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AUGMENTED LAGRANGIAN METHODS
FOR VARIATIONAL INEQUALITY PROBLEMS

ALFREDO N. IUSEM! AND MOSTAFA NASRI!

Abstract. We introduce augmented Lagrangian methods for solving
finite dimensional variational inequality problems whose feasible sets
are defined by convex inequalities, generalizing the proximal augmented
Lagrangian method for constrained optimization. At each iteration,
primal variables are updated by solving an unconstrained variational
inequality problem, and then dual variables are updated through a
closed formula. A full convergence analysis is provided, allowing for
inexact solution of the subproblems.
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1. INTRODUCTION

Let F: R™ — R” be a continuous operator and K be a nonempty, closed and
convex subset of R™. The variational inequality problem, denoted by VIP(F, K),
consists of finding z* € K such that

(F(a*),y—2*) >0 VyeK. (1.1)

The set of solutions of VIP(F, K) will be denoted by S(F, K).
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6 A.N. IUSEM AND M. NASRI

In this paper we will assume the monotonicity of F', i.e. we assume that
(F(z) = F(y),r—y) >0  Vz,y € R™

We recall that for a monotone F', continuity is equivalent to maximal monotonicity
when seen as a set-valued operator, i.e. as an operator G : R™ — P(R™). In such
a setting, G is monotone if
(u—v,z—y)>0

for all z,y € R", all u € G(x) and all v € G(y), and maximal monotone when
G = G’ whenever Graph(G) C Graph(G’), where Graph(G) = {(z,u) € R" x R™ :
u € G(x)}.

Another problem, closely related to the variational inequality problem, is the
equilibrium problem, consisting of finding an z* € K such that

fla*,y) >0  Wyek,

where f : R" x R" — R satisfies certain conditions (see (a)-(e) below), and K is
a nonempty, closed and convex subset of R™. The above equilibrium problem and
its set of solutions are denoted by EP(f, K) and S(f, K), respectively.

The bifunction f is said to be monotone if

flzy)+ fly,z) <0 Vr,y € R™. (1.2)

In this paper, we will use the proximal point method for solving EP( f , K ), devel-
oped in [20], as an essential tool in our convergence analysis. In [20] the bifunction
f defining the equilibrium problem is assumed to satisfy the following conditions,
which ensure the convergence of the proximal point method for EP( f, K ) to a
solution of the problem, whenever such solution exists.

(a) f(z,x) =0 for all z € R™;

(b) f(z,-) : R" — R is convex and lower semicontinuous for all z € R";

(c) f(, y) : R™ — R is upper semicontinuous for all y € R™;

(d) there exists § > 0 such that

f@y) + fly,2) <Oz —yl* ¥,y eRY (1.3)

(e) there exists an 2* € S(f, K) such that f(y,z*) <0 for all y € K.

Now assume that VIP(F, K) is given and has solutions, and that F' is monotone
and continuous. Define f : R” x R™ — R as

We observe that EP(f, K) satisfies the properties (a)—(e): (a) follows immediately

from (1.4), (b) from the fact that f is affine as a function of y, (¢) from the conti-
nuity of F', and (d) from the monotonicity of F'; which easily entails monotonicity
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of f, in the sense of (1.2), so that (1.3) holds with @ = 0. In connection with
(e), observe first that the solution sets of EP(f, K) and VIP(F, K) coincide, as
a consequence of (1.4), and that the inequality in (e) is valid for all solution of
EP(f, K) as a consequence of the already established monotonicity of f. So, exis-
tence of z* is assured because VIP(F, K) has solutions by hypothesis, and all of
them are solutions of EP(f, K).

Since, under our assumptions on F', VIP(F, K) and EP(f, K) (with f asin (1.4))
have the same solution set, it is just a matter of notation to describe our method
in terms of f or F'. Since we will refer to [20] in the sequel, we will use from now on
the notation in this reference (namely the equilibrium one), with f rather that F'.
We emphasize that this is just a notational issue, with no substantial consequence
whatsoever.

The variational inequality problem encompasses, among its particular cases,
convex minimization problems, fixed point problems, complementarity problems,
Nash equilibrium problems, and vector minimization problems (see, e.g., [7,22]).
For recent developments in the realm of variational inequality problems, we refer
the readers to [10,11], and [14].

The variational inequality problem has been extensively studied in recent years,
with emphasis on existence results (see, e.g., [5,6,8,13,19,21] and [33]). In terms of
computational methods for variational inequality problems, several references can
be found in the literature. Among those of interest, we mention the algorithms
introduced in [12,20,23,24,29-31,34] and [35] which are proximal-like methods, as
well as the ones proposed in [22] which are projection-like methods. Methods
based on a gap function approach can be found in [27]. Furthermore, Newton-like
methods to solve the same problem has been introduced in [2] and penalty-like
methods in [32].

To our knowledge, the closest approach to the one contributed here can be
found in [1], where the feasible set is assumed to be of the form given in (1.5), and
primal-dual methods are proposed. However, no Lagrangian function as in (2.2),
or augmented Lagrangian as in (2.4), appear in this reference, so that from an
algorithmical point of view or approach is completely unrelated to the one in [1].

In the current paper we introduce exact and inexact versions of augmented
Lagrangian methods for solving EP(f, K') in R", for the case in which the feasible
set K is of the form

K={zxeR":hi(x) <0 1<i<m)}, (1.5)

where all the h;’s are convex. These methods generate a sequence {(z7, M)} C
R™ x R such that at iteration j, 27 is the unique solution of an unconstrained
variational inequality problem and then M is obtained through a closed formula.
We comment next on augmented Lagrangian methods.

We remark that the most significant novelty in this paper is the introduction of
our Lagrangian functions for variational inequality problems (the exact Lagrangian
L in (2.2), the augmented Lagrangian L in (2.4), and the Linearized Augmented
Lagrangian £ in (4.1)), which are significantly different from their optimization



8 A.N. IUSEM AND M. NASRI

counterparts defined in (1.8), (1.11) and (1.12), and which are the basic ingredient
of the algorithms introduced here.

The augmented Lagrangian method for equality constrained optimization prob-
lems (non-convex, in general) was introduced in [15] and [36]. Its extension to
inequality constrained problems started with [9] and was continued in [4,25,37,38],
and [39].

We describe next the augmented Lagrangian method for convex optimization,
which is the departure point for the methods in this paper. Consider the problem

min hg(x) (1.6)

s.t. hi(x) <0 (1 <i<m), (1.7)
where h; : R — R is convex (0 <1i < m).
The Lagrangian for (1.6)—(1.7) is the function L : R™ x R™ — R given by

Lz, A) = ho(x) + Y \iha(x), (1.8)

and the dual problem associated to (1.6)—(1.7) is the convex minimization problem
given by

min —(y) s.t. y € R, (1.9)
where ¢ : R™ — RU {—o0} is defined as
() = zlen]an L(z, ). (1.10)

The augmented Lagrangian associated to the problem given by (1.6)-(1.7) is the
function L : R™ x R™ x R4 — R defined as

L(z,\,7) = ho(z) +7§ [(max {0, i + %?})2 - A?] , (1.11)

where R is the set of positive real numbers. The augmented Lagrangian method
requires an exogenous sequence of regularization parameters {v;} C Ry4. The
method starts with some \? € R, and, given 2} e Rhand M € R7*, the algorithm
first determines 277! € R™ as any unconstrained minimizer of L(x, A, ~v;) and then
it updates A as

hi(l‘jJrl)

)\ZH = max {O, )\g +
2"}’j

} (1<i<m).

Assuming that both the primal problem (1.6)—(1.7) and the dual problem (1.9)
have solutions, and that the sequence {27} is well defined, in the sense that all
the unconstrained minimization subproblems are solvable, it has been proved that
the sequence {\ } converges to a solution of the dual problem (1.9) and that the
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cluster points of the sequence {27} (if any) solve the primal problem (1.6)—(1.7)
(see, e.g., [17] or [39]).

Another augmented Lagrangian method for the same problem, with better con-
vergence properties, is the proximal augmented Lagrangian method (see [39]; this
method is called “doubly augmented Lagrangian” in [17]). In this case, L is re-
placed by L : R® x R™ x R, x R” — R, defined as

L(z,\,7,2) = L(z, A7) + 7 |& — 2|
- hi(x) ’ 2
:ho(ac)—i—'y; [(maX{O,)\i—i— 5 }) —A;

The method uses an exogenous sequence {v;} C Rii as before, and it starts
with 29 € R™, \0 € R, Given 27, M, the next primal iterate 271 is the unique

unconstrained minimizer of i(m, M, 7;,27) and the next dual iterate is

2
+yllz—z|°. (1.12)

hi(xj""l)

)\ZH = max {O, )\g +
2"}’j

} (1<i<m).

In this case, the primal unconstrained subproblem always has a unique solution,
due to the presence of the quadratic term ||z — z||* in L, and assuming that both
the primal and the dual problem are solvable, the sequences {z7}, {\} converge
to a primal and a dual solution respectively (see, e.g., [17] or [39]). Augmented
Lagrangian methods for variational inequality problems have been studied in [3].

The main tool used in [39] for establishing the above mentioned convergence
results is the proximal point algorithm, whose origins can be traced back to [26]
and [28]. It attained its basic formulation in the work of Rockafellar [40], where it
is presented as an algorithm for finding zeroes of a maximal monotone point-to-set
operator T': RP — P(RP), i.e, for finding z € RP such that 0 € T'(z).

Given an exogenous sequence of regularization parameters {v;} C R4y and an
initial 20 € RP, the proximal point method generates a sequence {27} C RP in the
following way: given the j-th iterate z7, the next iterate z/*! is the unique zero
of the operator T} : RP? — P(RP) defined as Tj(z) = T'(2) — v;(z — 27). It has been
proved in [39] that if T has zeroes then {27} converges to a zero of T

Inexact versions of the method are also available; instead of requiring fy]-(zj —
2T € T'(27T1), they compute an auxiliary vector 7 satisfying e/ + (27 — 27) €
T(z7), where e/ € RP is an error vector, whose norm is small enough. The auxiliary
vector Z7/ defines a hyperplane H; which separates z7 from the set of zeroes of T'.
The next iterate 2971 is then obtained by projecting orthogonally 2/ onto H;, or
by taking a step from 27 in the direction of H; (see, e.g., [18,41], and [42]).

The connection between the augmented Lagrangian method for convex opti-
mization and the proximal point method can be described as follows. Let {27},
{M} be the sequences generated by the augmented Lagrangian method. Consider
the maximal monotone operator T': R™ — P(R™) defined as T' = 9(—1), with 1
as in (1.10). The sequence {27} generated by the proximal point for finding zeroes
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of T coincides with {\}, assuming that \° = 2%, and that the same sequence {~;}
is used for both methods (see, e.g.,[17] or [39]). Hence, the convergence of {\}
to some solution of the dual problem (1.9) follows from the convergence of the
sequence {z’}, generated by the proximal point method, to a zero of T.

The convergence analysis of the proximal augmented Lagrangian method pro-
ceeds in a similar way. In this case, the proximal point method is used for finding
zeroes of T : R™ x R™ — P(R™ x R™) defined as

T(2) = (9L (2), 0\ L(2)) + Nap (2),

with z = (z,A) € R" xR™, where L is as in (1.8) and Ngp is the normalizing oper-
ator of the non-negative orthant of R™. In this case, the sequence {2’} generated
by the proximal point method coincides with the sequence { (27, M)} generated by
the proximal augmented Lagrangian method, assuming again that 2° = (2%, \%),
and that the same regularization sequence {v;} is used in both algorithms (see,
e.g., [17] or [39]).

The convergence analysis of the augmented Lagrangian methods for variational
inequality problems to be introduced here invokes the proximal point method, pre-
sented in [23]. At iteration j of this method, given 27 € R™, one solves EP(f;, K),
where the regularized function fj is defined as

fi(zy) = fz,y) + 7z — 2!,y — ). (1.13)

Two inexact versions of this method in Banach spaces have been recently proposed
in [20]. In finite dimensional spaces, the first one can be described as follows: at
iteration j, problem EP(ff, K) is solved, where f; is defined as:

[ (@y) = flz,y) + vl — 2,y —x) — (¢, y — a). (1.14)

Here, ¢/ € R™ is an error vector, whose norm is small, in a sense to be defined
below. The solution 7/ of EP( %, i) makes it possible to construct a hyperplane
separating 27 from S(f, K). A step is then taken from 27 in the direction of the
separating hyperplane, generating the next iterate 27!, In the second version,
2711 is the orthogonal projection of 27 onto the separating hyperplane.

It has been proved in [20] that the sequences {27} generated by these methods
converge to a solution of EP(f, K) under appropriate assumptions on f, when
EP(f, K) has solutions.

The outline of this paper is as follows. In Section 2 we introduce Algorithm
IALEM (Inexact Augmented Lagrangian-Extragradient Method) for solving
EP(f,K). In Section 3 we establish the convergence properties of Algorithm
TALEM through the construction of an appropriate proximal point method for
a certain variational inequality problem. In Section 4 we construct and analyze
a variant of TALEM, called LIALEM (Linearized Inexact Augmented Lagrangian-
Eztragradient Method). Section 5 contains some final remarks.



AUGMENTED LAGRANGIAN METHODS FOR VARIATIONAL INEQUALITIES 11

2. AUGMENTED LAGRANGIAN METHODS FOR VARIATIONAL
INEQUALITY PROBLEMS

We will assume that the closed convex set K in EP(f, K) is defined as
K={zeR":hi(x) <0 1<i<m)}, (2.1)

where h; : R" — R is convex (1 < i < m). We will also assume that this
set of constraints satisfies any standard constraint qualification, for instance the
following Slater’s condition.

CQ: If 1 is the (possibly empty) set of indices ¢ such that the function h; is affine,
then there exists w € R™ such that h;(w) <0 for i € I, and h;(w) < 0 for i ¢ I.

We define next our Lagrangian bifunction for EP(f, K), £ : (R™ x R™) x (R™ x
R™) — R as

L((z,A), (y, 1)) = f(z,y) + Z Aihi(y) — Zuihi@)- (2.2)

It is worthwhile to mention that when we consider the optimization problem (1.6)—
(1.7) as a particular case of EP(f, K) by taking f(x,y) = ho(y) — ho(z), (2.2)
reduces to

m m

=1 =1

where L is the usual Lagrangian for optimization problems, defined in (1.8). We
introduce now the proximal augmented Lagrangian for EP(f, K).
Define s; : R"xR"xR™ xR 4 (1 <i<m), L:R"xR"XR™"xR"xR;; — R as

(o {o.a+ @}) - (moxfo.n+ @})] (23)

m
‘C($7ya)‘aza’7/) = f($7y) +7<I — Y- $> +725i(xaya)‘a7)' (24)
i=1
Now we present Algorithm EALM (Ezact Augmented Lagrangian Method) for
EP(f,K). Take a bounded sequence {v;} C Ry. The algorithm is initialized
with a pair (z°, %) € R™ x R
At iteration j, 271! is computed as the unique solution of the unconstrained
regularized variational inequality problem EP(Ej, R™) with £~j given by

Y
Si(xaya )‘7,7) = §

m

Ej(xay) = E(Iay7)‘j7xj7,7j) = f(:v,y)+’yj(x—xj,y—x>+25i(x,y, )‘j7,7j)' (25)

i=1
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Then, the dual variables are updated as

A :maX{O,)\Z-i-%)} (1<i<m). (2.6)

We introduce now our inexact augmented Lagrangian method for solving EP(f, K).

Algorithm TALEM: Inexact augmented Lagrangian-extragradient method for
EP(f, K)

1. Take an exogenous bounded sequence {v;} C Ry} and a relative error tolerance
o € (0,1). Initialize the algorithm with (z°,\%) € R™ x R'".
2. Given (27, M), find a pair (Z/,e’) € R" such that &/ solves EP(LS,R"), where

Ej is defined as

m
E;(I, y) = f(xay) + ’YJ<$ - xj7y - I) + Z Si(xa Y, )‘j7,7j) - <eja Yy— $>, (27)
i=1
with s; as given by (2.3), and e satisfies
|| < ov; [|(@ — a7, N = M), (2.8)
where M1 = (M1 M1 is introduced in next the step.
3. Define V1! as
, C h(F
AT :maX{O,)\g—l—%)} (1<i<m). (2.9)
J

4. If (27, M) = (27, M), then stop. Otherwise,

. . 1 .
oIt =gl - el (2.10)
Vi
We mention that EALM can be realized as a particular instance of TALEM by
taking e/ = 0 for all j € N.

3. CONVERGENCE ANALYSIS OF IALEM

We start this section by presenting an inexact proximal point-extragradient
method for solving EP(f, K), to be called IPPEM, introduced in [20]. We will use
it as an auxiliary tool in the convergence analysis of ITALEM.

Algorithm IPPEM. Inexact proximal point-extragradient method for EP(f, K)

1. Consider an exogenuous bounded sequence of regularization parameters {v;} C
R and a relative error tolerance o € (0, 1). Initialize the algorithm with 2° € K.
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2. Given 27, find a pair (#7,e/) € R™ x R" such that £/ solves EP( £, K) with

f;(may) = f(xay) + 7j<x - mjay - LTJ> - <ej7y - :L'>a (31)

and 4 ‘ ‘
e7]] < o; [[47 = 27|} (3.2)
3. If 27 = 27, then stop. Otherwise,
. 1

It =37 - e, (3.3)
Vi

We emphasize here some features of IPPEM, which are shared by its exact coun-
terpart (e.g. [23]), and by the proximal point method method for finding zeroes of
maximal monotone operators. The proximal point method is not an implementable
algorithm, but rather a conceptual or theoretical scheme, where a certain problem
is replaced by a sequence of problems of the same kind (in our case, variational in-
equality problems), which are in general better conditioned than the original one.
However, in terms of actual implementation, some specific procedure is needed for
solving e.g. EP( I K ) in Step 2 of IPPEM, and in principle such a procedure could
also be used for solving EP(f, K'). On the other hand, TALEM is indeed devised as
an implementable method: it replaces a constrained variational inequality problem
by a sequence of unconstrained one, which represents a big computational advan-
tage in term of most effective methods for solving variational inequality problems
(e.g., the methods studied in [22]). Thus, we want to make it clear that we do
not propose here to effectively implement IPPEM. Rather, we will use the con-
vergence analysis for IPPEM, developed in [20], in order to obtain convergence
results for TALEM. We remark that though we will prove that TALEM (applied
to EP(f, K)), and IPPEM (applied to a very specific instance of the variational
inequality problem, namely EP(L£,R™ x R")), generate the same sequence, both
algorithms are of a rather different nature: IPPEM can be applied to a rather large
class of variational inequality problems besides the above mentioned specific in-
stance; IALEM, on the other hand, can in principle be used for solving variational
inequality problems lacking any monotonicity property, in the same way as the
augmented Lagrangian method for optimization problems is of interest also in the
nonconvex case. Indeed, we do not analyze in this paper the convergence behavior
of TALEM in the absence of the monotonicity, but it is certainly an issue which
deserves further study. IPPEM also makes sense when f lacks monotonicity-like
properties, but the connection between both methods breaks down in such a situ-
ation. In this paper, IPPEM is just an ancillary procedure to be used just for the
sake of proving the convergence properties of IALEM.
We state next the convergence theorem for IPPEM.

Theorem 3.1. Consider EP(f, K) such that f is monotone (i.e., (1.2) is satis-
fied). Take an exogenous sequence {v;} C (0,7], for some ¥ > 0. Let {z7} be
the sequence generated by Algorithm IPPEM. If EP(f, K) has solutions, then {x7}
converges to some solution x* of EP(f, K).
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Proof. See Theorem 5.8 of [20], and the comments following its proof, establish-
ing that some technical hypotheses required for the validity of this theorem hold
automatically in the finite dimensional case, which is the one of interest here. [

We will apply IPPEM for solving problem EP(£, R™ x R™"), with £ as in (2.2),
for which we must check that this variational inequality is monotone.

Proposition 3.2. Assume that f is monotone (i.e., (1.2) is satisfied) and that K
is given by (2.1). Then L, as defined in (2.2), is monotone.

Proof. Tt follows easily from (2.2) and the monotonicity of f that

L((z, ), (Y, 1)) + L((y, 1), (2, X)) = f(2,y) + f(y,z) <0. O

Now we can apply Algorithm IPPEM for solving EP(£,R" xR""). In view of (3.1),
the regularized function at iteration j is given by

L5((, ), (> ) = L£((, ), (1) 3w —a?, y =) +95(A= N =) = (e, y — 1)
=flz,y) + Zm:&hi(y) - f:ﬂihi(fﬂ) +j(z -2ty — )
i=1 i=1
+ A =N p =) = (el y —x), (34)
so that at iteration j we must find a pair (fcj,j\j), (e7,0) € R™ x R™ such that

(27, M) solves the problem EP(E;, R™ x R%") with Ej as defined in (3.4), and the
iterative formulae (3.2)—(3.3) take the form:

I, 0l = [le7]] < o || @7 = a7, 30 = 2|,
It =37 — ’yj_lej, (3.5)
PAREDYA (3.6)

Note that we do not use an error vector associated with the A and p arguments
of £. This is related to the fact that in Step 3 of Algorithm TALEM the \!’s are
updated through a closed formula, so that we can assume that such an updating
is performed in an exact way.

We state next the convergence result for this particular instance of IPPEM.

Corollary 3.3. Consider EP(f, K) with K given by (2.1) and f monotone (i.e.,
(1.2) is satisfied). Take {v;} C (0,7] for some 57 > 0. Let {(z7,\)} be the
sequence generated by Algorithm IPPEM applied to EP(L,R"xR7"). If the problem
EP(L,R" x R7") has solutions, then {(z7,\)} converges to some pair (z*,\*) €
S(L,R™ x RY).

Proof. Tt follows from Theorem 3.1 and Proposition 3.2. 0

Now we introduce the concept of optimal pair for EP(f, K).
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Definition 3.4. We say (z*,\*) € R” x R™ is an optimal pair for EP(f, K) if

0€ F(x +Z>\ Ohi( (3.7)
Af >0 (1<i<m), (3.8)
hi(z") <0 (1 <i<m), (3.9)
Afhi(x™) =0 (1 <i<m), (3.10)

where the set Oh;(z*) denotes the subdifferential of the convex function h; at the
point z* and F is defined as (1.4).

The next two propositions and corollary establish the relations between solu-
tions of EP(f, K), solutions of EP(L,R" x R’") and optimal pairs for EP(f, K).
We mention that the next proposition does not require a constraint qualification
for the feasible set K, while Proposition 3.6 does.

Proposition 3.5. Consider EP(f, K). Then the following two statements are
equivalent.
(i) (x*,\*) is an optimal pair for EP(f, K).
(i) (z*,A*) € S(L,R™ x RT).
Proof.
(ii)= (i) Define F(z« x+)(z,A) = L((z*, \*), (,A)) and consider the problem

min F,- a+) (2, A) (3.11)

s.t. (z,A) € R" x R (3.12)
Note that (z*, \*) solves (3.11)—(3.12) since Fz» y) (2", A*) = L((z*, \*),
(z*,A*)) = 0 and that (z*,\*) € S(L,R" x R"). Since the constraints
of this problem are affine, the constraint qualification CQ of Section 2
holds for this problem and, invoking a classical result (e.g. Thm. 2.3.2 in
Chap. VII of [16], which deals with the non-smooth case), there exists a
vector of KKT multipliers n* € R™ such that

0€ F(x +Z>\*8h (3.13)

hi(z*)+n; =0 (1 <i<m), (3.14)

A* >0, (3.15)

nt >0, (3.16)

Ain; =0 (1<i<m), (3.17)

where F' is given by (1.4). Note that (3.13) and (3.15) coincide with (3.7)
and (3.8) respectively. Sincen; = —h;(2*) by (3.14), we get (3.9) and (3.10)

from (3.16) and (3.17) respectively.
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(i)= (i) Now we assume that the pair (=*, \*) satisfies (3.7)—(3.10). Taking n; =
—hi(x*), we get (3.13)—(3.17). Since problem (3.11)—(3.12) is convex, the
KKT conditions are sufficient for optimality, so that the pair (z*, A*) solves
this problem. Consequently, this pair must solve EP(£,R" x R'!"). a

Proposition 3.6. Consider EP(f, K). If * € S(f, K) and the constraint quali-
fication CQ in Section 2 holds for the functions h;’s which define the feasible set
K, then there exists \* € R such that (x*, \*) is an optimal pair for EP(f, K).
Conversely, if (z*,\*) is an optimal pair for EP(f, K) then x* € S(f, K).

Proof. For the first statement, since CQ holds, we invoke again e.g. Theorem 2.3.2
in Chapter VII of [16] to conclude that there exists a vector \* € R™ such
that (3.7)—(3.10) hold (we mention that, since we are assuming that both f and
the h;’s are finite on the whole R™ x R™ and R” respectively, there is no difficulty
with the non-smooth Lagrangian condition (3.7)). It follows from Definition 3.4
that (z*, A\*) is an optimal pair for EP(f, K). Reciprocally, if (z*, A*) is an opti-
mal pair for EP(f, K), then (3.7)—(3.10) hold, but these are the KKT conditions
for the problem of minimizing f(z*,x) subject to € K, which are sufficient by
convexity of f(z*,-) and K, and hence x* solves this problem. a

Corollary 3.7. Consider EP(f, K). If (z*,X\*) € S(L,R" x R), then z* €
S(f,K). Conversely, if x* € S(f,K) and the constraint qualification CQ in Sec-
tion 2 holds, then there exists \* € R such that (z*,\*) € S(L,R" x R7").

Proof. Tt follows from Propositions 3.5 and 3.6. O

Corollary 3.7 shows that solving EP (£, R™ xR"") is enough for solving EP(f, K).
Next we will prove that the sequence generated by TALEM for solving the latter
problem coincides with the sequence generated by IPPEM for solving the former.
We need first a technical result.

Proposition 3.8. Consider EP(f, K). Assume that f in monotone (i.e., (1.2) is
satisfied). Fiz e,z € R™ and v > 0. If f : K x K — R is defined as

f(l',y):f(ﬂ?,y)+’y<l‘72,y71'>*<€,y71'>,

then EP(f, K) has a unique solution.
Proof. See Proposition 3.1 in [20]. O

The monotonicity of f and the condition v > 0 are essential for the validity
of Proposition 3.8, whose proof is based upon an existence result for EP(f, K),
established in [21] and extended in [19].

Theorem 3.9. Consider EP(f,K). Assume that f is monotone (i.e., (1.2) is
satisfied). Fiz a sequence {v;} C Ryt and a relative error tolerance o € (0,1).
Let {(z7, M)} be the sequence generated by Algorithm IALEM applied to EP(f, K),
with associated error vector e/ € R™, and {(z7, M)} the sequence generated by
Algorithm IPPEM applied to EP(L,R"™ xR7"), with associated error vector (e7,0) €
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R™ x R™, using the same v;’s and . If (2%, \°) = (z°, \0) then (27, M) = (27, M)
for all j.

Proof. We proceed by induction on j. The result holds for j = 0 by assumption.
Assume that (27, M) = (z7,)N). In view of Step 2 of algorithm IPPEM, we
must solve EP([:?, R™ x R™*), with Ej as in (3.4), which has a unique solution by
Proposition 3.8. Let (&7, 5\3) be the solution of this problem. By Proposition 3.5,
(27, N ) solves the convex minimization problem defined as

min 7z 5, (2, A) (3.18)

st. (z,A) € R" x RT, (3.19)
with .7?(@)-’&].) (x,\) = Ej((fc], M), (z, A)). The constraints of this problem are affine,
so that CQ holds and therefore there exists a KKT vector / € R™ such that

yilE =i+ el € F(&7) + Y Mohi(27), (3.20)
=1

—hi(@) + N = N =] (1<i<m), (3.21)

M >0, (3.22)

7 >0, (3.23)

Nnl =0 (1<i<m), (3.24)

where F is given by (1.4). Using (3.21) to eliminate 77, (3.20)—(3.24) can be
rewritten, after some elementary calculations, as

ylE — 27+ el € F(&7) + Y Mohi(a7), (3.25)
=1

_. (4
N = maX{O,)\g + —hz(:c )

- } (1<i<m). (3.26)

Replacing (3.26) in (3.25) we get
. . . . m . h,,L Aj
vil@? — 3]+ € F(3) +Zmax {07)\5 + hi(@7)
i— Vi
=1

}ahi(:zj) (1<i<m). (3.27)

Now we look at Step 2 of Algorithm IALEM, which demands the solution 79 of
EP(L$,R™). This problem is equivalent to saying that %7 is the unconstrained

minimizer of the convex function Ej(:i] ,+) over R™ since Ej(:i] ,@7) = 0. That is,
%7 belongs to S(E?, R™) if and only if

) ) ) ) m o h(a)
yilw?! — @)+ el € F(#) + Zmax{o,/\g + -
J

i=1

} Ohi (). (3.28)
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Since 27 = #/, M = M by inductive hypothesis, we get from (3.27) that (3.28)
holds with &7 substituting for %7, and hence &7 also solves EP(ﬁj, R™). Since this
problem has a unique solution by Proposition 3.8, we conclude that

=3, (3.29)

Taking now into account on the one hand (2.10) in Step 3 of TALEM, and on
the other hand (3.5) in Step 3 of IPPEM we conclude, using again the inductive
hypothesis and (3.29), that 2771 = #771. Now we look at the updating of the dual
variables. In view of (3.4), (3.6) and (3.26), for IPPEM we have

. " . (4
M= M = max {0, Mo+ M} : (3.30)
7

Comparing now (3.30) with (2.9) and taking into account (3.29) and the fact that
M = M by the inductive hypothesis, we conclude that M*+! = M+ completing
the inductive step and the proof. O

Now we settle the issue of finite termination of Algorithm IALEM.

Proposition 3.10. Suppose that Algorithm IALEM stops at iteration j. Then
the vector &7 generated by the algorithm is a solution of EP(f, K).

Proof. If Algorithm TALEM stops at the jth iteration, then, in view of Step 4,
(27, M) = (29, MT1). Using (2.8) and the fact that 27 = 77, we get ¢/ = 0. For
x € R™, define the function F, : R — R as

m

i=1
where the second equality holds because e/ = 0. Since &/ = 27, we get

m

F;EJ(y) :f(jj7y)+zsi(‘%jvya)‘ja7j)' (331)

i=1

Note that #/ is an unconstrained minimizer of Fy;. Thus, in view of (1.4) and
(3.31),

0€ dF (#)=F(# JeraX{O N4 hfy )}(%( )= F(azj)+iAg’ahi(azj),

i=1

(3.32)
using (2.9) and the fact that A = M1, which also gives
, , (@ _
ML=\ = maX{O,Af + ﬂ} (1<i<m). (3.33)
i
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It follows easily from (3.33) that
N >0, Mh(@) =0, h(@F)<0  (1<i<m). (3.34)

In view of (3.32) and (3.34), (#7,\) is an optimal pair for EP(f, K) and we
conclude from Proposition 3.6 that 77 € S(f, K). a

Now we use Theorem 3.9 for completing the convergence analysis of Algorithm
IALEM.

Theorem 3.11. Consider EP(f, K). Assume that
(i) f is monotone (i.e., (1.2) is satisfied);
(il) K is given by (2.1);
(iii) the constraint qualification CQ stated in Section 2 holds for K ;
(iv) {v;} € (0,7] for some 5 > 0.
Let {(27, M)} be the sequence generated by Algorithm IALEM for solving EP(f, K).

If EP(f, K) has solutions then the sequence {(x7, M)} converges to some optimal
pair (z*,\*) for EP(f, K), and consequently z* € S(f, K).

Proof. By Theorem 3.9 the sequence { (27, M)} coincides with the sequence gener-
ated by IPPEM applied to EP(£,R" x R7"). Since EP(f, K) has solutions and CQ
holds, Corollary 3.7 implies that EP(£,R™ x R"") has solutions. By Corollary 3.3,
the sequence {(z7,\’)} converges to a solution (z*,\*) of EP(L,R" x R"). By
Corollary 3.7 again, x* belongs to S(f, K). a

We comment now on the real meaning of the error vector ¢/ appearing in Algo-
rithms IALEM and IPPEM. These algorithms define the vector &7 as the exact so-
lution of an variational inequality problem involving /. Though this is convenient
for the sake of the presentation (and also frequent in the analysis of inexact algo-
rithms), in actual implementations one does not consider the vector e/ “a priori’.
Rather some auxiliary subroutine is used for solving the exact jth subproblem (i.e.
the subproblem with e/ = 0), generating approximate solutions ¥ (k = 1,2,...),
which are offered as “candidates” for the &/ of the method, each of which giving
rise to an associated error vector e/, which may pass or fail the test of (2.8). To
fix ideas, consider the smooth case, i.e., assume that the h;’s are differentiable. If
x7* is proposed by the subroutine as a solution of the j-th subproblem, in view
of (3.28) we have

hi(Z9F)

ol = F(#) + Zmax {O, N+
— Vi
i=1

} Vhi(#5F) + ~;[20F — 2] (3.35)

where F is defined as (1.4). If #7-F were the exact solution of the j-th subproblem,
then the right hand side of (3.35) would vanish. If #7** is just an approximation of
this solution, then the right-hand side of (3.35) is non-zero, and we call it /. Then
we perform the test in Step 2 of the algorithm. If e/ satisfies the inequality in (2.8),
with 27-* substituting for 7, then #7* is accepted as #7 and the algorithm proceeds
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to Step 3. Otherwise, the proposed #7* is not good enough, and an additional
step of the auxiliary subroutine is needed, after which the test will be repeated
with 27%+1, It is thus important to give conditions under which any candidate
vector x close enough to the exact solution of the j-th subproblem will pass the
test of (2.7)—(2.8), and thus will be accepted as #7. It happens to be the case that
smoothness of the data functions is enough, as we explain next.

Consider EP(f, K) and assume that F' is continuous. We look at Algorithm
IPPEM as described in (3.1)(3.3). Let #/ be the exact solution of the j-th sub-
problem, i.e. the solution of EP(ff, K) with f§ as in (3.1) and ¢/ = 0. It has
been proved in Theorem 6.11 of [20] that if #7 belongs to the interior of K then
there exists § > 0 such that any vector z € B(#/,d) will be accepted as #’ by
the algorithm, or, in other words, for all z € B(#’, ) there exists e € R™ such
that (3.1) and (3.2) are satisfied with z, e substituting for #7,e’ respectively.

Observe now that the jth IALEM subproblem, namely EP(Z?,R”), is uncon-
strained, i.e. K = R"™, so that the condition #/ € int(K) is automatically satisfied.
Regarding the continuous differentiability of E]e’ it follows from (2.3) and (2.7) that
if the h;’s are continuously differentiable and F' is continuous, then E]e is continu-

ously differentiable (it is worthwhile to mention that Z]e is never twice continuously
differentiable, due to the two maxima in the definition of s;; see (2.3)). Thus the
above result from [20] can be rephrased for the case of IALEM as follows.

Corollary 3.12. Consider EP(f,K). Assume that f is monotone (i.e., (1.2)
is satisfied), h; is differentiable (1 < i < m), and that F, defined as in (1.4),
is continuous. Let {(x7, M)} be the sequence generated by Algorithm TALEM.
Assume that 7 is not a solution of EP(f, K) and let 7 be the unique solution of
EP(E;,R"), as defined in (2.7), with €’ = 0. Then there exists 6; > 0 such that
any x € B(7,6;) solves the subproblem (2.7)-(2.8).

In view of Corollary 3.12, if the subproblems of TALEM are solved with a
procedure guaranteed to converge to the exact solution, in the smooth case a
finite number of iterations of this inner loop will suffice for generating a pair
(77, e7) satisfying the error criterium of TALEM.

4. LINEARIZED AUGMENTED LAGRANGIAN

An interesting feature of Algorithm ALEM is that its convergence properties
are not altered if the Lagrangian is replaced by its first order approximation as
a function of the second argument. This linearization gives rise to a variant of
ALEM and TALEM which might be more suitable for actual computation. In
order to perform this linearization we assume that all the h;’s are continuously
differentiable.
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If we linearize the Lagrangian given by (2.2) as a function of y around y = z,
we obtain the function £ : (R™ x R™) x (R™ x R™) — R defined as

m m

=1 i=1

where F' is given by (1.4). We will denote £ as the Linearized Lagrangian for
EP(f,K). Note that there is no need to linearize in the second variable of the
second argument, namely u, because L is already affine as a function of .
Performing the same linearization on the augmented Lagrangian given by (2.7)
we obtain a variant of IALEM, to be called LIALEM, which we describe next.

Algorithm LIALEM: Linearized inexact augmented Lagrangian-extragradient
method for newline EP(f, K).

1. Take an exogenous bounded sequence {;} C Ry and a relative error tolerance
o € (0,1). Initialize the algorithm with (z°,\%) € R™ x R'".

2. Given (27, \), define 5, : R" x R" X R x Ry — R as

51,4, A7) = max {o,xi n @} (Vhi(z)y—z) (1<i<m),  (42)

and find a pair (#/,e’) € R™ x R" such that 7/ solves EP(Z;,R”), where E; :
R"™ x R™ — R is defined as

m
L5(z,y) = (F(2),y—a)+v(w—al ,y—a)+v; Y Si(z,u, N, 75) = (e y—a), (4.3)
i=1
with F as in (1.4) and 3; as in (4.2), and e’ satisfies
e7]| < oy ||(@ — a7, T =N, (4.4)
where M1 = (AT A+1) is introduced in the next step.
3. Define V1! as

—hi(jj) 1 <m
E a<ism. (45)

4. If (27, M) = (27, ML), then stop. Otherwise,

)\gﬂ = max{(),)\g +

T =37 - e, (4.6)

Observe that the only difference between Algorithm ITALEM and Algorithm
LIALEM appears in the bifunction defining the unconstrained variational inequal-
ity subproblem. In fact, in iteration j of Algorithm LIALEM one solves EP(E;, R™)
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with £ as in (4.3), while in the j-th iteration of Algorithm IALEM one solves
EP(LS,R™) with £¢ as in (2.7).

We show next that £ is monotone, so that, in view of Theorem 3.1, the sequence
generated by Algorithm IPPEM applied to EP(L,R™ x R") will converge to a
solution of EP(L,R™ x R").

Proposition 4.1. Consider EP(f, K). Assume that f is monotone (i.e., (1.2) is
satisfied). Then, L is monotone, with L as given by (4.1).

Proof. We have that

((IC, >‘)7 (ya ,LL)) + E((ya ,LL), (l‘, A)) = <F(:C)a Yy—= LL‘> + <F(y)a T — y>
+Z )\i[hi(x)+<Vhi(x)7y_$>_hi(y)]+z pilhi(y)+{Vhi(y), z—y)—hi(x)] <0,

(4.7)

using (4.1) in the equality, and the monotonicity of F' and the convexity of h;’s in
the inequality. O

It is easy to check that Propositions 3.5, and 3.6 remain true with EP(L, R x
R™*) substituting for EP(L,R™ x RY"). The only difference is that due to the
smoothness h;’s, the Lagrangian condition (3.7) takes the form

0=F(z*)+ > AVh(a"),
=1

where F' is defined as (1.4). It is a matter of routine to check that the proofs of
Theorem 3.9, Theorem 3.11 and Corollary 3.12 also remain valid for LIALEM,
resulting in the following convergence theorem.

Theorem 4.2. Consider EP(f, K). Assume that

(i) f is monotone (i.e., (1.2) is satisfied);
(ii) F, defined as in (1.4), is continuous;
(iii) h; is differentiable (1 <1i < m);
(iv) the constraint qualification CQ of Section 2 holds for the feasible set K.

Take an exogenous sequence {~y;} C (0,%], for some 5 > 0, and a relative error tol-
erance o € (0,1). Let {(z7, M)} be the sequence generated by Algorithm LIALEM
applied to EP(f,K). If EP(f, K) has solutions then {(x7,\)} converges to an
optimal pair (x*,\*) for EP(f,K), so that x* belongs to S(f, K). Additionally,
if 27 is not a solution of EP(f, K) and ¥’ is the unique solution of EP(E;,R")
with ¢/ = 0, then there exists §; > 0 such that any x € B(¥7,4;) solves the j-th
subproblem of Algorithm LIALEM.
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5. FINAL REMARKS

In the case of the augmented Lagrangian methods for optimization, a con-
strained optimization problem is replaced by a sequence of unconstrained ones.
This procedure makes sense because a wide variety of fast solvers (e.g.
quasi-Newton methods) are available for unconstrained optimization. The meth-
ods introduced in this paper (IALEM, LIALEM, etc.), in a similar fashion, replace
a constrained variational inequality problem by a sequence of unconstrained ones.
It is worthwhile to comment on the advantages of such a substitution in the vari-
ational inequality context, namely on the available options for solving the uncon-
strained subproblems. In order to avoid technicalities, we restrict our comments
to the smooth case.

One interesting possibility is the projection method for solving EP(f, K) pro-
posed in [22]. At iteration j, the method requires approximate maximization of
f(-,47) on the intersection of K with a ball centered at 0, followed by a projec-
tion onto a hyperplane, whose computational cost is negligible. If this procedure
is applied to the unconstrained subproblems of the methods discussed here, the
computationally heavy task reduces to maximization of a continuous function on
a ball, which is relatively easy, as compared to the same maximization with the
additional constraints h;(x) < 0, which would be the case if the same algorithm is
applied to the original problem.

We remind also that our convergence analysis, allowing for inexact solution of
the subproblems, ensures that a finite number of steps of the projection method
in [22] will be enough for satisfying our error criteria, as discussed in Section 3.

Another option consists of solving the system of equations resulting from (3.28)
in the case of TALEM, namely

m
0:'yj(x—acj)—l—F(ac)—f—Zmax{O,)\g+@}Vhi(x) (5.1)

i=1 J
with F' as in (1.4). We observe that the right hand side of (5.1) is continuous
but not differentiable, due to the presence of the maximum. However, there is
a substantial choice of efficient methods for non-smooth equations which can be
used in this case.

We also mention that another inexact Proximal Point method for EP(f, K) was
presented in [20], where it is called Algorithm I. In this case, instead of Step 3 of
IPPEM, the solution &’ of the subproblem is used for constructing a hyperplane
Hj; which separates 2/ from S(f, K), and the next iterate 27! is the so called
Bregman projection of 27 onto H;. In our current finite dimensional context, such
a Bregman projection is just the orthogonal projection. The convergence analysis
of the algorithm can be found in Theorem 5.5 of [20]. Both an inexact augmented
Lagrangian method for EP(f, K) and its linearized version can be developed from
Algorithm I in [20]. We omit the explicit development of these methods for the
sake of conciseness.
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The actual computational implementation of the methods introduced here is

left for future research. We expect to have some results in this direction within a
short period.
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