
RAIRO-Oper. Res. 44 (2010) 45–59 RAIRO Operations Research

DOI: 10.1051/ro/2010003 www.rairo-ro.org

EXPLICIT POLYHEDRAL APPROXIMATION
OF THE EUCLIDEAN BALL

J. Frédéric Bonnans1 and Marc Lebelle2

Abstract. We discuss the problem of computing points of IRn whose
convex hull contains the Euclidean ball, and is contained in a small
multiple of it. Given a polytope containing the Euclidean ball, we
introduce its successor obtained by intersection with all tangent spaces
to the Euclidean ball, whose normals point towards the vertices of the
polytope. Starting from the L∞ ball, we discuss the computation of
the two first successors, and give a complete analysis in the case when
n = 6.
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1. Introduction

Our study is motivated by the need to check if a given ellipsoid B, representing
a set of possible configurations, is contained in another given set S of “safe”
configurations. While the set S is not explicitely known, an oracle can tell if a
given point belongs or not to it. A certificate for the inclusion B ⊂ S is therefore
given by a (finite) collection of points E in S whose convex hull denoted conv(E)
contains B. After a change of variable (based on the eigenvectors of the quadratic
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form associated with the ellipsoid B), we reduce the problem to the case when B
is the Euclidean ball.

Calling the oracle has a cost, and so we wish the cardinal of E to be as small
as possible. On the other hand, for having good chances that conv(E) contains
B, is should be contained in a small multiple of B. These two requirements are
conflicting, and hence, a reasonable compromise has to be done. We can formalize
the discussion as follows:

1. Given ε > 0, find if possible a polytope E with “minimal” number of
vertices such that

B̄ ⊂ E ⊂ (1 + ε)B̄. (1.1)

2. (Adaptative method). Compute a sequence Ek of polytopes such that
E1 ⊃ E2 ⊃ · · · ⊃ B and such that Ek ⊂ (1 + εk)B̄, where εk ↓ 0.

The first problem is unfortunately out of reach, so instead we propose an adaptative
method based on the following idea. Given a polytope containing the Euclidean
ball, consider its refinement obtained by intersecting it with all tangent spaces
to the Euclidean ball, whose normals point towards the extreme points of the
polytope. We discuss, starting from the L∞ ball, how to compute the two first
refinements, and give a complete analysis in the case when n = 6. A key point in
the analysis is the invariance of the refined polytopes under some group of linear
transformations in IRn leaving invariant the L∞ ball. So with a given extreme
point of a refined polytope is associated the equivalence class obtained as the orbit
of this point under the transformations of the group. Specifically, when n = 6, the
first refinement has 480 vertices corresponding to a single orbit, and the second
refinement has 5760 vertices corresponding to four orbits.

The paper is organized as follows. Section 2 is devoted to the presentation of
some general results and to related problems. Section 3 recalls some properties of
polytopes that are invariant under the action of a group of linear transformations.
Then in Section 4 we make the computation of the first and second reduction of
the unit ball in L∞. Finally in the conclusion section we discuss extensions of our
resulT.

2. General results and related problems

2.1. Volumes of the L∞ and Euclidean balls

We recall here some well-known fact about the volumes of the L∞ and Euclidean
balls. The easiest polyhedral approximation of the Euclidean ball is the L∞ ball

B̄∞ = {x ∈ IRn; |xi| ≤ 1, i = 1, . . . , n}. (2.1)
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This polytope has 2n vertices with coordinates ±1. and is included in
√

nB̄. Its
volume is 2n, to be compared with the volume of the Euclidean ball (e.g. Hiriart-
Urruty and Pradel [6]):

ωn := 2
πn/2

nΓ(n/2)
, (2.2)

where Γ(z) :=
∫∞
0 tz−1e−tddt. For any integer p > 1, it is known that Γ(p) =

(p − 1)!, and hence, ω2p = πp/p! In particular, for n = 6, and so p = 3, we have

ω6 =
π3

3!
=

31.006277
6

= 5.1677128, (2.3)

i.e. about one twelwth of the volume of B̄∞. This clearly shows that B̄∞ is not
an accurate approximation of the Euclidean ball.

2.2. Related problems and approaches

Ben-Tal and Nemirovski [3] (see also Glineur [5]) considered the problem of
outer approximation of the second order cone

C = {(t, x) ∈ IR × IRn; t ≥ ‖x‖}, (2.4)

by finitely many inequalities. They succeed in obtaining an approximation using a
small number of inequalities by using the technique of lifting into a space of larger
dimension. For t = 1 this provides an outer approximation of the Euclidean ball
B. The number of inequalities is

q + r ≤ C

(
n + log

1
ε

)
(2.5)

where q is the number of additional variables, and r is the number of linear con-
straints.

In principle, finding an outer approximation of the Euclidean ball having a
small number of vertices is equivalent to the one of finding an outer approximation
having a small number of inequalities. The reason is that with a polytope P whose
interior contains zero we can associate its polar set:

P ∗ := {y ∈ IRn; y · x ≤ 1, for all x ∈ P}. (2.6)

Clearly, the polar set is another polytope defined by the inequalities

P ∗ := {y ∈ IRn; y · x ≤ 1, for all x ∈ ext(P )}. (2.7)

In addition, P happens to be the polar of P ∗. Therefore the facet defining in-
equalities of P correspond to the extreme points of P ∗. Now if P is an outer
approximation of B, contained in (1 + ε)B, since polarity is a decreasing mapping
(w.r.t. the order of inclusion of sets) and the polar set of (1+ε)B is (1+ε)−1B, we
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have that (1+ ε)−1B ⊂ P ∗ ⊂ B, so that (1+ ε)P ∗ is another outer approximation
of B, contained in (1 + ε)B. Finally we see that if P has a small number of in-
equalities that after scaling may be written ai · x ≤ 1, i ∈ I, then the collection of
vectors {(1+ε)ai; i ∈ I} has a convex hull conatined in (1+ε)B and containing B.

We mention also the large literature on the computation of convex hulls, see
e.g. the software Quickhull [2]. This could be used for the computation of the
intersection of a polyhedron with half spaces.

3. Invariance of vertices

Let us first recall some well-known facts about polytopes (see e.g. Nemhauser
et al. [8], in particular its chapter 5, and also Nemhauser and Wolsey [7],
Schrijver [1]). A polytope P is the convex hull of its finitely many vertices, i.e.
points x in P such that x = αy +(1−α)z, with y and z in P and α ∈]0, 1[ implies
x = y = z. The set of vertices of P is denoted ext(P ). We use many times the
following property:

{
vertices of a polytope are characterized by the
maximality of the active constraints set. (3.1)

By active constraints set at point x ∈ P we mean, if P is described by a finite
number of linear inequalities: P = {x ∈ IR; ai · x ≤ bi, 1 ≤ i ≤ p}, the set
I(x) := {1 ≤ i ≤ p; ai ·x = bi}. Maximality here means that I(x) is maximal with
respect to the relation of inclusion of sets (i.e., no other point of the polytope has
a set of active constraints different, and including the one of x). We also know
that P is the convex hull of its (finitely many) vertices: P = conv(ext(P )).

Invariance by a group of transformations. Some polytopes have the property
that their vertices are invariant under a set of transformations (i.e., bijections) in
IRn, and therefore by the group generated by finite compositions of elements of
this set and there inverses. For instance, B̄∞ is invariant under permutation of
coordinates and sign change of these coordinates.

So let P be a polytope whose set of vertices is invariant under a group G of
transformations. We call (primal) orbit of x ∈ IRn the image of this point by the
group, or under the action of the group:

Ox := {Gx; G ∈ G}. (3.2)

Next assume that the group G is set of linear mappings. Then the image of P is
the convex hull of the one of its vertices. Since the set of the latter is invariant,
it follows that P itself is invariant under the action of the group. Consider a valid
inequality (a, b) ∈ IRn × IR for P , i.e., an inequality satisfied by any element of P :

a · x = a1 · x1 + · · · an · xn ≤ b, for all x ∈ P. (3.3)
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Since P is invariant under the action of the group G, we also have

(G�a) · x = a · Gx ≤ b, for all x ∈ P. (3.4)

Let us call
Oa,b := {(G�a, b); G ∈ G} (3.5)

the dual orbit associated with the valid inequality (a, b). To belong to the same
(primal ou dual) orbit is an equivalence class.

If P has dimension n, we know that a minimal description of P by inequalities
is to write one inequality for each facet (faces of maximal dimension n−1). These
facets are the convex hull of their vertices and the set of factes is invariant under
the action of the group G. A compact way of describing vertices (facets) is to take
one for each equivalence class, and then to compute the corresponding orbits.

Later we will use the following property: if (a, b) is a valid inequality, and int(P )
(the interior of P ) contains 0, then b > 0.

Invariance by permutation or sign change of coordinates. In the sequel
we consider the particular case of invariance by permutation or sign change of
coordinates. The orbit of x ∈ IRn is therefore the set of points obtained by
permutation or sign change of coordinates. It happens that these transformations
are orthonormal, and also invariant by transposition. So the dual orbit of a ∈ IRn

is (in the same way) obtained by permutation or sign change of coordinates of a.
Denote by

K := {x ∈ IRn; x1 ≥ x2 ≥ · · · ≥ xn ≥ 0} (3.6)
the set of points of IRn with nonnegative and nonincreasing coordinates. Every
(primal of dual) orbit contains a unique point in K that we take as the represen-
tative of the orbit.

Let (a, b) characterize a facet of P . The corresponding representative facet is

|aσ(1)| · x1 + · · · + |aσ(n)| · xn ≤ b. (3.7)

If x (resp. a) belongs to K, the l.h.s. of the linear inequality a · x ≤ b is attained
over the dual (resp. primal) orbit of a (resp. x) is maximal when a (resp. x) also
belongs to K.

Since an extrem point of P is uniquely determined by its active constraints, it
is useful to discuss the latter.

Lemma 3.1. Let P be invariant by permutation or sign change of coordinates, x̄
be in ext(P ) ∩ K, and such that a · x ≤ b is a valid inequality for P , active at x̄
(i.e., a · x̄ = b), where a ∈ K.

Then the active inequality at x̄ that belong to the dual orbit Oa,b are of the form

± aσ(1)x1 ± · · · ± aσ(n)xn ≤ b (3.8)

where the permutation σ is such that there exists a permutation π of {1, . . . , n}
leaving x̄ invariant, i.e., x̄π(i) = x̄i for all i, and such that π ◦σ leaves a invariant,
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and in addition the only changes of sign occur when the product aσ(i)x̄i is equal to
zero.

Proof.
(a) Any facet in the orbit of (a, b) can be obtained by permutation of coordi-

nates of a, followed by changes of sign for some components. Since both
x and a belong to K, none of these two transformations can increase the
l.h.s. of the linear inequality, and hence, the resulting facet will be active
iff each of the two transformations leaves invariant this l.h.s.

(b) Let us first consider the action of permutations of coordinates of a:

aσ(1)x1 + · · · + aσ(n)xn ≤ b. (3.9)

We know [4], Lemma 5.11, that a · x is invariant iff there exists a permu-
tation π satisfying the conditions of the lemma (note that the sufficient
condition is easily proved).

(c) Obviously changes of sign leave invariant the linear form a ·x iff (after hav-
ing made permutation σ) they operate on coordinates i for which aσ(i) = 0
or xi = 0. �

Remark 3.2. Let us be more explicit about the conditions on permutations π and
σ of the above lemma. We can gather elements of {1, . . . , n} by equivalence classes
defined by a common value of de xi. Then π is any permutation leaving invariant
these equivalence classes. Since π ◦ σ leaves a invariant, this means that values of
a, counted with their multiplicity, must remain invariant in each equivalence class.

Example 3.3. Let x̄ = (1, α, β, β, β, β), with 1 > α > β > 0. Then π(1) = 1 and
π(2) = 2. If a ∈ K and a(1) > a(2) > a(3), then σ must leave indexes 1 and 2
invariant. Sign changes are possible for the term aσ(i)xi when aσ(i) = 0.

4. Computation of the cuts

4.1. First reduction

With x̄ ∈ IRn \ B̄, we associate the canonical (sharp) cut separating its projec-
tion x̄/‖x̄‖ and B̄. Since the tangent hyperplane to B̄ at x̄/‖x̄‖ is orthogonal to
x̄, the expression of this cut is

cx̄(x) := x̄ · x − ‖x̄‖ ≤ 0. (4.1)

Let us denote by B̄1
∞ the ball obtained by applying all canonical cuts to all vertices

of B̄∞:

B̄1
∞ = {x ∈ B̄∞; cy(x) ≤ 0, for all y = (±1, . . . ,±1)}. (4.2)
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Writing the constraints explicitely, we see that B̄1∞ is the intersection of B̄∞ with
the closed ball in the �1 norm, with radius

√
n:

B̄1
∞ =

{
x ∈ B̄∞;

n∑
i=1

|xi| ≤
√

n

}
. (4.3)

We denote by R the reduction operator that with a polytope containing B̄ asso-
ciates its intersection with all canonical cuts at vertices. In particular

B̄1
∞ = R(B̄∞). (4.4)

Denote by �α
 the greater integer minorant of α ∈ IR. and by fr(·) its fractional
part: fr(α) := α−�α
. We also denote ei the ith basis vector, and 1 the vector of
IRn with coordinates 1.

Lemma 4.1.
(i) Let m := �√n
. A vector x of IRn is a vertex of B̄1

∞ iff it has exactly m
coordinates equal to ±1, at most m + 1 nonzero coordinates, and satisfies∑n

i=1 |xi| =
√

n.
(ii) The ball B̄1

∞ is contained in the euclidean ball of radius

r1 :=
√
�√n
 + fr(

√
n)2 ≤ n1/4. (4.5)

(iii) For n = 6, the values of constants are
√

n = 2.4494897; m = 2; fr(
√

n) = 0.4494897; r1 = 1.4839276. (4.6)

Proof.
(i) Since B̄1

∞ is invariant by permutation and sign change of coordinates,
vertices of B̄1∞ are obtained by applying these operations to vertices of
B̄1

∞ ∩ K.
Let x̄ be a vertex of B̄1

∞. If ‖x̄‖1 <
√

n, by (3.1), the set of its active
constraints is maximal in the set of constraints defining B̄∞, and so x̄ is
a vertex of B̄∞. Since the latter have been eliminated by the cuts, this
cannot occur. Therefore ‖x̄‖1 =

√
n.

If x̄ has two coordinates i and j in ]0, 1[, set d = ei − ej (difference
of basis vectors). Then for ε > 0 small enough, the point xε := x̄ ± εd
belongs to B̄1∞ (since ‖xε‖∞ ≤ 1 and ‖xε‖1 = ‖x̄‖1 =

√
n) so that x̄ is

not extremal. We have proved that an extremal point has at most one
coordinate outside {−1, 0, 1}.

Consequently there exists only one (of course there must exist at least
one) vertex x̄ in K, and then x̄i = 1, for i = 1 to m, xm+1 = fr(

√
n), and

x̄i = 0, for i > m + 1. Since other vertices are obtained by permutation
and sign change of coordinates, this proves (i).

(ii) The maximum of the convex function ‖x‖2 over the polytope B̄1
∞ is at-

tained at (at least) one vertex. We conclude with point (i).
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(iii) This is a simple application of points (i) and (ii). �

It is known that cuts may lead to large increases in the number of vertices, and so
it is useful to count the latter.

Lemma 4.2. The polytope B̄1
∞ has 2mCn

m vertices if n is a square, and 2m+1(n−
m)Cn

m otherwise. In particular, if n = 6, B̄1∞ has 480 points.

Proof. We first count vertices with nonnegative coordinates. There are Cn
m pos-

sible combinations of the m coordinates equal to one among n, and if n is not a
square, it remains, for each combinations, n−m possibles choices for the fractional
coordinate, i.e. Cn

m vertices if n is a square, and (n − m)Cn
m otherwise.

The set of all vertices is then obtained by applying arbitrary changes of sign to
nonzero coordinates, which gives an additional factor of 2m if n is a square, and
2m+1 otherwise. �

4.2. Second reduction

We remind that m := �√n
. Since vertices of B̄1
∞ are known, we may compute

the set B̄2
∞ = R(B̄1

∞) obtained by reduction of R(B̄1
∞):

B̄2
∞ =

{
x ∈ B̄1

∞; cy(x) ≤ 0, for all y ∈ ext(B̄1
∞)
}

. (4.7)

Since B̄1
∞ is invariant by a sign change of coordinates, this boils down to

B̄2
∞ =

{
x ∈ B̄1

∞;
n∑

i=1

yi|xi| ≤ r1, for all y ∈ ext(B̄1
∞) ∩ IRn

+

}
. (4.8)

Let σ be a permutation of {1, . . . , n} such that |xσ(i)| is nonincreasing. The worst
case, in the above inequality, over all permutations of indices is obtained when

yσ(i) = 1 for i = 1 to m, yσ(m+1) = fr(
√

n), and yσ(i) = 0 for i > m + 1.

In other words, denoting ϕ := fr(
√

n), we have that

B̄2
∞ =

{
x ∈ B̄1

∞;
m∑

i=1

|xσ(i)| + ϕ|xσ(m+1)| ≤ r1

}
. (4.9)

In particular, if x ∈ ext(B̄2
∞)∩K, since necessarily one of the new cuts of type (4.7)

is saturated in x, this is the case for the inequality

m∑
i=1

xi + ϕxm+1 ≤ r1. (4.10)

Lemma 4.3.
(i) Any vertex of ext(B̄2∞) ∩ K saturates inequality (4.10).
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(ii) In the sequel we assume that n is not a square. Let x belong toext(B̄2∞)∩K.
Denote β := xm+1. Let m0, m1 the smallest and biggest indices such that
xi = β for m0 ≤ i ≤ m1. Then the canonical cuts for extremal points of
B̄1

∞, active at point x, are the ones of the form

m∑
i=1

xi + ϕxj ≤ r1, m < j ≤ m1, if xm > β > 0, (4.11)

m∑
i=1

xi ± ϕxj ≤ r1, m < j, if xm > β = 0, (4.12)

m0−1∑
i=1

xi +
∑
i∈I

xi + ϕxj ≤ r1, if xm = β > 0, (4.13)

with I ⊂ {�; m0 ≤ � ≤ m1}, |I| = m − m0 + 1, m0 ≤ j ≤ m1, j �∈ I,

m0−1∑
i=1

xi +

(∑
i∈I

± xi

)
± ϕxj ≤ r1, if xm = β = 0, (4.14)

with I ⊂ {�; m0 ≤ � ≤ n}, |I| = m − m0 + 1, m0 ≤ j ≤ n, j �∈ I.
(iii) The point x defined in (ii) has at most one component in ]0, β[∪]β, 1[.
(iv) If β > 0, and m1 < n, then

∑
i |xi| =

√
n.

Proof.
(i) Otherwise by (3.1) it would be a vertex of B̄1

∞, whereas the latter are
excluded by the cuts.

(ii) Apply Remark 3.2 to relation (4.10). The permutation π of c this lemma
must (in particular) leave invariant the sets

I1 := {1, . . . , m0 − 1}; I2 := {m0, . . . , m1}. (4.15)

In addition, coefficients of indexes 1 to m0 − 1 must be equal to 1. We
distinguish four cases depending on the strictness of the inequalities below:

xm ≥ xm+1 = β ≥ 0. (4.16)

(a) If both are strict, and hence m = m0 − 1, the permutation σ leaves
invariants I1 and I2, without possible sign change of coefficients of
the linear form over these two sets, whence (4.11).

(b) If xm > β = 0, the permutation σ leaves invariant I1, and hence,
also I2 = I1 \ {1, . . . , n}, and sign changes are possible only over I2,
whence (4.12).

(c) If xm = β > 0, no sign change can occur, and since coefficients of
indices 1 to m0−1 are equal to 1, a coefficient ϕ having to be applied
on an index j ∈ {m0, . . . , m1}, we obtain (4.13).
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(d) If xm = β = 0, sign changes are possible for indice not less than m0,
whence (4.14).

(iii) If x has two coordinates in ]β, 1[ with indices i and j, setting d = ei − ej,
we have by (ii), x ± εd ∈ B̄2

∞ for ε > 0 small enough, giving the desired
contradiction. We can exclude in the same way the case when x has
two coordinates in ]0, β[. Finally, let us assume that x has a component
α ∈]β, 1[, and another component γ ∈]0, β[, of indexes resp. m0 − 1 and
m1 + 1. Let (δα, δβ, δγ) be nonzero constants such that

{
(a) δα + (m − m0 + 1 + ϕ)δβ = 0;
(b) δα + (m1 − m0 + 1)δβ + δγ = 0.

(4.17)

It is easily checked that such a triple exists. Let d be the vector of IRn

with zero coordinates, except those with indexes m0 − 1, m0 to m1, and
m1 + 1, with value resp. (δα, δβ, δγ). We claim that, for ε > 0 small,
xε := x ± εd ∈ B̄2

∞. Indeed, we have that ‖xε‖∞ ≤ 1, and by (4.17)(b),
‖xε‖1 = ‖x̄‖1 ≤ √

n. Finally the new cuts are satisfied in view of (4.17)(a)
and point (ii) (we are in case (4.11) or (4.13)). This gives the desired
contradiction.

(iv) If on the countrary β > 0, m1 < n and
∑

i |xi| < 1, let j such that |xj | < β.
Then for ε > 0 small, x ± εej ∈ B̄2

∞, and hence, x is not a vertex. �

4.3. Specific results for n = 6

Since the explicit computation of vertices in the general case is not easy, let
us limit ourself to the case n = 6. We have established in (4.6) that m = 2,√

n = 2.4494897, ϕ = fr(
√

n) = 0.4494897, r1 = 1.4839276. The vector

x̄0 := (1, 1, 0.4494897, 0, 0, 0) (4.18)

is a vertex of B̄1
∞, and ext(B̄1

∞) is the image of ce point under combinations of
permutation and sign changes. We will have to use (3.1).

In the sequel let us compute all vertices of B̄2∞ in K. We again denote β :=
xm+1, and α, γ are coordinates (if they exist) of a point x ∈ ext(B̄2

∞)∩K in ]β, 1[
and ]0, β[, respectively.

Lemma 4.4. A vertex of B̄2
∞ in K is of one of the following forms: (super-

scripts of x̂ represent the number of occurences of (1, α, β, γ) respectively, and nβ

is number of occurences of β):

(i) In the form

⎧⎪⎪⎨
⎪⎪⎩

x̂1,1,1,0 = (1, α, β, 0, 0, 0);
x̂1,1,2,0 = (1, α, β, β, 0, 0);
x̂1,1,3,0 = (1, α, β, β, β, 0);
x̂1,1,4,0 = (1, α, β, β, β, β);

(4.19)



EXPLICIT POLYHEDRAL APPROXIMATION OF THE EUCLIDEAN BALL 55

with (α, β) satisfying

1 + α + ϕβ = r1; 1 + α + nββ =
√

6 (≤
√

6 if nβ = 4). (4.20)

(ii) In the form ⎧⎨
⎩

x̂1,0,2,1 = (1, β, β, γ, 0, 0);
x̂1,0,3,1 = (1, β, β, β, γ, 0);
x̂1,0,4,1 = (1, β, β, β, β, γ);

(4.21)

with (β, γ) satisfying

1 + (1 + ϕ)β = r1; 1 + nββ + γ =
√

6. (4.22)

(iii) In the form ⎧⎪⎪⎨
⎪⎪⎩

x̂0,1,2,0 = (α, β, β, 0, 0, 0);
x̂0,1,3,0 = (α, β, β, β, 0, 0);
x̂0,1,4,0 = (α, β, β, β, β, 0);
x̂0,1,5,0 = (α, β, β, β, β, β);

(4.23)

with (α, β) satisfying

α + (1 + ϕ)β = r1; α + nββ =
√

6 (≤
√

6 if nβ = 5). (4.24)

(iv) In the form

⎧⎨
⎩

x̂0,0,3,1 = (β, β, β, γ, 0, 0);
x̂0,0,4,1 = (β, β, β, β, γ, 0);
x̂0,0,5,1 = (β, β, β, β, β, γ);

(4.25)

with (β, γ) satisfying

(2 + ϕ)β = r1; nββ + γ =
√

6. (4.26)

Proof.
(a) In view of relation (4.10), and since r1 < 2, at most one component of

vertices in K has value 1.
(b) We show that there is no vertex of B̄2∞ having at most values 0, 1 and β.

Indeed, such points would be of the following form (we deduce from points
(i) and (iv) of Lem. 4.3 relations (4.28) and (4.31)):
(b1) If x has no component equal to 1, the possible cases are

⎧⎪⎪⎨
⎪⎪⎩

x̂0,0,3,0 = (β, β, β, 0, 0, 0);
x̂0,0,4,0 = (β, β, β, β, 0, 0);
x̂0,0,5,0 = (β, β, β, β, β, 0);
x̂0,0,6,0 = (β, β, β, β, β, β);

(4.27)
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and then β and nβ must satisfy

{
(2 + ϕ)β = r1;
nββ =

√
6 (≤ √

6 if nβ = 6).
(4.28)

We deduce that β = r1/(2 + ϕ) = 0.6058109, and so

⎧⎨
⎩ nβ =

√
6

β
= 4.043324 if nβ ≤ 5,

nββ = 6β = 3.6348654 >
√

6 if nβ = 6,

(4.29)

in contradiction with either the first, or the second relation of (4.28).
(b2) If only one component is equal to 1, the possible cases are

⎧⎪⎪⎨
⎪⎪⎩

x̂1,0,2,0 = (1, β, β, 0, 0, 0);
x̂1,0,3,0 = (1, β, β, β, 0, 0);
x̂1,0,4,0 = (1, β, β, β, β, 0);
x̂1,0,5,0 = (1, β, β, β, β, β);

(4.30)

and then β and nβ must satisfy

1 + (1 + ϕ)β = r1; 1 + nββ =
√

6. (4.31)

It follows that β = (r1 − 1)/(1 + ϕ) = 0.3338606, and so

⎧⎨
⎩ nβ =

√
6 − 1
β

= 4.3416012 if nβ ≤ 4,

nββ = 5β = 1.6693032 >
√

6 − 1 = 1.4494897 if nβ = 5,

(4.32)

in contradiction with either the first, or the seconde relation of (4.31).
(c) It remains to check the other cases of Lemma 4.3. If the first component

of x equals 1, then α or γ may present, which correspond to cases (i) and
(ii). Similarly, if the first component of x is less than one, it is equal either
to α or to β, and in the last case γ may be present, which corresponds to
cases (iii) and (iv). �

We now show that only four cases do occur among the possible values in Lemma 4.4.
All other cases will be eliminated thanks to relations⎧⎪⎪⎨

⎪⎪⎩
a) 1 > α
b) α > β
c) β > γ
d) γ > 0.

(4.33)



EXPLICIT POLYHEDRAL APPROXIMATION OF THE EUCLIDEAN BALL 57

Theorem 4.5. The only cases that occur, among those stated in Lemma 4.4,
satisfying (4.33), are the points (which indeed have norm greater than one):

⎧⎪⎪⎨
⎪⎪⎩

x̂1,1,4,0 with α = 0.3616887, β = 0.2719503
x̂1,0,4,1 with β = 0.3338606, γ = 0.1140472
x̂0,1,4,0 with α = 0.9351854, β = 0.3785761
x̂0,0,4,1 with β = 0.6058109, γ = 0.0262462

(4.34)

with coordinates⎧⎪⎪⎨
⎪⎪⎩

1.0000000 0.3616887 0.2719503 0.2719503 0.2719503 0.2719503
1.0000000 0.3338606 0.3338606 0.3338606 0.3338606 0.1140472
0.9351854 0.3785761 0.3785761 0.3785761 0.3785761 0.0000000
0.6058109 0.6058109 0.6058109 0.6058109 0.0262462 0.0000000

(4.35)

Proof. We consider cases (i) to (iv) of Lemma 4.4.
Case (i). Solving (4.20) gives

nβ α β
1 –0.3044506 1.7539404
2 0.2040131 0.6227383
3 0.3137615 0.3785761

Conditions (4.33) are not satisfied since α < β. Finally for nβ = 4 we solve with
equality in (4.20). The values of α and β, displayed in the first row of (4.34),
satisfy (4.33). Using (3.1), we see that for nβ = 4 these are the only possible
values of α and β. In addition the norm of vector a is 1.1944231.
Case (ii). Solving (4.22) gives

nβ β γ
2 0.3338606 0.7817685
3 0.3338606 0.4479078
4 0.3338606 0.1140472

Conditions (4.33) are therefore not satisfied for β equal to 2 and 3, while they are
for nβ = 4, with a vector norm equal to 1.2078321.

In the case nβ = 5, we still have β = 0.3338606, and so

1 + nββ = 2.669303 >
√

6 = 2.4494897 (4.36)

so that (4.22) has no solution.
Case (iii). Solving (4.24) gives donne

nβ α β
2 –1.058391 1.7539404
3 0.5812747 0.6227383
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Conditions (4.33) are therefore not satisfied. For nβ = 4, the values of α and β,
displayed in the third row of (4.34), satisfy (4.33). In addition the vector norm is
1.2032669.

In the case nβ = 5, by difference of relations in (4.24) (with inequality for the
second one) we obtain

(nβ − 1 − ϕ)β ≤
√

6 − r1, (4.37)

i.e., with nβ = 5, 3.5505103β ≤ 0.9655622, and so β ≤ βM := 0.2719503. So again
with (4.24)

α ≥ r1 − (1 + ϕ)βM ≥ 1.0897385, (4.38)

in contradiction with α < 1.
Case (iv). Solving (4.26) gives (here β always has the same value)

nβ β γ
3 0.6058109 0.6320571
4 0.6058109 0.0262462
5 0.6058109 –0.5795647

So only the case nβ = 4 satisfies (4.33). In addition the norm of the vector is
1.211906. �

Remark 4.6. Since only the value of β is repeated, and is repeated four times,
the number of distinct points obtained by permutations of one of the four vectors
is 6!/4! = 30. For each of them the number of points with distinct coordinates is
26 in absence of zeros, and 25 in the presence of a single zero. The total number
is therefore 30 × (2 × 26 + 2 × 25) = 5760.

We have proved that vertices of B̄2
∞ in K are among the four points stated in

Theorem 4.5. Let us now check that these four points are really vertices of B̄2∞.

Lemma 4.7. The four points stated in Theorem 4.5 are vertices of B̄2
∞.

Proof.
(a) It one of these four points is not extremal, then it should be a convex

combination of the union of the equivalent class of the three other points.
Since each of the four points attains the maximal possible value for the
sum of components over B̄2

∞, which is
√

6, if one of the four points is
not extremal, then it is a convex combination of the vertices obtained by
permutation only (and not sign changes) of the three others.

(b) Each of the two first points having for first component 1, which is the
maximal possible value, if not extremal, must be a convex combination of
the points obtained by a permutation of indexes of the other one, leaving
the first component invariant. Now the first (resp. second) one attains
the maximum (resp. minimum) of components different of one. They
can therefore not be convex combinations of the set of points obtained by
permutation of the other one.
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c) Similarly, the two last points being the only ones with zero components,
each of them, if it is convex combination of the set of points obtained by
permutation of the other one, is also a convex combination for permuta-
tions that leave the last component invariant. Yet the third (resp. fourth)
attains the maximal (resp. minimal) value of nonzero components. They
therefore must both be extremal. �

5. Conclusion

Motivated by some applications, we have made the computation of the second
refinement of the Euclidean ball, starting from the L∞ ball, in IR6. It seems that
the results can be extended to dimensions less than 6 without much difficulty.

An interesting extension of this approach would be the use of formal computa-
tion systems in order to give a “formal” guarantee of correctness, and possibly to
extend to other dimensions, this result.

Another useful direction would be a totally adaptative approach in which only
vertices than happen not to belong to the unknown convex set S are cut. clearly
we then loose the invariance properties. This would be of great help in case when
the oracle is expensive (it may be the results of a long simulation, or possibly a
physical experiment).
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