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Abstract

The partial inverse minimum cut problem is to minimally modify the capacities of a
digraph such that there exists a minimum cut with respect to the new capacities that
contains all arcs of a prespecified set. Orlin showed that the problem is strongly NP-hard
if the amount of modification is measured by the weighted L1-norm. We prove that the
problem remains hard for the unweighted case and show that the NP-hardness proof of
Yang [7] for this problem with additional bound constraints is not correct.

1 Introduction

A combinatorial optimization problem is usually given in the following form: Let M be
a ground set, F ⊆ M be the set of feasible solutions and let c(e) ∈ R for e ∈ M be
cost coefficients of the elements in M . The task is to find a feasible solution F ∈ F that
minimizes

∑

e∈F c(e). Many classical problems, like the minimum spanning tree problem,
the shortest path problem or the minimum cut problem, can be modelled in this way.

For an inverse combinatorial optimization problem, we are given an instance of a
combinatorial optimization problem and in addition a prespecified feasible solution F̃ ∈
F . The task is to find new cost coefficients c̃(e) (e ∈ E) such that F̃ is an optimal
solution with respect to c̃, i.e.,

∑

e∈F̃ c̃(e) ≤
∑

e∈F c̃(e) holds for all F ∈ F and the
distance between c and c̃ is as small as possible. The distance between these two cost
coefficient vectors is usually measured by a weighted Lp-norm.

A partial inverse problem is a generalization of an inverse problem where instead of a
feasible solution only a subset J ⊆ M of elements that should be contained in an optimal
solution is given, i.e., the task is to find a new cost coefficient vector c̃ such that there
exists an optimal solution F ∗ with respect to c̃ with J ⊆ F ∗ and the distance between c̃

and c is minimized.
Inverse and partial inverse approached have been applied to several classical combi-

natorial optimization problems, like the shortest path problem or the minimum spanning
tree problem. For a comprehensive survey on inverse and partial inverse problems the
interested reader is referred to the survey by Heuberger [4].

In this paper, the partial inverse minimum cut problem is investigated. We show that
the partial inverse minimum cut problem is strongly NP-hard even if the (unweighted)
L1-norm is used to measure the amount of capacity modification. This result strengthens
the result of Orlin [6] who proved strong NP-hardness of the partial inverse minimum
cut problem with weighted L1-norm. Moreover, we consider the investigations by Yang
[7] for the partial inverse minimum cut problem with unweighted L1-norm and bounds
on the modified capacities. Yang claimed that the partial inverse minimum cut problem
with unweighted L1-norm and bounds on the modified capacities is weakly NP-hard. We
show by a counter-example that the proof in [7] is not correct. However, we prove that
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strong NP-hardness of the problem considered by Yang follows from our NP-hardness
result on the partial inverse minimum cut problem as well as from the investigations on
the preprocessing minimum cut problem by Lai and Orlin [5].

2 The minimum cut problem and its (partial) inverse

Let G = (V, E) be a digraph, s ∈ V (source) and t ∈ V (sink). An (s − t)-cut (X, X̄) is
a partition of V into two disjoint subsets X and X̄ such that s ∈ X and t ∈ X̄. The set
of all (s − t)-cuts is denoted by S.

The minimum cut problem is to find an (s − t)-cut with minimum capacity with
respect to the sum-composition, i.e., find a cut (X, X̄) ∈ S that minimizes

c(X, X̄) =
∑

(i,j)∈E
i∈X
j∈X̄

c(e).

An arc (i, j) ∈ E with i ∈ X and j ∈ X̄ is called cut-arc of (X, X̄).
An instance of the inverse minimum cut problem is given by an instance of the mini-

mum cut problem together with a cut (X∗, X̄∗) ∈ S and a weighted Lp-norm. The task
is to find new capacities c̃(e) for e ∈ E such that

• (X∗, X̄∗) is a minimum cut with respect to the capacities c̃, i.e., c̃(X∗, X̄∗) ≤
c̃(X, X̄) for all (X, X̄) ∈ S, and

• the weighted Lp-norm of c − c̃ is minimum.

Most inverse approaches deal with a weighted L1-norm or a weighted L∞-norm. Let
w(e) ∈ R+ (for e ∈ E) be some weights, then the weighted L1-norm of c − c̃ is given by

‖c − c̃‖w,1 =
∑

e∈E

w(e)|c(e) − c̃(e)|

while the weighted L∞-norm of c − c̃ is equal to

‖c − c̃‖w,∞ = max
e∈E

w(e)|c(e) − c̃(e)|.

If all weights are equal to 1 then we write ‖ · ‖1 and ‖ · ‖∞, respectively.
Zhang and Cai [8] considered a generalized inverse minimum cut problem, where a set

of cuts is given and there are bounds u+
e and u−

e for the modified capacities. Their goal
is to find new capacities c̃ such that u−

e ≤ c̃e ≤ u+
e holds for all e ∈ E, all prespecified

cuts become minimum cuts with respect to c̃ and they use the weighted L1-norm. They
show that the unit-weight case can be transformed to a minimum cut problem while the
nonunit-weight case can be modelled as minimum cost circulation problem. Hence, the
inverse minimum cut problem with L1-norm can be solved in polynomial time. Later,
Ahuja and Orlin [1] came up with a simplified proof of the correctness of the algorithms
of Zhang and Cai and showed that an analogue approach also works for the inverse
shortest path and inverse assignment problem. Moreover, Ahuja and Orlin proved that if
the underlying optimization problem for a linear cost function is solvable in polynomial
time then its inverse problems under L1- or L∞-norms are also polynomially solvable.
This result implies that the inverse minimum cut problem with L∞-norm is solvable in
polynomial time.

This paper deals with the partial inverse minimum cut problem (PIMC for short): Let
G = (V, E, c) be an arc-capacitated digraph with source s ∈ V and sink t ∈ V . Moreover,
let Y, Ȳ ⊂ V be disjoint sets. Then the task of the partial inverse minimum cut problem
is to find new capacities c̃ such that

• there exists a cut (X∗, X̄∗) ∈ S that is a minimum cut with respect to c̃, Y ⊆ X∗,
Ȳ ⊆ X̄∗, and

• the weighted Lp-norm of c − c̃ is minimized.
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An equivalent definition of the partial inverse minimum cut problem is to fix a partial cut
by its cut-arcs, i.e., there is given a subset of arcs J ⊆ E. The goal is then to minimally
modify the capacities such that there exists an optimal cut (X∗, X̄∗) with respect to the
modified capacities such that i ∈ X∗ and j ∈ X̄∗ holds for all (i, j) ∈ J . If all arcs in J

are cut-arcs of (X, X̄) then we say that (X, X̄) covers J .
While the inverse minimum cut problem with L1- and L∞-norm are solvable in poly-

nomial time, it turns out that the corresponding partial inverse minimum cut problems
are substantially harder. Several NP-hardness results for the partial inverse minimum cut
problem can be concluded from investigations on the so-called preprocessing problem.

The preprocessing problem is a special case of the partial inverse optimization problem
where the partial solution contains exactly one edge and the (weighted) L∞-norm is used.
Lai and Orlin [5] considered the preprocessing minimum cut problem, i.e., PIMC with
weighted L∞-norm where the partial cut (Y, Ȳ ) is given by one cut-arc e′. The goal is to
change the capacities such that there exists a cut (X∗, X̄∗) that is minimal with respect
to the modified capacities, (X∗, X̄∗) covers {e′} and the (weighted) L∞-distance between
the original and the modified capacity vector is minimized. Lai and Orlin showed by a
reduction from the restricted path problem that the (weighted) preprocessing minimum
cut problem and henceforth PIMC with (weighted) L∞-norm is strongly NP-hard. In a
companion working paper, Orlin [6] also proved that PIMC with weighted L1-norm is
strongly NP-hard. However, they leave the complexity status of PIMC with unweighted
L1-norm as open question.

Yang [7] considered PIMC with additional bound constraints on the modified capaci-
ties and the unweighted L1-norm and claims that this problem is weakly NP-hard. How-
ever, their proof is incorrect as can be seen by the following counter-example: Consider
the instance {a1 = 1, a2 = 3, a3 = 4, a4 = 5, a5 = 6, a6 = 7} of the partition problem.
Then I = {1, 2, 3, 4} is a partition and according to Yang’s construction (X∗, X̄∗) with
X∗ = {s, u1, u2, u3, v1, v2, w1, w2} is a minimum cut with respect to the modified capac-
ities c̃(v1, t) = 13 − 1

2 , c̃(w1, t) = 13 − 3
2 , c̃(v2, t) = 11, c̃(w2, t) = 13 − 5

2 and c̃(e) = c(e)
otherwise. However, the cut (X, X̄) with X = X∗ \ {u3} satisfies c̃(X, X̄) < c̃(X∗, X̄∗)
which contradicts the minimality of (X∗, X̄∗).

Nevertheless, Yang’s conjecture about the computational complexity of their problem
is correct. According to Lai and Orlin [5], PIMC with L∞-norm is strongly NP-hard
which implies that PIMC with bound constraints and any arbitrary norm is also strongly
NP-hard. On the other hand, our hardness result for PIMC with unweighted L1-norm
also implies NP-hardness of the associated problem with bounds.

3 The partial inverse minimum cut problem with un-

weighted L1-norm

In this section, we consider the partial inverse minimum cut problem with unweighted
L1-norm which is called PIMC1 for short. Throughout this section, we deal with the
following representation of an instance: Let G = (V, E) be a digraph, c(e) ∈ R+ for
e ∈ E, s ∈ V , t ∈ V and J ⊆ E. The task of PIMC1 is to find new capacities c̃ such that
there exists a cut (X∗, X̄∗) that is a minimum cut with respect to c̃, (X∗, X̄∗) covers J

and ‖c − c̃‖1 =
∑

e∈E |c(e) − c̃(e)| is minimum.
Let us first investigate a property of an optimal solution of PIMC1:

Lemma 3.1. There exists an optimal solution c∗ of PIMC1 such that 0 ≤ c∗(e) ≤ c(e)
holds for all e ∈ E.

Proof. Let (X∗, X̄∗) ∈ S be a minimum cut with respect to c∗ that covers J . Then every
optimal solution of the inverse minimum cut problem where (X∗, X̄∗) is required to be
become a minimum cut is also an optimal solution of the given instance of PIMC1. Ahuja
and Orlin [1] showed that the inverse minimum cut problem admits an optimal solution
with the properties stated in the lemma. Hence, there also exists an optimal solution of
PIMC1 with these properties.
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Theorem 3.2. The partial inverse minimum cut problem with unweighted L1-norm is

strongly NP-hard.

Proof. The proof splits into the following three parts:
The construction: Consider the balanced minimum cut problem, BMCP for short:
Let Ĝ = (V̂ , Ê) be a connected digraph with an even number n of vertices, m edges
and let 1 ≤ K < m be an integer. The task of BMCP is to find a cut (Y, Ȳ ) such
that |Y | = |Ȳ | = n

2 holds and the number of cut-arcs of (Y, Ȳ ) is at most K, i.e.,

|{(i, j) ∈ Ê | i ∈ Y, j ∈ Ȳ }| ≤ K.
Observe that the undirected version of BMCP where the task is to find a balanced cut

(Y, Ȳ ) in an undirected graph where at most K edges have one endpoint in Y and the other
endpoint in Ȳ has been shown to be strongly NP-hard (Garey, Johnson and Stockmeyer
[3]). Given an instance of the balanced minimum cut problem in an undirected graph and
replace every edge e = {i, j} by two directed arcs (i, j) and (j, i) then there is a one-to-
one correspondence between balanced cuts in the undirected and its associated directed
graph. Moreover, let (Y, Ȳ ) be a balanced cut then the number of edges in the undirected
graph with one endpoint in Y and the other endpoint in Ȳ is equal to the number of
cut-arcs of (Y, Ȳ ) in the associated digraph. Hence, BMCP is strongly NP-hard.

Let (Ĝ, K) be an instance of BMCP with V̂ = {1, . . . , n} where n is even and |Ê| =
m > K. We construct an instance (G, s, t, J, c) of PIMC1 as follows: For each vertex
i ∈ V̂ there is a vertex gadget Gi = (Vi, Ei) with

Vi = {s, ai, bi, ci, t
′}

Ei = {(s, ai), (s, bi), (bi, ai), (bi, ci), (ci, t
′)}

Moreover, there is the arc set Ẽ with

Ẽ = {(bi, bj) | (i, j) ∈ Ê}.

Finally, a vertex t and the arc (t′, t) are added. Hence G = (V, E) is of the form

V =

(

n
⋃

i=1

Vi

)

∪ {t}

E =

(

n
⋃

i=1

Ei

)

∪ Ẽ ∪ {(t′, t)}

The set J is given by
J = {(s, ai), (ci, t

′) | i = 1, . . . , n}

and the capacities are equal to

c(e) =































0 e ∈ {(s, ai) | i = 1, . . . , n}

3m e ∈ {(bi, ai) | i = 1, . . . , n}

2m e ∈ {(s, bi), (bi, ci), (ci, t
′) | i = 1, . . . , n}

1 e ∈ Ẽ

mn e = (t′, t)

See Figure 1 for an illustration.
We show that there exists a balanced (s−t)-cut (Y, Ȳ ) in Ĝ with at most K cut-arcs if

and only if there exists a feasible solution c̃ of the PIMC1-instance with ‖c−c̃‖1 ≤ 7mn
2 +K.

The IF-direction: Assume that c̃ is a feasible solution of PIMC1 with ‖c−c̃‖1 ≤ 7mn
2 +K

and let (X∗, X̄∗) be a minimum cut that covers J . According to Lemma 3.1, we may
assume that c̃ satisfies 0 ≤ c̃(e) ≤ c(e) for all e ∈ E. Moreover, it is easy to see that we
may assume that c̃(e) = c(e) for every e ∈ E that does not lie in the cut (X∗, X̄∗).

According to the famous max-flow min-cut theorem by Ford and Fulkerson [2] the
capacity of a minimum cut is equal to the value of a maximum flow. If (X∗, X̄∗) is a
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aj

bi

bj

ci

cj
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mn
1

Figure 1: Constructed instance of PIMC1 with (i, j) ∈ Ê.

minimum cut with respect to c̃ and let f∗ be a maximum flow with respect to c̃ then
c̃(i, j) = f∗(i, j) holds for all (forward-)arcs (i, j) ∈ E with i ∈ X∗ and j ∈ X̄∗ while
f∗(i, j) = 0 holds for all (backward-)arcs (i, j) ∈ E with i ∈ X̄∗ and j ∈ X∗.

The fact that (X∗, X̄∗) covers J implies {s} ∪ {ci | i ∈ V̂ } ⊆ X∗ and {ai | i ∈
V̂ } ∪ {t′, t} ⊆ X̄∗. Hence, only vertices of type bi may be in X∗ or X̄∗.

First consider bi ∈ X∗: Then (s, ai), (bi, ai), (ci, t
′) are cut-arcs and (s, bi), (bi, ci) are

no cut-arcs. This implies that c̃(s, bi) = c(s, bi) = 2m = c(bi, ci) = c̃(bi, ci) holds. Since
there are no outgoing arcs of ai there does not exist any (s− t)-flow f with f(bi, ai) > 0.
Since (bi, ai) is a cut-arc, we have c̃(bi, ai) = 0. Finally, the modified capacity of (ci, t

′)
is of the form c̃(ci, t

′) = c(ci, t
′) − xi for some xi ≥ 0.

Next consider bi ∈ X̄∗: In this case, (s, ai), (s, bi), (ci, t
′) are cut-arcs and (bi, ai), (bi, ci)

and no cut-arcs. Hence, c̃(bi, ai) = c(bi, ai) = 3m and c̃(bi, ci) = c(bi, ci) = 2m. Note that
(bi, ci) is a backward-arc and hence f∗(bi, ci) = 0. This implies 0 = f∗(ci, t

′) = c̃(ci, t
′).

In order to find out the modified capacities of the remaining arcs, we consider the
following flow f∗: f∗(s, bi) = f∗(bi, ci) = f∗(ci, t

′) = 2m − xi for all gadgets Gi with
bi ∈ X∗, f∗(t′, t) = 2m|X∗| −

∑

bi∈X∗ xi and f∗(i, j) = 0 otherwise. Observe that

c̃(ci, t
′) = 2m − xi if bi ∈ X∗ and c̃(ci, t

′) = 0 if bi ∈ X̄∗. Therefore, f∗ saturates all
incoming arcs into t′ and hence f∗ is a maximum flow with respect to c̃. Observe that
f∗(s, bi) = 0 holds for all (s, bi) with bi ∈ X̄∗ and since (s, bi) is a forward-arc, we have
c̃(s, bi) = 0. Moreover, (t′, t) is no cut-arc and hence c̃(t′, t) = c(t′, t) = mn. Finally,
whenever (bi, bj) ∈ Ẽ is a cut-arc, we have c̃(bi, bj) = f∗(bi, bj) = 0 and if (bi, bj) ∈ Ẽ is
no cut-arc then c̃(bi, bj) = c(bi, bj) = 1.

We are now able to compute ‖c − c̃‖1 and the capacity of cut (X∗, X̄∗): Let k =
|{(bi, bj) | (i, j) ∈ Ê, i ∈ X∗, j ∈ X̄∗}| and

Y = {i ∈ V̂ | bi ∈ X∗}.

Then

‖c − c̃‖1 =
∑

bi∈X∗

(c(bi, ai) + xi) +
∑

bi∈X̄∗

(c(s, bi) + c(ci, t
′)) + k

= 3m|Y | +
∑

i∈Y

xi + 4m|Ȳ | + k

= 4mn − m|Y | +
∑

i∈Y

xi + k

c̃(X∗, X̄∗) =
∑

bi∈X

(2m − xi) = 2m|Y | −
∑

i∈Y

xi

Since ‖c− c̃‖1 ≤ 7mn
2 + K holds, we get

0 ≤
∑

i∈Y

xi ≤ m|Y | −
mn

2
+ K − k. (1)
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Since arc (t′, t) implies a cut with modified capacity mn and (X∗, X̄∗) is a minimum
cut with respect to c̃, we have c̃(X, X̄) ≤ mn which implies

2m|Y | − mn ≤
∑

i∈Y

xi (2)

We show that (Y, Ȳ ) with Ȳ = V̂ \ Y is a balanced cut with at most K arcs in the
cut. Observe that K < m ≤ m + k holds.

First assume that |Y | ≤ n
2 − 1: Then (1) implies

0 ≤ m|Y | −
mn

2
+ K − k < m

(n

2
− 1
)

−
mn

2
+ m = 0

which is a contradiction.
If |Y | ≥ n

2 + 1 then K − k < m, (1) and (2) imply

2m|Y | − mn ≤
∑

i∈Y

xi < m|Y | −
mn

2
+ m ≤ m|Y | −

mn

2
+ m(|Y | −

n

2
) = 2m|Y | − mn

which is again a contradiction.
We have shown that (Y, Ȳ ) is a balanced cut, i.e., |Y | = n

2 . Finally, we have to make
sure that there are at most K cut-arcs in (Y, Ȳ ). Observe that

k = |{(bi, bj) | (i, j) ∈ Ê, i ∈ X∗, j ∈ X̄∗}| = |{(i, j) ∈ Ê | i ∈ Y, j ∈ Ȳ }|

holds, i.e., there are k cut-arcs. Inequality (1) for |Y | = n
2 implies

0 ≤ m|Y | −
mn

2
+ K − k = K − k

and hence (Y, Ȳ ) is a balanced gut in Ĝ with at most K cut-arcs.
The ONLY IF-direction: Let us now assume that there exists a balanced cut (Y, Ȳ )
in Ĝ with at most K cut arcs. Then let

c̃(e) =



















0 if e = (bi, ai) and i ∈ Y

0 if e ∈ {(s, bi), (ci, t
′) | i ∈ Ȳ }

0 if e = (bi, bj) and i ∈ Y, j ∈ Ȳ

c(e) otherwise

.

Observe that the flow f∗ such that there are 2m units of flow on every path (s, bi, ci, t
′)

for i ∈ Y is a maximum (s − t′)-flow because all incoming arcs into t′ are saturated.
Consider the cut (X∗, X̄∗) with

X∗ = {s} ∪ {bi, ci | i ∈ Y } ∪ {ci | i ∈ Ȳ }.

This cut satisfies c̃(X∗, X̄∗) = 2m|Y | ≤ mn. Hence, (X∗, X̄∗) is a minimum (s − t)-cut
in G and (X∗, X̄∗) covers J . Moreover,

‖c− c̃)‖1 =
∑

i∈Y

3m +
∑

i∈Ȳ

4m + |{(bi, bj) | (i, j) ∈ Ê, i ∈ Y, j ∈ Ȳ }| ≤
7mn

2
+ K.

Hence, the partial inverse minimum (s − t)-cut problem is strongly NP-hard even if all
cost coefficients are equal to 1.
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