriorities over a limited set of parameter settings. By doing this we limit
ourselves to the creation of at most 6 · 4 · 3 · 3 · 2 = 432 schedules. The factor 6
of course results from the different permutations of the priority class makespan
orderings. Also one could consider adding a post-processing stage to polish the



MIP MODELS FOR SCHEDULE CONSTRUCTION 419

obtained schedules. Most of the solutions found in the earliest stages already show
good quality.

3. Reflection and prospects

The use of linear programming techniques in the area of schedule construction
poses the potential user for several decision questions where effectivity and compu-
tation time have to traded off. In particular the fact that the algorithm is allowed
a limited amount of time can cause difficulties.

3.1. Time management

In the area of local search which is a more standard approach to complex sched-
uling problems, one usually defines a construction heuristic to come up with a
first schedule, and next a search strategy is employed to search the solution space
as long as time permits. A variant is one in which the construction heuristic is
adapted to the observed solutions, and is repeated again and again.

For integer linear programming models it is very much harder to predict the
duration of certain calculations. Branch-and-bound solution methods may end
fairly quickly, but may also get stuck in a deep search tree and never end.

For the problems at hand we found the first two problems preprocessing and
lower bounds to behave rather well and we could solve those to optimality without
having to set time limits. The team-job assignment problem however was much
harder to handle. The problems in set A could be handled in their complete formu-
lation – as far as size was concerned. The running times were rather unpredictable.
Problems in set B were already so big that finding a first solution could already
take much time, and waiting for an optimal answer was out of the question. This
problem was resolved by ordering tasks from highly to less important, selecting
subsets of 50–80 consecutive tasks, and trying to solve the matching problem with
this limited set of candidate tasks. Furthermore it was necessary to set rather
small time limits (5–10 s) on the MIP solver, for each matching problem.

For the future we may want to design algorithms capable of rescheduling or of
on-line scheduling, based on this MIP approach.

3.2. Lower bound quality

As mentioned before, in some cases the lower bound deviates a lot from the best
solution found. In some cases this is caused by a critical set of scarce expertise
skills, or by experts only available a part of the time. There is some room for
improvement.

3.3. Flat objective

The objective by which schedule quality is measured is rather flat. There is not
yet a good understanding of how to prioritize tasks so as to have low priority class



420 C.A.J. HURKENS

makespans. Of course this difficulty holds also for standard local search methods.
It would also be interesting to see how this LP approach will perform when other
quality measures are being used, for instance weighted sum of completion times,
over all jobs.

3.4. Constraints

The complex restriction of having enough qualified technicians in a team that
handles a task is very well suited for our Mixed Integer Linear program approach.
We may further study more complex restrictions, such as providing for stable
assignments. We will further collaborate with France Telecom to investigate many
other features of maintenance schedules. For now the conclusion is that MIP
methods seem to promise a lot of possibilities.

References

[1] D. Applegate and W. Cook, A computational study of the job-shop scheduling problem.
ORSA J. Comput. 3 (1991) 149–156.

[2] E.L. Lawler and J. Labetoulle, On preemptive scheduling of unrelated parallel processors by
linear programming. J. Assoc. Comput. Mach. 25 (1978) 612–619.

[3] Y. Pochet and Laurence A. Wolsey, Production planning by mixed integer programming.
Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
xxiv+499 p.


	Introduction
	Analyzing the France Telecom technician dispatching problem
	Brief description
	Notation and key observations

	Solution strategy
	Preprocessing
	Lower bound
	Constructing solutions
	Creating multiple solutions

	Reflection and prospects
	Time management
	Lower bound quality
	Flat objective
	Constraints

	References

